
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017 1113

Scalable Anti-Censorship Framework Using Moving
Target Defense for Web Servers

Vahid Heydari, Student Member, IEEE, Sun-il Kim, Senior Member, IEEE,
and Seong-Moo Yoo, Senior Member, IEEE

Abstract— Although the Internet has become a hub around
which every aspect of our lives—from commerce to leisurely
activities—is centered, many around the world are not able to
freely access information over the Internet. Some governments
censor what the people can and cannot see. In this paper,
regardless of the socio-political view points, we focus on the
design of anti-censorship technology that can be implemented on
the side of the information purveyors. The primary objective is
to develop a framework for combating censorship. Our approach
aims to make it too expensive and impractical for the adversary to
censor Web sites. In particular, we propose the use of Mobile IPv6
to form a moving target defense strategy, where the Web servers
logically behave as if they are the mobile nodes (without actually
moving). The potential efficacy of this framework is modeled
analytically. Probabilistic models are used to derive important
metrics and parameters. One key factor termed swarming ratio
enables hosting sites to reason about the amount of resources
needed to force the adversary’s costs over practical limits. This
model is used to guide the performance goals and architectural
setup of the prototype implementation (modifications are made
on the server-side software and Kernel without changing the stan-
dard Mobile IPv6 protocol). Hence, the solution can be utilized
without any changes to the existing network infrastructure. Fur-
thermore, we introduce a novel, credit-based accounting strategy
for grouping of users to drastically shift resource requirements
in our favor. Lab-based tests are used to measure performance
overheads, and based on the findings, targeted optimizations are
performed to consider practical deployment scenarios. The end
result is a solution that may also be combined with existing anti-
censorship methods (that are end-user-based and/or assisted by
friendly network assets) to form a robust anti-censorship solution.

Index Terms— Anti-censorship, moving target defense,
mobile IPv6.

I. INTRODUCTION

OVER the past decade, widespread access to the Internet
has led to significant changes in the way people live. The

power of having information that can be readily accessed via a
computer or a mobile device has prompted never-before-seen
rate of advances in science, technology, and cultural transfor-
mations. Though some may also argue the downsides of the

Manuscript received July 24, 2016; revised November 10, 2016; accepted
December 7, 2016. Date of publication January 2, 2017; date of current
version February 22, 2017. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Athanasios V. Vasilakos.

V. Heydari and S.-M. Yoo are with the Department of Electrical and
Computer Engineering, The University of Alabama in Huntsville, Huntsville,
AL 35899 USA (e-mail: vahid.heydari@uah.edu; yoos@uah.edu).

S. Kim is with the Department of Computer Science, North Central College,
Naperville, IL 60565 USA (e-mail: skim@noctrl.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2016.2647218

Internet, it has enabled all communities around the globe to
come much closer together than ever before. Unfortunately, the
freedom to access information—which is considered a basic
human right by most cultures and their respective laws—is not
protected for some people in various parts of the world today.
Freedom of information is key to a free, democratic society.
In addition to fueling the transformations as described above,
it symbolizes a fundamental struggle towards betterment of
mankind. As such, some have even argued that the right to
access information should be a welfare right: that the burden
of guaranteeing such access to its citizens should be placed
on the government [1]. Through the use of technology, it is
possible to combat anti-censorship, and help people from all
around the globe access information that can ultimately help
them reach their potential in all areas of science, technology,
digital culture, etc. This research work presents a framework
through which web servers can combat censorship.

The adversary may be a government body or a private
group trying to prevent people from accessing certain types
of information. Our goal is to make it difficult for any entity
to prevent the public from accessing web-hosted information.

There are several ways information on the web is currently
censored. Some common techniques include:

• Internet Protocol (IP) address blocking: Block access to
certain sites as identified by their IP address(es).

• Domain Name System (DNS) filtering: Certain domain
names are not resolved, preventing access.

• Uniform Resource Locator (URL) filtering: URL strings
are scrutinized regardless of the domain name.

• Packet filtering: Network packet payloads are monitored
for forbidden terms.

• Network Disconnection: Censorship is achieved by
turning off the network infrastructure.

The last item—complete network disconnection for some—
is seldom implemented in practice, but there are no solutions
other than finding another way to get on to the Internet. Thus,
complete disconnection is outside the scope of this paper.
Most users go around the other four censorship methods by
utilizing encrypted tunnels and proxies, such as VPNs [2]–[4]
and Tor [5]. In response, the adversary typically attempts to
find and block the hosts of these services.

In this paper, we present a solution based on a combination
of the features present in Mobile IPv6 (MIPv6) and a moving
target defense (MTD) strategy. This framework is designed
to be implemented at the servers hosting the content. We use
the basic ideas behind MTD approaches that were designed

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1114 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 1. For illustration purposes, n different randomly chosen CoAs are
assigned to different groups of users; three user groups assigned to IP1 IP2
and IPn are highlighted.

to prevent Distributed Denial-of-Service (DDoS) attacks by
detecting flooding attacks where the intended victims (servers)
are turned into moving targets for attack isolation [6]–[8]. Such
methods were also used to improve user privacy [9]. (In the
related work section, we discuss the lack of suitability of these
existing MTD approaches for the anti-censorship problem.)
Our approach is different from the existing attempts to thwart
Internet censorship measures where the end-users or some
entities in the network attempt to combat censorship efforts
(either individually, or as a community). Our solution lever-
ages the participation of the hosting server, and is orthogonal
to the existing methods. In fact, we believe that the joint-use of
the different schemes could yield an extremely robust solution.

Typically in MIPv6, a permanent IP (home address) is
used to avoid disrupting TCP sessions and one or more
care-of addresses (CoA) are used to connect to the other
nodes [10]. We use MIPv6, and treat the web server as if
it were a mobile node. Servers can then utilize dynamically
changing IP addresses (based on the CoAs) to avoid filtering
and blocking (and also from being attacked). End-users are
assigned to random groups and provided with a CoA that
they can use to access the website. After some time interval
(called shuffling interval), we generate new sets of CoAs
and re-randomize the user groups and update them with
the new CoAs. In Figure 1, we illustrate the basic scheme.
On the server-side, n different CoAs are utilized with three IPs
(IP1, IP2 and IPn) explicitly shown. Each CoA is assigned
to a randomly chosen group of users. After shuffling, the
users will be re-grouped and will be connected via newly
generated CoAs. The efficacy of the basic scheme depends
on the number of CoAs utilized and the number of agents of
the adversary pretending to be normal users. These agents will
seek out the CoAs in order to block them. By changing the
CoAs, and shuffling the users, we provide a moving target.

By utilizing a novel, cost-based shuffling method, we make
it cost-inhibitive for the adversary to try to out number the
system. Our method leverages the existing MIPv6 technology,
such that no modifications to existing MIPv6 standard/protocol
is required.

In our earlier paper [11], we presented the basic framework
and analysis.1 In this paper, in addition to editorial changes,
we also include the following significant extensions/updates:

• Updated explanation and analysis.
• Co-location of mirrors with other sites.
• User registration mechanism: (1) coalition with uncen-

sored sites (2) multiple reCAPTCHA with random timing
for user registration control.

• Use of IPSec with Internet Key Exchange (IKEv2).
• Behavior monitoring and intelligent user grouping based

on credit/risk based accounting that allows signifi-
cant reduction in the number of CoAs needed during
operation.

• Signaling overhead reduction.
The remainder of this paper is organized as follows. Over

the next two sections, we provide an overview of the related
work in anti-censorship efforts, moving target defense, and
some details of MIPv6. We then present the basic framework
of our solution, including an analytical model, and results
of testing with a prototype implementation. We also present
improvements to the framework and explain the benefits.
Finally, we offer some conclusions, and discuss our ongoing
and future works.

II. RELATED WORK

In this section, we discuss two categories of related work:
(1) Anti-censorship methods and (2) MTD methods.

A. Anti-Censorship Methods

End users utilize proxies and encrypted tunnels to get
around the problem of censorship. Some notable examples
include VPNs [2]–[4], open HTTPS proxies, and different
types of anti-censorship tools such as Tor [5]. Unfortunately,
the adversary can thwart the use of these solutions by blocking
the IP addresses of the systems on which these services run.
For example, traffic to and from Tor relays can be easily
filtered, since their IP addresses are publicly advertised. The
maintainers of the Tor project have thus suggested the use
of bridges, which through relay-like functionality, do not
advertise their presence and reachability information through
directory services. However, encrypted bridge traffic can also
be identified [12]. Thus, systems such as Skypemorph [13] and
Stegotorus [14], suggest ways of camouflaging Tor messages
through various unrelated, cover protocols (e.g., VoIP). These
camouflaging methods can also be detected [15].

Recently, a solution called decoy routing was intro-
duced [16]. Unlike traditional methods where the proxies
reside at the ends of the network paths, this solution relies on
placing the proxies in the middle. There are several variations
that can be found in the literature including Cirripede [17],

1ACM Cyber and Information Security Research Conference at the Oak
Ridge National Laboratory in Oak Ridge, TN, April 6, 2016.

HEYDARI et al.: SCALABLE ANTI-CENSORSHIP FRAMEWORK USING MOVING TARGET DEFENSE FOR WEB SERVERS 1115

TapDance [18], and Telex [19]. Internet service providers (ISP)
that participate in decoy routing place special routing equip-
ment that filter out specially marked messages (which are
destined to decoy destinations) and redirects them towards the
actual destination (which is censored). The realization of these
schemes is dependent on the ability of the participating ISPs to
filter traffic between the end-user and the decoys. The filtering
process is not computationally cheap, requiring the addition
of hardware resources. This overhead also results in increased
latency. Though TapDance is designed to function without this
blocking at the ISPs, it is vulnerable to active attacks that do
not affect other schemes. Current decoy routing systems are
also vulnerable to traffic analysis or website fingerprinting.
Finally, in [20], a scheme for routing adversaries against the
decoy routing strategy was introduced. The authors showed
that the end-users can be forced onto paths lacking the special
routers from the friendly ISPs. The use of several different
class of solutions (including the one we propose in this paper)
in conjunction is likely to yield a stronger solution.

B. MTD Methods

We briefly discuss two different MTD-based methods that
protect servers against attacks (e.g., DDoS) and discuss why
they cannot be used (at least in their existing form) to address
anti-censorship.

First, a cloud-based defense mechanism was introduced
in [8] for Internet services against DDoS attacks. This solution
was based on performing selective server replication and
intelligent client reassignment, where the victim servers were
turned into moving targets for attack isolation. The attacked
server instances are replaced with new replicas at different
network locations, and the clients are migrated to the new
server instances. The attacked servers are recycled after client
migration is completed. The new locations are only known to
clients that have been migrated to them. The DNS service is
used to redirect incoming clients to the cloud domains where
the protected servers are deployed.

To reach the protected server, a client first needs to go
through the DNS for domain resolution. In this step, the DNS
refers the client to the cloud domain, where load balancers are
used to redirect the clients. Each load balancer keeps records
about the active replica servers within the same domain and
redirects new clients to the servers. To achieve redirection-
based load balancing, the load balancer replies to each client’s
requests with the unique network location of the server that the
client now belongs to. The server is also notified; the client
is then whitelisted on the server. If there is a DDoS attack
on some of the servers, new replicas are instantiated and the
clients are reassigned across the set of replacement servers.

We now discuss the limitations in adapting this method for
anti-censorship (instead of using it for DDoS protection). The
shortcomings can be summarized as:

• The censors can perform (1) IP blocking and/or (2) DNS
filtering and redirection to prevent access to the load
balancers.

• Detecting who the censor is amongst the normal clients
is difficult; All users grouped with a censor are blocked
perpetually.

• DDoS requires large volume of attacks to target the
servers, where as a single censor can bring down a replica
upon detecting the true location; it leads to much more
frequent migrations.

• The time overhead of the redirection operation associated
with the migration causes packet losses.

• A large amount of spare cloud infrastructure capacity is
needed to allow large scale replication of servers.

Using out-of-band methods, such as email, can help get
around the problem with access to the load balancers. Dynamic
group arrangements could be performed each time new IPs
are needed for replica servers to help alleviate the issue of
having some users constantly being blocked as a result of
their grouping. The remaining three limitations, however, pose
serious challenges in utilizing this approach. We leveraged
some of the insight gained in looking at these problems to
design our solution.

The second MTD scheme of interest is MT6D [9]. MT6D
is a form of a dynamic, network layer MTD that rapidly
changes IPv6 addresses of both the sender and receiver
mid-session without dropping or renegotiating sessions. The
design takes advantage of IPv6 for new address binding.
MT6D creates dynamic Interface IDentifier (IID) obscuration
to create dynamic IP addresses. These IIDs are comprised of
three parts: (1) a value specific to an individual host (seed IID),
(2) a secret (symmetric) key shared between both parties,
and (3) some changing value that is agreed upon by both
parties (e.g., time). Out-of-band is suggested for sharing of
the seed IID and the shared key. MT6D encapsulates each
packet using Unreliable Datagram Protocol (UDP) to hide the
original IP addresses, and uses virtual IPs. Although some
initial steps have been taken to extend MT6D to support client-
server based networking, it was focused solely on peer-to-peer
networks. The much more common client-server networks are
left untreated [21]. The limitations of MT6D are as follows:

• Packet loss due to address collision. As the IP addresses
of the hosts are dynamically changed, a host must check
to see that the new IP address is free. If an address col-
lision occurs, the source and the destination will remain
disconnected during that rotation interval.

• The use of shared keys between server and all clients
(out-of-band) has scalability implications.

• Relatively tight time synchronization is needed.
• Organization of users to virtual IPs of a server is the

most limiting factor for MT6D. It has two options for
this allocation: (1) one virtual IP per each user, which is
not scalable, and (2) one virtual IP per each predefined
group of users. In the second option, the users that get
grouped with a censor will be perpetually blocked.

III. BACKGROUND

In this section we discuss how MIPv6 is used. We also
discuss route optimization and multiple care-of address regis-
tration as related to our use.

A. Use of Mobile IPv6

We utilize MIPv6 to take advantage of several of its features,
but the more important part is the ability for it to change how

1116 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

a Mobile Node (MN) is reached with a changing IP address
as it moves through the network. Although we do not assume
the use of any mobile nodes in our intended application,
we treat the server as if it were a mobile node. In MIPv6,
a MN has a permanent IP address, Home Address (HoA),
assigned by the Home Agent (HA). HA is a router on the
MN’s home link that functions similar to a proxy for the MN.
A MN also has an alternate address: Care-of Address (CoA),
which is used by others, called correspondent nodes (CN), to
reach MN. The HA keeps track of the CoA, and performs
the necessary forwarding. The MN is responsible for updating
the HA using Binding Update (BU) messages that contain
new CoAs. In response, Binding Acknowledgement (BA)
messages are received. CNs contact MN via HoA, which is
processed by the HA and tunneled to MN.

B. Route Optimization

Route Optimization is used to route packets via the shortest
possible path between a MN and a CN. It necessitates the
CN to hold the MN’s current binding information. Thus, the
MN must update the CN with the CoA. A return routability
procedure is used to verify the claimed CoA [10] and the
permission over the use of HoA. This procedure involves
four messages. Following this procedure, route optimization
uses two additional messages (BU and BA). These overhead
messages are reduced by requiring only CoA tests in [22].

In [23], all messages related to the return routability tests are
eliminated via the use of a shared symmetric key. We propose
the use of this method, which has some significant advantages
for our framework. First, low signaling overhead for route
optimization minimizes handoff delays, which in turn miti-
gates packet loss during shuffling. Second, more importantly,
without the need for return routability procedure, the HA is not
involved in route optimization. The MN can update a CN with
a new CoA directly. As a result, the HA can be disconnected.
The removal of HA is a new way to handle this process that we
will use in our approach, and both of these points are further
explained later. Along with these advantages, the static shared
key method also has some limitations:

• The CN need to trust the actions of the MN, and needs
to assume that the MN will not launch flooding attacks
against a third party as described in [24].

• Shared symmetric keys between a MN and each CN
are needed. Replay attacks are possible. To address
this issue, we propose to use IPsec with Internet Key
Exchange (IKE) between the MN and CNs.

After running the route optimization mechanism, packets
will be routed directly to the MN’s CoA by a CN. To send
a packet to any IPv6 destination, type 2 routing and desti-
nation options headers are used to route the packet to/from
the MN [25].

The type 2 routing header is a routing header type for
MIPv6. This routing header is used by a HA or a CN to carry
a MN’s HoA when packets are sent to the MN’s CoA. For
example, if a CN knows the MN’s CoA, the CN can send a
packet to the CoA but the MN needs to see its HoA in the
destination IP address. Therefore, the CN stores the MN’s HoA

in the type 2 routing header and then sends the packet with
the MN’s CoA as the destination IP address. When the MN
receives this packet, it automatically replaces the destination
IP address of the packet with the address stored in the type 2
routing header.

The destination options header is used to carry optional
information that needs to be processed only by a destination
node. The important part of this option is home address option.
It is used in a packet sent by a MN while away from home, to
inform the CN of the MN’s HoA. In this situation, the source
address of the packet is the CoA of the MN and the address
in the home address option is the HoA of the MN. These
addresses will be swapped when the validity of the addresses
is verified. The pair of the CoA and the HoA of the MN must
be registered as a binding cache entry.

C. Multiple Care-of Address

One of the keys to moving target defense as used for anti-
censorship purposes is the ability to have many IP addresses
such that the censor cannot detect them in a reasonable
amount of time and block them. (We use and discard these
addresses as explained later in Section 4). With MIPv6, with
the Binding Identification (BID) number extension, a MN
can utilize multiple CoAs (over the same HoA) with its HA
and/or CNs. An MN can setup multiple IPv6 global addresses
and register them as its CoAs. To register multiple bindings,
the MN can generate a unique BID per CoA. These BIDs are
stored in the Binding Update List, and used to handle each
binding independently. The MN can register its CoAs using
BU messages via the Binding Identifier mobility option.

On the other hand, the Multiple Care-of Addresses regis-
tration can be disabled on the CNs. the CNs then do not
understand the BID mobility option found in the BU messages
they received. As such, according to RFC 5648 [26], the CNs
can skip the unknown mobility option and simply update the
binding cache and will send packets to the newly updated
CoA of the MN.

IV. USING MIPV6-BASED MTD FOR ANTI-CENSORSHIP

In this section, we first describe our MIPv6-based Moving
Target Defense (MI-MTD) scheme and present an analytical
model to help reason about the various factors that affect the
effectiveness of the scheme. We then discuss a user regis-
tration scheme, and present an optimization scheme that aids
in improving the effectiveness of our approach. Finally, we
present our experimental results to demonstrate the feasibility
of using MI-MTD.

As described briefly above, the core of this approach
involves the use of multiple IPv6 CoAs. Unlike actual mobile
applications, however, the host (web server) is treated as the
mobile node: the HoA is used as the permanent address of
the server and the CoAs are used as the dynamic addresses.
The CoAs are assigned to groups of users called access groups.
We generate pseudo-random IP addresses to dynamically
rotate all CoAs of the server after each time interval. During
each shuffling interval, each access group membership is
randomly changed by shuffling and redistributing the users.

HEYDARI et al.: SCALABLE ANTI-CENSORSHIP FRAMEWORK USING MOVING TARGET DEFENSE FOR WEB SERVERS 1117

The binding update mechanism is used to update users with
the new CoAs.

Note that HAs and real mobility are not needed in our
scheme. We just need to set the MIPv6 parameters in the
server and select an IP address for the HoA with a prefix
different from that of the server’s subnet. When MIPv6 is run,
the server will receive the route advertisement message from
its router, where the prefix of the home link will be different
from the prefix of the HoA. As such, the server will think
that it is in a foreign network and will register a CoA in this
network. To randomly generate the CoAs, 64 bit addresses are
created at random and combined with the home link prefix to
generate the new CoAs. These new CoAs are checked against
existing occupancy via neighbor solicitation messages before
they are registered on the subnet. According to the multiple
CoA registration rules of MIPv6, the server (acting as if it
were the MN) will send BU messages to its users to inform
them of the new CoAs. When each user receives the BU, the
HoA and CoA of the server are inserted into the binding cache.
The server also removes the previous CoAs.

On the server-side some changes are needed to the imple-
mentation of MIPv6 to (1) allow the allocation of users to
different access groups and (2) update each group by its
allocated CoA. No changes are needed on the user side, and
the MIPv6 protocol standard is also not changed.

Two components are critical to the scheme we described:
the allocation and shuffling of multiple CoAs. First, allocating
different CoAs to each access group limits the impact of
having a censor (an adversary who may be pretending to be a
normal user) within a group. Once a censor discovers a CoA,
it will utilize IP blocking to cut-off access to the server
that may occur via the CoA in question. All users that are
in the same access group as this censor would lose their
connection to the server. Second, to alleviate this problem,
shuffling is used and each user is randomly rotated through
the different access groups during each shuffling interval.
To eliminate packet loss during address shuffling, we propose
to have the server send a BU message for its new CoAs
before removing the previous CoAs. Therefore, during the
handoff delay, packets sent by users will have the old CoA
in their header and will be received by the server. Each of the
previous CoAs can be removed by the server after receiving
the respective BAs from all users in each access group or
after a certain amount of time. In our analysis and initial test
implementation, we used a static shuffling interval, but it is
possible to use a dynamic value. Dynamic intervals may be
utilized to decrease any potential overhead associated with the
binding update mechanism, and is part of our planned research.

The adversary may attempt to circumvent our scheme by
blocking the entire subnet for each of the servers. We envision
a coalition amongst web content providers and/or network
domain operators, such that web server mirrors can be placed
in various subnets in conjunction with other unblocked content
(that is desirable to the adversary). The drawback is that such
cooperative agreement between independent entities may not
be possible. If cooperation can be achieved, this participation
of the friendly domain is relatively cheap compared to ISP
participation in other methods (e.g., decoy-routing): it does not

TABLE I

SUMMARY OF NOTATIONS

require the friendly domain to perform any special handling of
the target servers’ traffic; they just need to allow placement of
some servers (that act as mirrors for the target website) in their
subnet. There are several interesting implications and potential
solutions (such as compensation models), which could be
researched and modeled. We leave this for future work.

As discussed earlier, our goal is to show that it is technically
feasible and relatively low-cost to implement our scheme.
At the same time, we will show that it is prohibitively
expensive for the adversary. The swarming ratio, derived in
the next section, helps us reason about these two issues.

A. Model and Analysis

In order to understand the efficacy of the MI-MTD scheme,
we need to analyze the effects of having the adversary’s
agents (hereinafter referred to as censors) masquerading as
normal end-users. Each censor will receive BU messages
with a new CoA after each shuffling interval; This CoA will
then be blocked or attacked by the adversary. During each
interval, end-users that reside in an access group that contain
at least one censor (by random chance) would be blocked from
accessing the server. We are first interested in the probability
of being blocked at any given moment based on the number
of CoAs and the number of censors.

A mathematical model of the shuffling process is used to
help us reason about the performance. The notations used in
this model are summarized in Table I.

The total number of users, N , is the sum of the number
of censors (Na) and normal users(Nu): N = Na + Nu .
At each shuffling interval, the normal users can be divided
into two categories—those that are grouped with censors (Nub)
and those that are not grouped with censors (Nu f): Nu =
Nub + Nu f . We compute access probability, p, which is the
probability that a user has access to the server at any given
moment. To compute p, we first need to compute the expected
value of the number of users assigned to groups without
censors (Nu f):

Nu f =
I∑

j=1

Pj A j (1)

1118 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

We assume (1) equal-sized access groups, which means that
the users are uniformly distributed over the available CoAs,
and (2) that N is divisible by I . Therefore,

A j = N

I
for all j (2)

and the probability that any given CoA, I Pj , is not
blocked is:

Pj =
(N−Na

A j

)

(N
A j

) (3)

where
(N−Na

A j

)
is the number of ways that censors are not in

group A j and
(N

A j

)
is the number of ways to select A j users

from the population of N . Therefore, we have:

E
[
Nu f

] =
I∑

j=1

(N−Na
A j

)

(N
A j

) A j (4)

Based on the assumptions stated above, A j = Ai ,∀i,
j ∈ (1, I) and N = I × A j , which leads to:

E
[
Nu f

] = N ×
(N−Na

A j

)

(N
A j

) (5)

Using an approach similar to [7], based on Stirling’s Approx-
imation, n! ≈ (n

e

)n √
2πn, and assuming Na � N :

E
[
Nu f

] = N

(
N − Na

N

)A j

= N

(
1 − Na

N

)N/I

(6)

Therefore, the ratio of users that have access, which represents
the probability p with which a user has access to the server
at any given moment, is 2:

p = N

Nu

(
1 − Na

N

)N/I

(7)

For example, if we have 1,000,000 users along with
5,000 censors, and 10,000 CoAs are used at each shuffling
interval, the probability of having access to the server during
one shuffling interval for any given user is about 60.88%.

Given the probability of access for each interval, we can
reason about other important metrics based on practical con-
siderations such as website access patterns that occur in real-
life. For example, a user accessing certain information on
a website does not typically interact with the web server
in a constant/continuous manner. Meaning, the user does
not constantly click and load web pages (and related web
resources such as images). The pattern of access typically
involves interaction with the server (short duration) followed
by actual reading of the information on the user’s own machine
(longer duration). As such, it is useful to investigate how much
inconvenience the user will experience in trying to get to the
information. Due to our shuffling methodology, the probability
of access (at any given moment) is an independent probability,
which allows us to easily compute the blocking probability
over a time period δ. The time period δ is some multiple of the

2We empirically validated the result against the expanded form of Equation
4, and the differences were negligible.

shuffling interval (t). Hence, we derive the number of intervals
in question, k = �δ/t�, and denote the blocking probability
over this period as bk . We can compute k independent trials
during which the user is always grouped with a censor:

bk = (1 − p)k, k =
⌈δ

t

⌉
(8)

For example, we can look at a period of one minute
and calculate the blocking probability over that period. This
measures the probability that the user is denied access to
the server for the entire period. For shuffling interval, t , of
10 seconds, b6 = (1 − 0.6088)6 ≈ 0.358%. In other words,
the user has ∼99.6% chance of getting access (every minute).

The overall effect of having our solution in place depends
on the relationship between the key parameters. Primarily, we
define the swarming ratio, φ, as (Na

I). The swarming ratio
is a critical metric: it determines the access and blocking
probabilities, and is not affected by the scale. In other words,
changing the I and Na values does not affect the access
probability as long as the swarming ratio remains constant.
Furthermore, changing Nu also does not affect the worst case
access probability for any given swarming ratio. It is trivial to
see that if N is less than I , users are guaranteed access. As N
increases, the access probability converges. For example, with
φ = 0.5 from the previous example, the access probability, p,
is never less than 60.65%. Given a sufficiently large number
of users, we can always compute the lower bound, which is a
function of the swarming ratio. Hence, the swarming ratio is
a key metric in our analysis.

Based on the equations introduced above, we also define
what we term the dominating point for the swarming ratio,
which is where p becomes too low for the system to be useful.
What exactly is considered useful depends on the intended use
of the application. For instance, under extreme conditions, it
may be good enough to be able to access the website just
once after several hours of attempts. In contrast, typical web
browsing for news articles may require some access every few
minutes or so. Hence, we must ask the following question:
What kind of censorship is the adversary interested in? Is it
interested in complete blockage, or is it just trying to cause
some level of inconvenience?

For illustration purposes, we choose 5% blocking over the
period of one minute. Let us say that the system will be
considered useless if the user cannot access the website with
more than 95% probability after a minute of trying. In practice,
it would only be seen as a mere inconvenience or nuisance.
Users, especially under heavy censorship, will tolerate a much
higher blocking rate. Also, as the period of consideration
increases from our one-minute example, the odds become
better for the user. We chose this scenario since it presents
a more challenging case for our approach. The goal of our
proposed framework is to make censorship efforts much more
expensive for the adversary.

In the current working example, the dominating point occurs
when φ = 0.9339. Figure 2 shows the effect of changing the
swarming ratio. With this result, we can explore the underlying
problem space given IPv6 and the limitations of the hard-
ware resources available for a website. The total number of

HEYDARI et al.: SCALABLE ANTI-CENSORSHIP FRAMEWORK USING MOVING TARGET DEFENSE FOR WEB SERVERS 1119

Fig. 2. Swarming ratio vs. Blocking over δ.

IP addresses a web-server can utilize within a single subnet
is 264. The total number of CoAs a server can utilize during
each shuffling interval (within each subnet) depends on two
limiting factors. First, if all 264 IPs are used, then the server
will exhaust all possible addresses within one interval, and as
a result, the access groups will not be able to receive new,
never-before-assigned, CoAs. However, it is unlikely that a
server system will utilize all of the 264 IPs at the same time
as the number is simply too large given current technology.
(We provide a discussion of what is currently feasible with an
example in the next section.) If 100,000 CoAs are used in each
interval, it would take more than 5.849×107 years to exhaust
all usable addresses. This figure represents the lifespan of the
system. Second, the creation and binding performance of the
IPs to be used as CoAs at each shuffling interval is limited
by the hardware of the server and the router. Based on our
experiments (and what others have experimented with in the
literature [21]), we used the value I = 10, 000 for our example
because working with 10,000 simultaneous IPs did not incur
large latencies. Given this value, to achieve a swarming ratio
of 0.9339, Na has to be 0.9339 × 10, 000 = 9, 339. The
adversary must utilize 9,339 censors to cause a mere 5%
blocking over each minute of users’ access attempts. Using
the same parameters, for complete blockage (greater than 99%)
over 10 hours (such to prevent a user from downloading even
a single news article over a period of 10 hours), the adversary
needs to achieve a swarming ratio of 12.8 by deploying
128,000 censors. Using the 5-minute registration example from
earlier, the adversary in this case needs 1,067 humans to
complete the blocking process by the end of the 10-hour
period, meaning before the 10 hours is up, people have
chance to access the website. To achieve complete blockage
for 10-hours, the adversary would need to setup 128,000
censors at the start of the period in question. If we give the
adversary a one hour window, 10,667 people are needed. The
process has to repeat when the server resets the users. Also,
ramping up the number of CoAs across all mirrors should
be (1) relatively trivial in terms of the man-power required,
and (2) cost-efficient for the website operators. We aim to
demonstrate these ideas in this paper. On the other hand, the
cost for censoring should quickly become unmanageable for
the adversary. This cost should become even more unmanage-
able with a large number of websites that the adversary tries

to block. (Figure 2 illustrates the swarming ratio required for
the adversary to achieve different levels of blocking for three
different intervals of user access attempts.)

This discussion outlines the cost struggle between the two
competing sides. The server must deploy a sufficiently large
number of CoAs and the adversary must deploy a sufficiently
large number of censors, with each side fighting to control the
swarming ratio.

B. User Registration Procedure

In practice, the adversary does not need Na physical
computers to create Na censors. Similar to the server’s con-
figuration, an adversary may create a system by binding a
large number of IPs, which in turn can be used as censors.
According to the experimental results in [21], it is possible
to have 55,000 IPv6 addresses bound to a single computer in
suitable time. The example IP binding capability of 10,000 per
each shuffling interval of 10 seconds was obtained from the
same results. Their experiment was performed on a non-
server-grade computer with Intel i7-4770 processor running
at 3.4Ghz with 16GB of RAM and an Intel I217-LM Gigabit
Ethernet network interface card. Using machines with similar
computing power, the adversary can theoretically implement
55,000 censors. As discussed earlier, to combat automated
censor deployment, a method for requiring human response
should be utilized. For the end-user, this is not a problem
since it only needs to be performed at initial registration.
Some of the suggested out-of-band methods include difficult
CAPTCHA-like tests or mini games that require a non-trivial
amount of time for a human to solve.

The registration status should be reset at some time interval
(e.g., every 12 hours), which forces the adversary to repeat the
registration process for every single censor. Another important
factor in censor deployment is the use-duration of a censor.
If a censor was deployed immediate after the new registration
cycle opens, it is potentially useful for the entire cycle.
If a censor was deployed at the 11th hour, that censor is only
useful for the next hour, after which the registration would be
reset globally. Since humans cannot solve massive numbers
of challenge tests in parallel (without equally multiplying the
time it takes to do them), the average use-duration of a censor
(if the adversary spends the entire cycle solving challenge
questions without any breaks) would be half the cycle time.
To cause a complete block over a 10 hour period, with
a 12 hour registration cycle and a one-minute solving time for
the challenge tests, the adversary could prepare 128,000 cen-
sors during the first two hours after registration resets. Then,
during the next 10 hours, no user would be able to access
the server. For this scenario, the adversary needs 1,067 human
agents to work for the full two hours. On the server-side, we
can relatively easily add additional combinations of computers,
network interfaces, and routers. In practice, web server sites
consist of many computers. To combat a 10 server site con-
figuration each with 10 server-interfaces, the adversary needs
106,700 humans working in parallel. Furthermore, during the
first two hours, a large number of users would still be able to
access the server.

1120 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 3. Sample user registration window on uncensored sites.

Because there are no HAs (by design), a new user will not
be able to start a connection to the server using the HoA of
the server. Instead, the connection initiation is made by the
server upon receiving a request from a user. On the user side,
the host file needs to be set using the HoA and domain name
of the server. To initiate a connection from a new user to
the server, the user must send its IP address and a shared
key to the server. One simple method is to utilize a secure
email exchange for this issue. However, some users may not
have access to secure email exchange. For example, users from
certain countries may have access to Google’s search engine,
but cannot use Gmail. Therefore, other methods for registering
new users are needed.

With the help of friendly web servers, we can address this
issue as follows. In this approach, the friendly websites can
volunteer to add a small script to assist in the key exchange/
registration process. Figure 3 shows a mock-up of what would
show up in the friendly websites’ that are assisting with
“Internet Freedom.” A new user will be required to solve a
CAPTCHA and put his IPv6 address through the “Internet
Freedom” window. The user then needs to create a key
that will be used for starting IKEv2, explained in the next
subsection, and select one of the censored servers that he or
she wishes to connect to (in the example figure, Facebook
and Youtube are shown). The script will be designed to send
a packet to the censored server. This packet will contain the
IPv6 and Key of the user. The censored server can then use
the standard MIPv6 procedure to start the route optimization
mechanism and update the user with one of its active CoAs.

To determine whether the user is human or an automated bot
a challenge puzzle that requires significant human intervention
(e.g., CAPTCHA test) is needed. One suggestion that we have,
as shown in Figure 3, is the use of the reCAPTCHA that is
available for free, has API support and the test comprises of a
simple click on a checkbox. On suspicious clicks, it diverts to
more traditional CAPTCHA tests. To combat the adversary’s
use of large-scale automated censor operation, we need a
method that makes it difficult for both a human and a computer
to solve within a certain time window. Utilizing only the
reCAPTCHA test, one such solution can be constructed. For
example, we propose the use of a sequence of reCAPTCHAs
with random down time, the time during which the user waits
for the next reCAPTCHA to come up, and a short time
window to perform the reCAPTCHA once it actually does
come up. We can also use random screen location for each

subsequent of reCAPTCHAs to prevent automatic clicking
after the first human click. During this process, users have to
quite actively engage themselves with the registration “puzzle”
in order to not miss the time window. Changing the number
of reCAPTCHAs in the sequence and the random down time
can help adjust the time requirement for registration. This
registration process should be configured such that the users
are reset after a certain amount of time as explained previously.
In this way, large-scale automated censor operation requires
significant human resources to operate. For example, with five
minutes spent per registration, a human working non-stop for
24 hours straight can only manage up to 288 censors. Our
discussion of the numbers holds here as well. We later describe
a novel approach to further shift the ratio in the server’s
favor, aiding in both the strength and the scalability of our
framework.

C. IPsec With IKEv2

When a node (N1) wants to send a data packet to another
node (N2), it will have already supplied the HoAs as the
source and destination addresses in the packet header. Next,
N1 checks the binding update list to see if it has already sent
a BU to N2, and search for the CoA from N2’s entry. If it
is found, N1 includes its CoA in the home address option.
N1 then checks its Binding Cache to see if N2 has sent it
a BU. If it is found, N1 constructs a type 2 routing header
and places the N2’s CoA inside it. The packet with HoAs in
the source and destination addresses of the header will reach
IPsec. After encrypting and adding headers, the home address
option is swapped with the source address and the type 2
routing header is swapped with the destination address of the
packet header. When the packet is received by N2, the headers
are processed in the order they appear in the packet, and the
IPsec implementation always sees HoAs in the source and
destination addresses of the packet header [27, p. 116–119].
IPsec does not encrypt the type 2 routing header and the home
address option that show HoA of the source and destination.

To prevent any censoring we can resolve this problem
by removing the destination option header (and the type 2
routing header) from all packets. Note that the Security
Parameter Index (SPI) found in the IP Encapsulating Security
Payload (ESP) header is sufficient to get access to the HoA
(the real source/destination of the packet). The packet format
before and after removing destination option header/the type 2
routing header are shown in Figure 4.

We also propose the use of standard key management
techniques. IKEv2 can be used to increase the security and
scalability, and prevent replay attacks. To start IKEv2, some
negotiations need to be performed between peers, and then
SPIs will be defined (a total of four messages). After those
steps, we can remove the HoA and use SPIs. The friendly
server, the uncensored server used for user registration, needs
to encapsulate the first packet of IKEv2 between a user and the
server. Note that the key the user needs to put in the Internet
Freedom window is to be used for IKE_AUTH Exchange,
which is the first step for IKEv2. The details are out of
the scope of this paper, and can be found in the standards
document for IKEv2.

HEYDARI et al.: SCALABLE ANTI-CENSORSHIP FRAMEWORK USING MOVING TARGET DEFENSE FOR WEB SERVERS 1121

Fig. 4. Packet format before and after removing destination option header/type 2 routing header.

D. Optimization: Behavior Monitoring and
Credit Based Accounting Method

In this section, we introduce a novel approach to address
the scalability issue mentioned above. We reduce the number
of CoAs and utilize dynamic shuffling interval(s). Behavior
monitoring is also performed, where we organize the users and
group them according to the country that they belong to. This
information can be obtained via the IPv6 prefix. The server
can then check the status of one of its CoAs by sending ping
commands to a pre-established point of contact (or to some
webservers) in the same country that the users of the particular
CoA group belong to. If a response is not received, the IP is
blocked by a censor.

Instead of competing only through the strength of the
computer/network system to create and operate with a large
number of CoAs, we dynamically shift group membership
based on a notion of credit assigned to each user. Basically,
the credit value represents the amount of “trust” the system
can place in a user.

By default, the credit (C) for each new user starts at zero.
After each shuffling interval, the server checks each of its
CoAs to see if they are blocked. If a CoA is not blocked, C is
increased for each user in the group associated with the CoA.
The amount by which C is increased is based on the number
of users in the group (Cnew = Cold + (G − 1)).

We utilize C to combine groups together, which results in
the creation of a larger group. When we combine groups,
we are assuming that the group members are innocent users.
Another change from the basic framework is that the server no
longer shuffles groups whose IP addresses are not blocked. The
server can maintain a lookup table with two columns—group
size (G) and the risk of each group (R(G)). New users with
zero credit are assigned to small size groups with size Gmin ,
and the risk for these smallest groups is zero. At each shuffling
interval any (larger) group that is blocked is divided into
two groups. This process is continued, and could go on until
reaching the minimum group size for some group.

The risk of a group is defined as the maximum cost of
having a censor in this group. For example, assume that
Gmin = 2 and we have a group of eight users consisting of
seven innocent users and one censor. Assume that the censor
waited a while and starts to block (at which point the group
size has reached eight). The censor will block seven innocent
users (8 − 1) for one shuffling interval. After the server splits

TABLE II

CREDIT BASED METHOD NOTATIONS

the group, the censor will be assigned to one of the two
groups of four users, at which point it can block three innocent
users. In the next shuffling interval, the group with the censor
inside will reach the minimum size, with one innocent victim.
Therefore the cost of having a censor in a group of eight users
is (7+3+1 = 11). This cost is used as the risk of groups. The
notations are summarized in Table II. With some calculations
we can obtain that if the size of a group (G) is Gmin × 2 j ,
the risk of this group is:

R(G) =
j−1∑

i=0

(
G

2i
− 1

)
(9)

Note that the size of the lookup table the server has to
maintain is relatively small. For example, if Gmin = 100 and
the maximum group size (Gmax) equals 1,638,400 then the
number of rows in the table is equal to log2

(1638400
100

) = 14
that is small enough for quick search to find suitable group
for a user with a specific credit value.

A censor may pretend to be an innocent user in order to
get into a bigger group before starting to block. To make it
expensive for censors to wait, a user is added to a group only if
the user’s credit is twice the risk of the group. When the server
detects that the IP of a group is blocked and divides the group
as described above, the credit for each user is decreased by
2×(G −1). Note that the credit starts from zero and increases
until twice Gmax .

In the example shown in Figure 5, we have one censor
(whose credit value is circled and highlighted in red, bold/italic
font) that is waiting to be in a large group. First the server
generates eight CoAs for the groups. Note the server does not
need to create new IPs when it is merging two groups. Assume
the censor starts blocking when it is in a group of eight users
(line 6 in the example). At this point, the server will create
two IPs and divide the group in question into two groups and
continue this process until finding the censor.

1122 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Fig. 5. Credit based method example.

Fig. 6. The network topology of the testbed.

E. Prototype Implementation

A proof of concept prototype of the first version of our
method was implemented to illustrate the validity of the
basic mechanics of the approach and to evaluate the perfor-
mance of the design. To implement our method, we used
an IPv6 testbed configured as shown in Figure 6. We used
three routers (R1, R2, and R3) and five computers (2.4GHz
Intel Core 2 Duo CPU with 4GB DDR2 800MHz RAM)
running Ubuntu 14.04. Linux kernel (version 3.8.2) with the
mobility options enabled was compiled and installed on the
computers. An open source implementation of MIPv6 (UMIP)
for Linux was used. Router R1 is used to emulate the heart
of the Internet. Packet forwarding is enabled on the censor
to work like a router. In this first version we used one CoA
for the single access group of users (user1, user2, and user3).
In this setup, the censor is not in the group.

After preparing the UMIP configuration files (mip6d.conf)
to setup parameters such as IPsec (with static keys between the
server and the users) and acceptance of route optimization, for
the server and the users, the mobility daemons were run. Note
that the server’s HoA does not have the same prefix with the
advertised prefix of R2. The server registered a CoA on R2 and

Fig. 7. The Binding Update process.

updated all users with its CoA. We used a program to create
a new CoA every 10 seconds (and remove the previous one).
According to the MIPv6, the server sends the BU message
to its users to inform them of its new CoA. The ACK bit
of BU messages forces users to send back acknowledgment
messages in response to BU messages. This process ensures
that the users receive the BU messages and update their
binding cache entries. Therefore, in every 10-second interval,
we have two overhead packets between the server and each
user as shown in Figure 7. Normally, during this update
procedure, the users are unable to access the server until they
receive the BU messages. We resolved this problem by using
the multiple CoA registration on the server-side. That is, the
CoA of one interval is kept alive until the next CoA has been
received by all users. It is removed once all users are rotated
on to the new CoA, and the process repeats.

There are two types of overheads of the proposed method—
overhead caused by the updating procedure because of the
BU and BA messages (signaling overhead) and overhead in
each data packet transmission between the server and a user
(transmission overhead):

• Signaling Overhead: A complete correspondent node
registration needs two message transmissions at the server
(BU and BA messages) with each being 110 bytes (using
IPsec and removing destination option and the type 2
routing headers). Note that in the original MIPv6, the
length of each BU and BA is 110 bytes, and because of
using return routability mechanism, we have four extra
messages. Therefore, the overhead of route optimization
in our method is only about one-third of the original
MIPv6. Also, to minimize the number of messages gen-
erated and reduce the overhead, it is possible to operate
the system without using BAs. If data is received from
the client to the new CoA, the server knows the client
received the BU without needing an explicit BA. Since the

HEYDARI et al.: SCALABLE ANTI-CENSORSHIP FRAMEWORK USING MOVING TARGET DEFENSE FOR WEB SERVERS 1123

standard protocol already has a flag that lets the other side
know whether or not to return a BA, no modifications are
needed to utilize this method.

• Transmission Overhead: For each data packet, we have
24 bytes of overhead due to the use of IPsec (ESP). Note
that without using our method we still need to use IPsec
to have secure connection between the server and users
so the real overhead caused by our method per each data
packet is zero.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an anti-censorship framework
using moving target defense designed with Mobile IPv6.
Our analysis showed, based on an important metric called
swarming ratio, that it is possible use our scheme to aid in
making it difficult or impractical for the adversary to deploy
censorship techniques. Our approach to shuffling optimization
with a novel user grouping strategy further strengthens our
framework. The solution leverages the standard MIPv6 pro-
tocol and does not require changes in the network protocol
nor use third party network elements. We also demonstrated
the feasibility of deployment with a lab-based test of MIPv6
protocol with the home agent completely removed from the
update process.

We are currently experimenting with various optimizations,
such as the use of multicasting, on the server-side implementa-
tion to further minimize overhead and improve performance.
To this end, our future experiments will include large-scale
testing with multiple interfaces. We believe that the anti-
censorship measure would be extremely robust if our scheme
was used in conjunction with other anti-censorship methodolo-
gies. Specifically, since our approach is host-side, it lends itself
well to a combination with end-user or end-to-middle schemes.
With participation and support from friendly websites across
the globe, we feel that our framework can add tremendous
strength to the effort of making the Internet accessible for all.

REFERENCES

[1] R. Davies, Broadband as a Universal Service. Apr. 2016. [Online].
Available: http://www.europarl.europa.eu/RegData/etudes/BRIE/2016/
581977/EPRS_BRI(2016)581977_EN.pdf

[2] F-Secure Switch on Freedom, accessed on Apr. 10, 2015. [Online].
Available: https://www.f-secure.com/en_US/welcome

[3] Free VPN Service Free VPN Software—Hotspot Shield VPN, accessed
on Apr. 10, 2015. [Online]. Available: http://www.hotspotshield.com/

[4] Psiphon Uncensored Internet Access For Windows and Mobile,
accessed on Apr. 10, 2015. [Online]. Available: https://psiphon3.
com/en/index.html

[5] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proc. USENIX Secur. Symp., 2004, p. 21.

[6] A. Stavrou, A. D. Keromytis, J. Nieh, V. Misra, and D. Rubenstein,
“Move: An end-to-end solution to network denial of service,” in Proc.
Netw. Distrib. System Secur. Symp. (NDSS), 2005.

[7] H. Wang, Q. Jia, D. Fleck, W. Powell, F. Li, and A. Stavrou,
“A moving target DDoS defense mechanism,” Comput. Commun.,
vol. 46, pp. 10–21, Jun. 2014.

[8] Q. Jia, H. Wang, D. Fleck, F. Li, A. Stavrou, and W. Powell, “Catch
me if you can: A cloud-enabled ddos defense,” in Proc. IEEE/IFIP
Dependable Syst. Netw., Jun. 2014, pp. 264–275.

[9] M. Dunlop, S. Groat, W. Urbanski, R. Marchany, and J. Tront, “Mt6d:
A moving target IPv6 defense,” in Proc. AFCEA/IEEE MILCOM,
Nov. 2011, pp. 1321–1326.

[10] C. Perkins, D. Johnson, and J. Arkko, Mobility Support in IPv6,
document RFC 6275, Internet Requests for Comments, Jul. 2011.

[11] V. Heydari, S.-I. Kim, and S.-M. Yoo, “Anti-censorship framework using
mobile IPv6 based moving target defense,” in Proc. ACM Cyber Inf.
Secur. Res. Conf., 2016, Art. no. 7.

[12] P. Winter and S. Lindskog, “How the great firewall of China is blocking
tor,” presented at the 2nd USENIX Workshop Free Open Commun.
Internet., Berkeley, CA, USA, 2012. [Online]. Available: https://www.
usenix.org/conference/foci12/workshop-program/presentation/Winter

[13] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg, “Skype-
morph: Protocol obfuscation for tor bridges,” in Proc. ACM Conf.
Comput. Commun. Secur., 2012, pp. 97–108.

[14] Z. Weinberg et al., “Stegotorus: A camouflage proxy for the tor
anonymity system,” in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 109–120.

[15] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead:
Observing unobservable network communications,” in Proc. IEEE Symp.
Secur. Privacy, May 2013, pp. 65–79.

[16] J. Karlin et al., “Decoy routing: Toward unblockable internet com-
munication,” in Proc. USENIX Workshop Free Open Commun.
Internet (FOCI), 2011, pp. 1–6.

[17] A. Houmansadr, G. T. Nguyen, M. Caesar, and N. Borisov, “Cirripede:
Circumvention infrastructure using router redirection with plausible
deniability,” in Proc. ACM Conf. Comput. Commun. Secur., 2011,
pp. 187–200.

[18] E. Wustrow, C. M. Swanson, and J. A. Halderman, “TapDance: End-to-
middle anticensorship without flow blocking,” in Proc. USENIX Secur.
Symp., 2014, pp. 159–174.

[19] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex:
Anticensorship in the network infrastructure,” in Proc. USENIX Conf.
Secur., 2011, pp. 1–15.

[20] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper, “Routing
around decoys,” in Proc. ACM Conf. Comput. Commun. Secur., 2012,
pp. 85–96.

[21] C. Morrell, J. Ransbottom, R. Marchany, and J. Tront, “Scaling IPv6
address bindings in support of a moving target defense,” in Proc. Internet
Technol. Secur. Trans. (ICITST), Dec. 2014, pp. 440–445.

[22] J. Arkko, C. Vogt, and W. Haddad, Enhanced Route Optimization for
Mobile IPv6, document RFC 4866, Internet Requests for Comments,
May 2007.

[23] C. Perkins, Securing Mobile IPv6 Route Optimization Using a Static
Shared Key, document RFC 4449, Internet Requests for Comments,
Jun. 2006.

[24] P. Nikander, J. Arkko, T. Aura, G. Montenegro, and E. Nordmark,
Mobile IP Version 6 Route Optimization Security Design Background,
document RFC 4225, Internet Requests for Comments, Dec. 2005.

[25] D. Johnson, C. Perkins, and J. Arkko, Mobility Support in IPv6,
document RFC 3775, Internet Requests for Comments, Jun. 2004.

[26] R. Wakikawa, V. Devarapalli, G. Tsirtsis, T. Ernst, and K. Nagami,
Multiple Care-Of Addresses Registration, document RFC 5648,
Internet Requests for Comments, Oct. 2009.

[27] H. Soliman, Mobile IPv6. Reading, MA, USA: Addison-Wesley,
2004.

Vahid Heydari (S’12) received the B.S. and
M.S. degrees in computer engineering and the
M.S. degree in cybersecurity from the University of
Science & Culture, Tehran, Iran, in 2005, Payame
Noor University, Tehran, in 2013, and The Univer-
sity of Alabama in Huntsville in 2016, respectively.
He is currently pursuing the Ph.D. degree in electri-
cal and computer engineering with The University of
Alabama in Huntsville. His research interests include
moving target defenses, mobile adhoc, sensor, and
vehicular networks security. He is a Student Member

of the ACM and the IEEE Computer Society and Communications Society.

1124 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 5, MAY 2017

Sun-il Kim (SM’15) received the B.S. degree from
Binghamton University, State University of New
York, in 2000, and the M.S. and Ph.D. degrees in
computer science from the University of Illinois
at Urbana–Champaign in 2001 and 2008, respec-
tively. He was with The University of Alabama in
Huntsville, the University of Alaska Anchorage, and
the University of St. Thomas. He is currently an
Associate Professor of Computer Science with the
North Central College, Naperville, IL. His primary
research interests center on reliability and security

in networked systems.

Seong-Moo Yoo (SM’03) received the M.S. and
Ph.D. degrees in computer science with The Uni-
versity of Texas at Arlington. He was an Assistant
Professor with Columbus State University, Colum-
bus, GA, USA. He is currently an Associate Pro-
fessor of Electrical and Computer Engineering with
The University of Alabama in Huntsville. He has
co-authored over 100 scientific articles in refereed
journals and international conferences. His research
interests include computer network security and
wireless network routing. He is a member of

the ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCalligraphy-Italic
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

