
Dust: A Blocking-Resistant Internet Transport Protocol

Brandon Wiley

 School of Information, University of Texas at Austin

1616 Guadalupe #5.202
Austin, TX 78701-1213

brandon@ischool.utexas.edu

Abstract. Censorship of information on the Internet has been an increasing
problem as the methods have become more sophisticated and increasing
resources have been allocated to censor more content. A number of approaches
to counteract Internet censorship have been implemented, from censorship-
resistant publishing systems to anonymizing proxies. A prerequisite for these
systems to function against real attackers is that they also offer blocking
resistance. Dust is proposed as a blocking-resistant Internet protocol designed
to be used alone or in conjunction with existing systems to resist a number of
attacks currently in active use to censor Internet communication. Unlike
previous work in censorship resistance, it does not seek to provide anonymity in
terms of unlinkability of sender and receiver. Instead it provides blocking
resistance against the most common packet filtering techniques currently in use
to impose Internet censorship.

Keywords: censorship resistance, blocking resistance

1 Introduction

Censorship of information on the Internet has been implemented using increasingly
sophisticated techniques. Shallow packet filtering, which can be circumvented by
anonymizing proxies, has been replaced by deep packet inspection technology which
can filter out specific Internet protocols. This has resulted in censorship-resistant
services being entirely blocked or partially blocked through bandwidth throttling.
Traditional approaches to censorship resistance are not effective unless they also
incorporate blocking resistance so that users can communicate with the censorship
circumvention services.

Dust is an Internet protocol designed to resist a number of attacks currently in
active use to censor Internet communication. Dust uses a novel technique for
establishing a secure, blocking-resistant channel for communication over a filtered
channel. Once a channel has been established, Dust packets are indistinguishable from
random packets and so cannot be filtered by normal techniques. Unlike other
encrypted protocols such as SSL/TLS, there is no plaintext handshake which would
allow the protocol to be fingerprinted and therefore blocked or throttled. This solves a

principle weakness of current censorship-resistant systems, which are vulnerable to
deep packet inspection filtering attacks.

1.1 Problem

Traditionally, Internet traffic has been filtered using “shallow packet inspection”
(SPI). With SPI, only packet headers are examined. Since packet headers must be
examined anyway in order to route the packets, this form of filtering has minimal
impact on the scalability of the filtering process, allowing for its widespread use. The
primary means of determining “bad” packets with SPI is to compare the source and
destination IP addresses and ports to IP and port blacklists. The blacklists must be
updated as new target IPs and port are discovered. Circumvention technology, such as
anonymous proxies, bypass this filtering by providing new IPs and ports not in the
blacklist which proxy connections to blacklisted IPs. As the IPs of proxies are
discovered, they are added to the blacklist, so a fresh set of proxy IPs must be made
available and communicated to users periodically. As port blacklists are used to block
certain protocols, such as BitTorrent, regardless of IP, clients use port randomization
to find ports which are not on the blacklist.

Recently, “deep packet inspection” (DPI) techniques have been deployed which
can successfully block or throttle most censorship circumvention solutions [14]. DPI
filters packets by examining the packet payload. DPI can achieve suitable scalability
through random sampling of packets. Another technique in use is to initially send
packets through, but also send them to a background process for analysis. When a bad
packet is found, further packets in that packet stream can be blocked, or the IPs of
participants added to the blacklist. The primary tests that DPI filters apply to packets
are packet length comparison and static string matching, although timing-based
fingerprints are also possible. DPI can not only filter content, but also fingerprint and
filter specific protocols, even encrypted protocols such as SSL/TLS. Encrypted
protocols are vulnerable to fingerprinting based on packet length, timing, and static
string matching of the unencrypted handshake that precedes encrypted
communication. For instance, SSL/TLS uses an unencrypted handshake for cipher
negotiation and key exchange.

The goal of Dust is to provide a transport protocol which cannot be filtered with
DPI. To accomplish this goal it must not be vulnerable to fingerprinting using static
string matching, packet length comparison, or timing profiling. Other attacks such as
IP address matching and coercion of operators are outside of the scope and are best
addressed by use of existing systems such as anonymizing proxies and censorship-
resistant publishing systems running on top of a Dust transport layer.

2 Related Work

Censorship resistance is often discussed in connection with other related concepts
such as anonymity, unlinkability, and unobservability. These terms are sometimes
used interchangeably and sometimes assumed to have specific technical definitions.
Pfitzmann proposed a standardized terminology that defines and relates these terms

[13]. Unlinkability is defined as the indistinguishability of two objects within an
anonymity set. Anonymity is defined as unlinkability between a given object and a
known object of interest. Unobservability is defined as unlinkability of a given object
and a randomly chosen object.

Defining properties such as anonymity and unobservability in terms of
unlinkability opens the way for an information theoretical approach. Hevia offers
such an approach by defining levels of anonymity in terms of what information is
leaked from the system to the attacker [8]. Unlinkability requires the least protection,
hiding only the message contents. Unobservability requires that no information is
leaked whatsoever. Of particular interest is that an anonymous system of any type can
be taken up to the next level of anonymity by adding one of two system design
primitives: encryption and cover traffic.

2.1 Censorship-Resistant Publishing and Anonymizing Proxies

One approach to achieving censorship resistance on the Internet is through
censorship-resistant publishing services such as Publius [18], Tangler [19], and
Mnemosyne [5]. An issue with anonymous publishing systems for practical use is that
even a system that provides maximum protection for stored files must still be
accessible in order for those files to be retrieved. If communication to the document
servers is blocked, then the system is not usable. This requires protection for
communications as well as documents. Serjantov [15] proposed a the solution of
combining anonymous publishing with anonymous proxies by running the publishing
service as a hidden service behind an onion routing network such as Tor [3].

This solution passes on the problem of blocking from the publishing system to the
anonymizing proxy. However, anonymizing proxies are also vulnerable to blocking
attacks. While a network of proxy nodes can provide protection against destination IP
blacklists, they are still vulnerable to various forms of DPI protocol fingerprinting.
This problem is dealt with by Kopsell, who proposes a method to extend existing
anonymous publishing systems to bypass blocking, a property referred to as "blocking
resistance" [9]. In light of the work of Serjantov and Kopsell it is evident that if
anonymous proxies are a necessary component of censorship-resistant publishing and
blocking resistance is a necessary property of anonymous proxies then blocking
resistance is necessary for censorship-resistant publishing.

Kopsel’s threat model contains the assumptions that the attacker has control of
only part of the Internet (the censored zone), that some small amount of unblockable
inbound information can enter the censored zone (perhaps out of band), and that
volunteers outside of the censored zone are willing to help although they may have
differing amounts of bandwidth to contribute. The attacker is assumed to have vast
resources, to control all links outbound from the censored zone to the Internet, and to
be an expert in blocking-resistant system design.

Kopsell’s solution is divided into two parts: access to the blocking-resistant
system, and distributing information about the blocking-resistant system, such as the
IPs of proxy nodes. The nodes in Kopsell’s system are volunteer-run anonymizing
proxies that clients communicate with over a steganographic protocol in order to
obtain access to a censorship-resistant publishing system. Clients obtain an invitation

to the network, including the IP addresses of some proxy nodes, through a low-
bandwidth, unblockable channel into the censored zone. A number of ideas are
proposed for the steganographic data channel such as SSL and SMTP protocols. For
the unblockable channel email is used.

Though Kopsell’s model for blocking resistance solves the real world issues facing
anonymous publication systems and proxies, it relies on the steganographic data and
unblockable invitation channels to have certain properties which may not be met in
actual implementation. The essential purpose of the steganographic channel is to
provide resistance to protocol fingerprinting. Even if the information cannot be
recovered from the steganographic encoding, if it is discovered that the channel
contains steganographically encoded information then it can be summarily blocked. In
other words, the encoding must be undetectable in order to be useful. The constraint
on the invitation channel is that it is completely unblockable, as no particular
protection is given to information distributed on this channel.

Real world of analysis of attacks has shown that SSL is not a suitable encoding
against real attackers as the protocol is easily fingerprinted and summarily blocked or
rate limited [14]. Also, Email is an unsuitable channel for invitations because it is not
unblockable. Recent attacks have blocked the communication of IP addresses of
proxies through email and instant messaging. Given these attacks, what sorts of
channels are suitable for invitations and data to be communicated without being
vulnerable to blocking?

Information theory provides a conceptual framework that offers an answer not just
to the question of blocking resistance but of its relationship to censorship resistance in
general. Censorship-resistance publishing systems provide document unlinkability.
Hevia links the definition of unlinkability to information theory through
indistinguishability of information transmitted on the channels between the system
and the attacker [7] and Boesgaard links document unlinkability to information
theoretic perfect secrecy [2]. So censorship resistance is therefore a form of perfect
secrecy by means of indistinguishability. Pfitzmann defines unobservability as a form
of unlinkability [13] and Perng defines censorship resistance as unobservability [12].
In other words, censorship resistance is unobservability through unlinkability of the
object of interest and a random object, which is equivalent in information theory to
perfect secrecy. Viewed in this context, a censorship-resistant publishing system
would be one in which through observation of the system the attacker cannot obtain
sufficient information to distinguish which documents are accessed by users, in other
words document unobservability. Anonymous proxies add a similar property,
unobservability of the publishing system. The final step, which Kopsell calls blocking
resistance, is unobservability of the anonymous proxy, which requires unobservability
of the protocol by which clients communicate with the proxies. When these properties
are combined, end-to-end unobservability is created from the client to the document.

The ideal communication protocol is therefore one which is unobservable, meaning
that a packet or sequence of packets is indistinguishable from a random packet or
random sequence of packets. This is not necessarily a steganographic encoding. A
steganography encoding is unobservable only so long as the message encoding is not
detectable, regardless of if the message can actually be decoded. Additionally,
steganographic channels can be blocked if the cover channel is blocked. In the cause
of the rate limiting of Tor, SSL was being used as both encryption and steganography.

Rate limiting of the cover occurred because all SSL traffic was summarily rate
limited, causing a rate limiting of the embedded message as well and essentially
failing to provide blocking resistance.

Steganography is not the only option for unobservable protocols. Encryption is an
equally valid means of making messages indistinguishable. Although protocols such
as SSL are encrypted, these protocols often have an unencrypted handshake. This
unencrypted portion of the communication is what is used to fingerprint and block the
protocol. Additionally these protocols may leak other information to the attacker
through packet lengths and timing. However, an encrypted protocol without a
handshake would be resistant to handshake fingerprinting. With sufficiently secure
encryption and a lack of unencrypted handshakes, one encrypted protocol should be
indistinguishable from another encrypted protocol.

In the normal use case for SSL, an entirely encrypted connection would not be
possible as the communicating peers need to perform a public key exchange in order
to determine the session key used to encrypt the conversation. However, unlike a
normal SSL connection, Kopsell’s model allows for a single out-of-band invitation to
be sent prior to the establishment of the data connection.

2.2 Obfuscated Protocols

Several obfuscated protocols have been developed with various goals, including
blocking resistance. For instance, BitTorrent clients have implemented three
encryption protocols in order to prevent filtering and throttling of the BitTorrent
protocol, the strongest of which is Message Stream Encryption (MSE). [11] Analysis
of packet sizes and the direction of packet flow have been shown to identify
connections obfuscated with MSE with 96% accuracy. [7] MSE also uses a cleartext
DH key exchange. However, it does not include static strings in the protocol
handshake as the handshake consists solely of the DH parameters, which are unique
to each connection.

Other obfuscated protocols which are not designed explicitly for blocking
resistance also suffer from cleartext handshakes and often include static strings in the
handshake. Obsfuscated TCP (ObsTCP) has gone through several versions, each
using a different means to communicate the keys, including TCP options, HTTP
headers, and DNS records. [12] The strongest of these is DNS records as TCP options
and HTTP headers are easily blocked using static string matching, while DNS records
are transmitted on a separate connection from the one carrying the data, requiring
correlation between separate connections. However, Sandvine has already
demonstrated this ability in the blocking of BitTorrent traffic by monitoring tracker
protocol traffic to obtain the ports of BitTorrent protocol connections and then
subsequently interfering with the (possibly encrypted) BitTorrent protocol
connections. [17][6] A second connection from the same IP can therefore not be used
as an out-of-band channel for the purpose of blocking resistance. A newer proposal
similar to ObsTCP called tcpcrypt does not blocking resistance as a design goal and
subsequently does worse than ObsTCP/DNS as it uses static strings in the handshake
protocol. [1]

An attempt has been made to address the cleartext handshake problem in the form
of the obfuscated-openssh patch to OpenSSH which encrypts the SSH handshake.
[10] An encrypted handshake for an existing encrypted protocol is a good idea as it is
the minimal amount change necessary to achieve blocking resistance as long as the
protocol already has resistance to packet size and timing attacks. The obfuscated-
openssh patch essentially implements its own minimal blocking-resistant protocol,
performed before SSH starts and on the same TCP connection. This minimal protocol
is similar to Dust in that it is designed to be resistant to static string and packet size
matching. Unfortunately, it is not truly blocking resistant because it relies on a false
(or perhaps outdated) assumption about the capabilities of filters. The handshake is
encrypted with a key that is generated from a seed that is prepended to the beginning
of the encrypted part of the handshake. The key is generated by iterated hashes of the
seed with the iteration number chosen to be high enough that key generation is slow.
The blocking resistance of this technique relies on key generation not being
sufficiently scalable to do across all connections simultaneously. However, modern
filters are capable of statistically sampling packets and processing them offline to flag
packets and then using those results to block IPs which have sent flagged packets.
[17] This approach is probabilistic in its ability to block connections, but is highly
scalable. Additionally, the introduction of slow key generation may allow for even
less expensive timing attacks in which the only information needed to block a
connection is the timing between the first and second packets.

3 Design

Dust is a protocol designed to provide protocol unobservability in order to implement
Kopsell’s concept of blocking-resistance as a necessary prerequisite to achieve
censorship resistance. The Dust protocol is designed to protect against an attacker that
utilizes Deep Packet Inspection (DPI) to fingerprint protocols for the purpose of
blocking or rate limiting connections. In order to establish protocol unobservability,
all packets consist entirely of encrypted or random single-use bytes so as to be
indistinguishable from each other and random packets.

In order to perform a key exchange without an unencrypted handshake, a novel
out-of-band half-handshake technique is used. As in Kopsell’s model, a peer must
first receive an out-of-band invitation to join the network. This invitation contains the
IP address and public key of the receiver. The sender can then complete the
handshake by sending a single in-band intro packet followed by any number of data
packets encrypted with the session key that was computed in the handshake. The
minimal Dust conversation therefore consists of two in-band packets: one intro
packet, and one data. The protocol allows for these packets to be be chained together
to fit inside a single UDP or TCP packet. The use of a single UDP or TCP packet for
communication prevents timing attacks then the payload is sufficiently small.

3.1 Protocol

In order to accept a connection from an unknown host, a Dust server must first
complete a key exchange with the client. The Dust server first creates an id and secret
pair. The server then sends an out-of-band invite packet to the client, which contains
the server's IP, port, public key, the id, and the secret. The invite is encrypted with a
password and so is indistinguishable from random bytes. It can then be safely
transmitted, along with the password, over an out-of-band channel such as email of
instant messaging. It will not be susceptible to the attacks which block email
communication containing IP addresses because only the password is transmitted
unencrypted. If the invitation channel is under observation by the attacker, and only in
the case that the attacker is specifically attempting to filter Dust packets, then the
password should be sent by another channel that, while it can still be observed by the
attacker, should be uncorrelated with the invitation channel.

In order to complete the handshake, the client uses the IP and port information
from the invite packet to send an intro packet to the server. The intro packet is
prepended with the random, single-use id from the invite packet. The packet is
encrypted with the secret from the invite and contains the public key of the client.

When the server receives a packet from an unknown IP address, it assumes it to be
an intro packet and retrieves the id from the beginning of the packet. This is used to
look up the associated stored secret. The server uses the secret to decrypt the packet,
retrieves the public key of the client, and generates a shared session key. It adds the
session key to its list of known hosts, associated with the IP and port from which the
intro packet was sent. This completes the second phase of the public key exchange.
The client and server can now send and receive encrypted data packets freely. Since
Dust packets an be chained inside of TCP or UDP packets, the intro packet may be
followed immediately by a data packet, which may constitute the entirety of the
conversation.

2 Packet Format

There are three types of Dust packets: invite, intro, and data packets. All three types
of packets build upon the basic Dust packet format as shown in Fig. 1.

Fig. 1. The general Dust packet format. This is also the format for data packets.

In a Dust packet, the MAC is computed using the ciphertext, IV, and a key which
differs depending on the type of packet. Using a MAC allows for the contents of the

packet to be verified and corruption or tampering to be detected. The IV, or
initialization vector, is a single-use random value used to encrypt the ciphertext and
compute the MAC. This ensures that the ciphertext and MAC values will be different
even when sending the same data. Since the IV is random and the MAC is computed
using the IV, both values are effectively random to an observer. The rest of the
packet, excluding the padding, are encrypted into the ciphertext. The ciphertext
includes a timestamp to protect against replay attacks, lengths for the data and
padding, and the data itself. A separate padding length (PL) value is needed because
several Dust packets may be contained inside a single UDP or TCP packet. Finally, a
random number of random bytes of padding are added to randomize the packet
length.

Fig. 2. The format of an invite packet.

An invite packet has the format show in Fig. 2. An invite packet, being a Dust
packet, contains all of the same fields as a data packet, such as MAC, IV, and
padding. The key used in an invite packet to encrypt the ciphertext and compute the
MAC is a PBKDF function using a password and a random salt value. The salt value
is prepended to the packet. The use of both salt and a PBKDF makes it difficult to
decrypt the packet by brute force. This protects the contents of the invite packet
against decryption unless the password is known.

The invite packet includes the information necessary for the client to connect to the
server and complete the handshake. It contains the server’s public key, the IP and port
where the peer can be contacted, a flags byte which specifies if the peer accepts UDP
or TCP connections and whether the IP is an IPv4 or IPv6 address, and an id and
secret pair to be used in the completion of the handshake.

Fig. 3. The format of an intro packet.

An intro packet has the format shown in Fig. 3. The id used in the intro packet is
the same as the one used in the invite packet. This is effectively a single-use random
value as when it was contained in the invite packet it was encrypted and it is only seen
in plaintext in the intro packet. The id is used by the server to link the intro packet to
the stored single-use random secret. This secret is used to encrypt the ciphertext and
to compute the MAC for the intro packet. Since each id is a single-use value, only one
intro packet can be sent for each invite packet received by the client. The rest of the
fields in an intro packet are the same as a general Dust packet. The content of an intro
packet is the public key of the client.

Once the server has obtained the client’s public key from the intro packet, the key
exchange is complete and a shared session key is computed by both sides for use in
encrypting the data packets. The data packets are simply general data packets are
shown in Fig. 1 with no extra fields. In a data packet, the content is the data to be sent
and the key used to encrypt the ciphertext and to compute the MAC is the shared
session key derived from the exchanged public keys and locally stored private keys.

3. Discussion

The Dust protocol provides protocol unobservability by providing protection against
the major methods of protocol fingerprinting through DPI. By encrypting or
randomizing all bytes in all packets, static string matching is defeated. By
randomizing packet length, length matching is defeated. By allow for a full
conversation to be transmitted in a single UDP or TCP packet, timing attacks are
defeated in the case of sufficiently small messages. Additionally, protection is
provided against a number of specific attacks on the protocol. Packet corruption is
defeated by use of a MAC. Replay attacks are defeated within a certain time window
by use of a timestamp. Brute force decryption of invite packets are defeated by use of
salt and a PBKDF. Additionally, any fields that are not encrypted are always
randomized and single-use so that the attacker cannot gain additional information
about the protocol even through long-term protocol observation.

Dust is designed to protect against current attacks, which are based on matching
fingerprints of protocols against blacklists of known protocols. An obvious counteract
against the Dust protocol is to switch from blacklist filtering to whitelist filtering.
This is not addressed for two reasons. First, blacklists are the method currently in
widespread use, whereas whitelists are not. Defeating blacklists is a significant step
towards bypassing existing censorship attempts. Second, an approach which can
bypass a whitelist has disadvantages over an approach designed to bypass blacklists.
Steganography must be employed to encode traffic inside of whitelist-compatible
traffic. As has been discussed, attempting this encoding allows for the possibility of
introducing additional information that could be used for fingerprinting, such as
filtering of the cover. The Dust approach is more simple and efficient to implement
than a steganographic approach and so is preferable when only blacklist filtering is
considered relevant.

4. Limitations

Dust does not attempt to protect against attacks that are already addressed by
anonymizing proxies and censorship-resistance publishing systems. Specifically, no
attempt is made to obscure sender or receiver IP addresses or ports or to protect server
operators from coercion. These attacks would ideally be addressed by a system such
as proposed by Kopsell consisting of an anonymizing proxy network allowing access
to a censorship-resistant publishing system and using the Dust protocol as a blocking-
resistant transport protocol.

In order for timestamps to be effective, Dust requires the client and server clocks to
be reasonably synchronized, such as with NTP, as packets with out-of-date
timestamps will be discarded. This is a possible area of future work for the protocol as
clock synchronization may not always be available. Packet sequence numbers, logical
clocks, and application-level clock synchronization are possible options to be
considered for future revisions, although each comes with its own advantages and
disadvantages.

Dust does not provide retransmission or reordering of dropped or reordered packets
and provides no mechanism for acknowledgement of received packets. This is left to
higher level protocols built on top of Dust. The reason for this is that Dust focuses on
a minimal design that provides maximum blocking resistance. An ideal message for
use with the current Dust protocol would fit inside a single UDP packet as this does
not reveal any timing information that can be used for fingerprinting. Additional
layers must be careful to not leak timing information to the attacker. This is
considered to be a separate but related problem in unobservable protocol design.

No explicit mechanism for NAT hole punching is provided in the protocol. For
IPv6 use, hole punching should not be necessary. For IPv4 use, Dust is compatible
with and has been tested with Teredo, which provides end-to-end IPv6 connectivity
on top of IPv4, including NAT hole punching even if both peers are behind NAT. In
the case that Teredo has been blocked, TCP can be used instead of UDP as long as
only the client is behind NAT. As implementing hole punching will complicate the
protocol and open the way to timing attacks, the use case of a IPv4 server behind
NAT without Teredo is left unsupported and would have to be implemented by
individual applications when relevant.

5. Future Work

There are a number of enhancements to the Dust protocol that could protect against
additional attacks. An obvious addition is a reliable transmission protocol on top of
the basic Dust protocol which included packet acknowledgements. This would require
a randomized packet scheduler in order to avoid leaking timing information. Once
implemented, it could protect against packet loss attacks such as dropping the first
packet between any two IPs, which in the case of Dust is the crucial introduction
packet. Once a reliable protocol is available, a secondary key exchange could occur
along with periodic key rotation, allowing for forward secrecy of conversations.

An additional area of research is how to add steganographic encoding to Dust
packets. This would protect against whitelist attacks, but would require careful design
to avoid leaking additional information to the attacker that could be used for
fingerprinting. The problem of the blocking of the cover traffic would also need to be
addressed.

In addition to the extension of the Dust protocol to protect against further attacks,
there is also work to be done in the evaluation of the Dust protocol in real world
scenarios. This is the most immediate next phase of research. Actual Dust traffic will
be evaluated against real world censorship in current use on the Internet and its
performance compared to other protocols used in circumvention technologies. The
distinguishable characteristics of each protocol will be compared to determine their
degree of protocol unobservability in both theoretical and practical terms.

6. Conclusion

Dust fills an important gap in the field of censorship resistance and privacy-enhancing
technologies. By focusing exclusively on blocking resistance it solves real world
attacks on existing censorship-resistant publishing and anonymous proxy systems. An
ideal system combining the Dust protocol for communication, an anonymous proxy
system for routing, and a censorship-resistant publishing system running as a hidden
service would provide end-to-end unobservability and maximum protection against
attackers.

Additionally, the design of the Dust protocol furthers the state of theory in the field
by proposing an information theoretic bridge between censorship-resistant publishing,
anonymous proxies, and blocking-resistant protocols based on the property of
unobservability. A relatively unexplored area of the field is opened by proposing the
centrality of blocking resistance instead of unlinkability in censorship resistance and
the adoption of Kopsell’s attack model in which an attacker which does not have the
power of global eavesdropping.

Those wishing to use the Dust protocol for academic or practical purposes can find
the source code for its implementation at http://github.com/blanu/Dust.

References

1. Bittau, A., Hamburg, M., Handley, M., Mazieres, D., and Boneh, D. The case for ubiquitous
transport-level encryption. 19th USENIX Security Symposium., (2008).

2. Boesgaard, C.: Unlinkability and Redundancy of Content in Anonymous Publication
Systems. http://www.diku.dk/hjemmesider/ansatte/pink/haven/unlink.pdf (2004)

3. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion router. In:
Proceedings of the 13th USENIX Security Symposium. (2004)

4. Dingledine, R. Tor and circumvention: Lessons learned. The 26th Chaos Communication
Congress, (2009).

5. Hand, S., Roscoe, T.: Mnemosyne: Peer-to-Peer Steganographic Storage. In: Druschel, P.,
Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002. pp. 130-140. Springer-Verlag, Berlin (2002)

6. Harrison, D. BEP 008: Tracker Peer Obfuscation. Retrieved from:
http://www.bittorrent.org/beps/bep_0008.html.

7. Hjelmvik, E and John, W. Breaking and Improving Protocol Obfuscation. Department of
Computer Science and Engineering, Chalmers University of Technology, Technical Report
No. 2010-05, ISSN 1652- 926X. (2010)

8. Hevia, A., Micciancio, D.: An Indistinguishability-Based Characterization of Anonymous
Channels. In: Borisov, N., Goldberg, I. (eds.) PET 2008. pp. 24-43. Springer-Verlag, Berlin
(2008)

9. Kopsell, S., Hilling, U.: How to Achieve Blocking Resistance for Existing Systems
Enabling Anonymous Web Surfing. In: Proceedings of the Workshop on Privacy in the
Electronic Society. pp. 103-115. ACM Press, New York (2004)

10. Leidl, B. Obfuscated-OpenSSH README. Retrieved from:
https://github.com/brl/obfuscated-openssh/blob/master/README.obfuscation. (2010)

11. Message Stream Encryption. http://wiki.vuze.com/w/Message_Stream_Encryption (2006)
12. Obfuscated TCP. Wikipedia. Retrieved from:

http://en.wikipedia.org/wiki/Obfuscated_TCP. (2010)
12. Perng, G., Reiter, M.K., Wang, Chenxi: Censorship Resistance Revisited. In: Barni, M. (ed.)

IH 2005. pp. 62-76. Springer-Verlag, Berlin (2005)
13. Pfitzmann, A., Kohntopp, M.: Anonymity, Unobservability, and Pseudonymity – A Proposal

for Terminology. In: Federrath, H. (ed.) Anonymity 2001. pp. 1-9. Springer-Verlag, Berlin
(2001)

14. Sennhauser, M.: The State of Iranian Communication.
http://diode.mbrez.com/docs/SoIN.pdf (2009)

15. Serjantov, A.: Anonymizing Censorship Resistant Systems. In: Druschel, P., Kaashoek, F.,
Rowstron, A. (eds.) IPTPS 2002. pp. 111-120. Springer-Verlag, Berlin (2002)

16. Topolsky, R. Comments of Robert M. Topolsky In the Matter of Petition of Free Press et al.
for Declaratory Ruling that Degrading an Internet Application Violates the FCC’s Internet
Policy Statement and Does Not Meet an Exception for “Reasonable Network Management”.
Federal Communications Commission WC Docket No. 07-52, 08-7. (2008)

17. Using NetFlow Filtering or Sampling to Select the Network Traffic to Track. Retrieved
from:
http://www.cisco.com/en/US/docs/ios/netflow/configuration/guide/nflow_filt_samp_traff.ht
ml#wp1064305. (2006)

18. Waldman, M., Rubin, A.D., Cranor, L.F.: Publius: A Robust, Tamper-evident, Censorship-
resistant Web Publishing System. In: 9th USENIX Security Symposium.

19. Waldman, M., Mazieres, D.: Tangler: a Censorship-resistant Publishing System Based on
Document Entanglements. In: Computer and Communications Security. pp. 126-135. ACM
Press, New York (2001)

