
Towards a Censorship Analyser for Tor

Philipp Winter
The Tor Project & Karlstad University

Abstract
Analysing censorship incidents targeting popular cir-
cumvention tools such as Tor can be a tedious task. Ac-
cess to censoring networks is typically difficult to obtain
and remote analysis is not always possible. Analysis is
however feasible if users behind the censoring networks
are given the opportunity to help.

In this paper, we propose a lightweight censorship
analyser for Tor which is meant to be run by volunteer-
ing users. The analyser automatically gathers relevant
data and the final report is sent back to the Tor develop-
ers. Our design builds on existing software and should
be easy to bundle and deploy.

1 Introduction

Anonymity and censorship resistance make a great cou-
ple. A good example for this is the Tor anonymity net-
work [1]. While Tor’s core competence is low-latency
anonymity, over the years it developed a reputation as
being a practical tool to safely circumvent censorship.
Unsurprisingly, this reputation did not remain unnoticed
among censors.

Due to Tor’s popularity—Iran alone once accounted
for more than 30,000 users as can be seen in Figure 1—
censoring countries came up with techniques to identify
and block Tor connections. As of March 2013, Tor was
or is documented to be blocked in China, Iran, Syria,
Ethiopia, the United Arab Emirates and Kazakhstan [2].
And these are only the documented censorship incidents.
We expect the dark number to be higher. All these blocks
greatly differ in their sophistication and range from sim-
ple IP address blacklisting to a sophisticated hybrid con-
sisting of deep packet inspection (DPI) and active prob-
ing [3].

Censorship evasion can be seen as a feedback loop:
circumvention tool developers learn from blocks and
adapt their tools whereas censors also learn from circum-
vention tools and refine their blocking techniques. This

●●
●●

●●
●●●

●●●
●●●

●

●

●

●

●

●
●

●
●●●●

●
●
●

●
●
●
●

●
●

●
●
●●●●●

●
●●

●●●●●●●●

●

●

●

●●●
●●●●

●

●●●●●●●●●●

Jan 01 Jan 15 Feb 01 Feb 15 Mar 01 Mar 15
0

20
00

0
50

00
0

Date

N
um

be
r 

of
 u

se
rs

 in
 Ir

an

Figure 1: The amount of Iranian Tor users since the be-
ginning of 2013 [4]. In February, the country started de-
ploying a new strategy to block Tor.

feedback loop is, however, highly asymmetric, mean-
ing that circumvention tool developers learn significantly
less than censors. For example, the Tor project is tradi-
tionally very open in its circumvention work [2]. Code,
designs, and data are available and discussed in public.
Censorship systems such as the Great Firewall of China
(GFW), on the other hand, are a black box. Typically,
these black boxes are repeatedly queried by developers
and researchers in order to unravel their inner workings.
The purpose of the censorship analyser discussed in this
paper is to reduce this information asymmetry. That way,
we strive to ease censorship analysis and boost circum-
vention tool development.

The task of censorship analysis requires a way to ob-
serve the respective censorship system. Unfortunately,
analysis is not always possible from outside the censor-
ing networks. As a result, two popular analysis strategies
are to either 1) obtain network traffic traces for manual
inspection and/or to 2) gain access to machines inside
the censoring regime. Both of these approaches can turn
out to be difficult in practice. Network traces require the
cooperation of users in the censoring country and are dif-
ficult to anonymise which poses a problem of operational

1



security. Further, remote access to machines is problem-
atic due to the lack of volunteers or appropriate proxies
such as PlanetLab, open SOCKS proxies or VPSes for
rental.

The above should highlight that there is a strong need
for a lightweight and easy to use tool which can assist
in the process of analysing blocking incidents. In a nut-
shell, this tool should be run by volunteering users within
the censoring country and conduct a number of network-
ing tests in order to gain an understanding of how and if
Tor is blocked in a given country or network. The analy-
sis report should then reach the Tor developers in a safe
way and thus facilitate circumvention and documentation
[2]. The main contribution of this paper is the design and
software architecture for such a lightweight censorship
analyser for the Tor anonymity network.

The remainder of this paper is structured as follows.
We discuss related work in §2. The technical require-
ments for our analyser are presented in §3. We proceed
with the software architecture in §4 and review our con-
cept in §5. We finally conclude this paper in §6.

2 Related Work

Lots of measurement studies have been conducted in the
past in order to create “one-time snapshots” of censor-
ship. This involves understanding the GFW [3, 5, 6, 7,
8], the backbone infrastructure of Iran [9], large-scale In-
ternet shutdowns [10] or censorship as it is conducted
world-wide [11]. These studies do not—or only to a lim-
ited degree—consider censorship as it evolves over time.
This is not surprising since the censor could systemati-
cally narrow down the measurement devices and tamper
with the results.

The time component was first captured by Crandall
et al. in 2007 [12]. The authors proposed a censorship
monitor called ConceptDoppler which is able to deter-
mine which keywords are filtered over time. The authors
further made use of latent semantic analysis to infer key-
words to probe.

In 2011, Sfakianakis, Athanasopoulos and Ioannidis
proposed CensMon, a distributed web censorship moni-
tor [13]. CensMon requires PlanetLab access in order to
function. A central server receives URLs as input and
instructs several distributed agents to probe these URLs
in order to detect censorship.

Most recently, Filastò and Appelbaum proposed the
open observatory of network interference (OONI) in
2012 [14]. OONI, which is developed by the Tor project,
has broader goals than ConceptDoppler or CensMon: in
addition to censorship, it is also meant to detect and doc-
ument surveillance and network interference. OONI is
still under heavy development but was already used to

expose several censorship incidents1.
The OpenNet Initiative [15]—a collaboration between

Harvard University, the University of Toronto and the
SecDev group—maintains censorship-related country
profiles. In contrast to OONI, the OpenNet Initiative only
publishes its gathered reports; their methods as well as
the developed tools are not publicly available.

Finally, it is important to note that Internet censorship
and related data sets are also of interest outside com-
puter science. Research in the social sciences, for exam-
ple, strives to understand Internet censorship on a policy
level. Unfortunately, poorly documented, raw and unpro-
cessed data sets can be a major hurdle to social science
researchers as pointed out by Asghari et al. [16]. In par-
ticular, the authors discussed their difficulties in working
with the Glasnost data provided by M-Lab2 [17]. Based
on these difficulties, Asghari et al. presented several
suggestions for data set creators which would, when ad-
dressed, facilitate working with such data sets. We strive
to consider their suggestions in the following sections.

Our approach differs from the work discussed above
in that 1) our tool is designed specifically for Tor and
2) intended to be run by users rather than developers.
This user-centric design comes with several challenges
we aim to address in the following sections. By including
users, we aim to be able to “shine light in dark places”
and expose censorship which cannot be measured from
outside the respective network.

3 Requirements and Design

At first glance, one would expect a censorship analyser to
gather as much data and conduct as many experiments as
possible. In practice however, this can be a bad idea since
the analyser will be run by non-technical computer users
who might even face repercussions for running such a
“noisy” tool. Besides, users should not be linkable to the
data, their copy of our tool generated. As a result, it is
important to find a balance between meaningful data and
respecting the privacy and security of users volunteering
to run the analyser.

In §3.1 and §3.2, we will enumerate a variety of fea-
tures we consider desirable in a Tor censorship analyser.
These features are motivated by prior experience in de-
bugging censorship incidents as well as by proactively
probing for what censors might implement next. Natu-
rally, some features are harder to implement than others.
Therefore, the list is organised in ascending order based
on the difficulty of the respective feature. While these
features were designed specifically for Tor, some might
be interesting for other circumvention tools as well.

1URL: https://ooni.torproject.org/archives.html.
2URL: http://www.measurementlab.net.

2

https://ooni.torproject.org/archives.html
http://www.measurementlab.net


Figure 2: The Tor censorship analyser 1) probes the offi-
cial website, 2) tries to download the consensus, 3) tries
to connect to relays 4) and to bridges.

3.1 Analysis-centric Requirements

3.1.1 Network Trace of Analysis

Optionally, the analyser should be able to capture a
network trace in pcap format. A network trace en-
ables minute inspection of censorship techniques such as
spoofed TCP reset segments injected into the user’s con-
nection. The trace must be limited to the network traffic
generated by our censorship analyser and must not con-
tain network traffic other than that. While clearly useful,
pcaps contain IP addresses and can pose a threat to users
having strong threat models. Techniques such as Crypto-
PAn [18] could be used to pseudonymise IP addresses
but packet payload could still contain identifying infor-
mation. As a result, this feature should be turned off by
default. If a user decides to activate it, she should be
warned that she gives up a large part of her anonymity
by doing so.

3.1.2 Difficult to Detect

An effort should be made to avoid obvious network ac-
tivity which would make it straightforward for censors
to isolate users running our analyser. Obfuscation strate-
gies should involve random sleep periods between and
during network tests and randomising the order of exe-
cuted tests. We also note, however, that a fully unde-
tectable analyser would be very difficult to implement;
it would include emulation of typical user behaviour as
well as steganography to transmit the final report without
censors noticing.

3.1.3 Probe the Website

The official website, www.torproject.org, is sometimes
found to be blocked [2]. With the website being un-
reachable, users should be prevented from downloading
the Tor Browser Bundle (TBB) [19]. To detect website
blocks, the analyser should try to download the index
page by emulating an HTTP GET request of a modern
browser such as Firefox or Chrome. We note that it is
important to craft the GET requests to resemble one of
these browsers. Otherwise, the GET requests could fail if
censors whitelist user agents. If the website is believed to
be blocked—because the index page could not be fetched
or the TLS connection failed—the following subsequent
analysis steps are performed.

First, the domain www.torproject.org must be re-
solved by querying the user’s configured DNS server.
The returned IP addresses (if any) are then compared to
the expected IP addresses which are hard-coded in our
analyser. That way, we can detect DNS poisoning. Other
open and “well-behaved” DNS servers such as Google’s
8.8.8.8 could further be queried. That way, we hope to be
able to detect transparent DNS rewriting assuming that
we trust 8.8.8.8 to return the right DNS records.

Second, another website request should be issued for
one of the official Tor mirrors. In particular, for mirrors
without the strings “tor” or “torproject” in their domain
name. While the official website might be blocked, mir-
rors could very well be reachable.

Third and finally, in a subsequent step the analyser
should verify whether a TCP connection to port 443 of
www.torproject.org is possible. Besides, a TLS con-
nection with a modified Server Name Identifier (SNI)
could unravel censorship based on SNI inspection in the
TLS client hello.

The same method should be applied for
bridges.torproject.org which is used to distribute
so-called bridges (cf. §3.1.6) to users who find
themselves unable to connect to the public Tor network.

3.1.4 Probe the Directory Authorities

As of March 2013, nine directory authorities serve the
consensus for the Tor network. The consensus contains
the approximately 3,000 relays which form the network.
These authorities are a natural choke point. If a client is
unable to contact any of them, a direct connection to the
public Tor network can not be bootstrapped. Therefore,
the authorities are sometimes blocked on the IP layer [3].
To detect such censorship attempts, our analyser should
be able to connect to the authorities and try to download
the consensus. Should the analyser be unable to contact
any of the hard-coded authorities, two subsequent checks
should be performed.

3

https://www.torproject.org
https://bridges.torproject.org


First, ICMP echo requests should be sent to the author-
ities. Most of the authorities reply to ping requests. If no
reply is received, this could be an indicator of blocking.
Note that this test could easily yield false positives if the
user’s network disallows ICMP in general.

Second, traceroutes should be run to the potentially
blocked authorities. In case of filtering, traceroutes could
help narrow down the hops on the network path respon-
sible for the block. Further, traceroutes can be conducted
using a variety of protocols such as TCP, UDP and ICMP
to increase the likelihood of this test to succeed.

3.1.5 Relay Reachability

After a client successfully downloaded the consensus,
the next step in bootstrapping a Tor connection consists
of selecting relays which together form a circuit. The
first relay in a circuit—the so-called entry guard—must
be reachable for the client.

Another straightforward way to block access to the Tor
network lies in periodically downloading the consensus
and blacklisting all IP addresses found within. In fact, it
is sufficient to blacklist only the entry guards. We can
easily detect this censorship strategy by trying to initiate
a TLS connection to several entry guards. However, it
would also be interesting to learn whether connections to
pure middle or exit relays succeed. If not, then this could
be an indicator that a censor is blindly blacklisting all IP
addresses found in the consensus.

Connections to entry guards can fail for a number
of different reasons. Perhaps the most popular strat-
egy among censors is to terminate or drop TLS hand-
shakes which appear to be Tor-specific. Over time, Tor’s
TLS handshake exhibited a number of distinguishing ele-
ments such as the client cipher list [3, 20], the server cer-
tificates as well as the randomly generated SNIs. TLS-
based filtering was or is done in Ethiopia [21], China [3]
and Iran [22], just to name a few. To detect Tor-specific
TLS filtering, a Tor-specific TLS client hello could be
sent to machines which are not Tor relays; for example
the host behind mail.google.com. Inferring the ex-
act pattern matched by DPI boxes is a difficult task and
was sometimes done manually [20]. An automated way
would be highly desirable but is beyond the scope of this
paper.

3.1.6 Bridge Reachability

Analogous to ordinary Tor relays, bridges should be
tested as well. Bridges are relays which are not listed in
the public Tor consensus. Instead, they are distributed to
censored users out-of-band and serve as “hidden” step-
ping stones into the Tor network.

Furthermore, using obfsproxy it is possible to obfus-
cate the network traffic exchanged between clients and
bridges [23]. Obfsproxy is merely an obfuscation frame-
work enabling so-called pluggable transport modules
which dictate how traffic is to be obfuscated. At the time
of writing, Tor can be used with the pluggable transports
obfs2 [24] and obfs3 [25]. More transports are under de-
velopment [26]. In order to detect DPI targeting these
pluggable transports, the analyser should be able to con-
duct obfs2 and obfs3 handshakes and see if they succeed.

3.1.7 Gather Debug Information

Censorship is typically not homogeneous across a coun-
try and can differ on the level of provinces, autonomous
systems or even network prefixes [27]. As a result, we are
interested in information which can help narrow down
the respective censorship infrastructure. Also, this would
help ruling out interferences and prevent jumping to
wrong conclusions. Of interest would be the following
information.

1. What ISP does the user have? Our analyser could
obtain the whois record for the user’s IP address and
discard all IP address material which would other-
wise reveal the user’s location.

2. What is the autonomous system number? Open IP-
to-ASN lookup services3 could be used.

3. Is the user behind a captive portal? This can be diffi-
cult to verify and might require a number of heuris-
tics.

4. Is all traffic forced to go through an HTTP proxy?

3.1.8 Anonymising Reports

Naturally, reports should not be linkable to users submit-
ting them. We have to distinguish between report content
and report submission.

The actual report is straightforward to anonymise. As
an option, we can easily discard identifying information
in the report by, e.g., never logging the user’s IP address
and redacting the first hops in traceroutes. A high degree
of anonymity could be achieved by completely discard-
ing all IP addresses, prefixes and location information
such as autonomous system numbers and whois records.
Network captures in the form of pcap files are very dif-
ficult to anonymise and should also be completely dis-
carded if strong anonymity is desired.

Problematic however, is report submission. It is the
task of tools such as Tor to provide anonymity on the
address layer. Unfortunately, we cannot make use of Tor

3URL: http://asn.cymru.com

4

http://asn.cymru.com


as the very purpose of our tool is to find out why Tor
is unreachable. Users could be advised to generate one-
time email addresses for submission over email. That
way however, the email provider would learn the user’s
IP address4. This would place a lot of control into the
hands of an untrusted third party so another—possibly
better—option is automatic submission using an HTTPS
POST request to infrastructure run by the Tor project.
This method could be easier to block and once again,
this cannot disguise the user’s IP address, unfortunately.

3.2 User-centric Requirements
While the analyser’s main purpose is to gather
censorship-related data, it is important to recognise that
it will frequently—if not mostly—be run by users who
lack technical expertise. These users will not be able
to configure the analyser manually or run tools on the
command line. This observation motivates the following
requirements.

3.2.1 User-friendly Output

We emphasise that the primary purpose of the analyser
is to gather data which can assist Tor developers. Still,
as a side task, the analyser should inform users about
the gathered data and results while avoiding too much
technical jargon. Based on a decision tree inferred from
the gathered data, the analyser could inform the user
about possible ways to circumvent the respective censor-
ing network.

3.2.2 Cover our Tracks

As mentioned above, it is crucial to protect users’ pri-
vacy. This implies that temporary files or reports must
not be stored in non-obvious locations on the user’s hard
drive. All temporary data must remain in the unpacked
directory containing the analyser. That way, a user can
easily delete the entire directory and by doing so also
delete gathered data.

Nevertheless, it is difficult to hide the fact that a cer-
tain program was executed [28]. Even more so on Win-
dows. What can be hidden is the analysis results by sim-
ply deleting them after submission5. The very existence
of our analyser is difficult to disguise, however.

We argue that usage diversity can mitigate the threat
arising from simply having a copy of our tool. Users
could state that they were simply interested in finding out
why their TBB would not bootstrap (cf. §3.2.1) rather
than in assisting in circumventing their national firewall.

4The content of the report can be protected when the report is en-
crypted using the hard-coded PGP public key (see §4.1).

5Note that simple file removal might not be sufficient when file sys-
tem forensics is conducted.

3.2.3 Ease of Use and Informed Consent

It is crucial that the analyser is as easy to use as possible.
In particular, it should be a self-contained click-and-go
executable, just like the TBB. Ease of use also involves
the analyser’s bundle size. Ideally, the analyser would
only be a few megabytes in size which would also make
is suitable for email distribution over GetTor6.

Users should be informed in clear words that the anal-
yser is performing network probing and that the gathered
data can be submitted afterwards for further inspection.
Users should be given the opportunity to abort the pro-
cess prior to network probing and prior to submission.
Note that internationalisation of our analyser will also be
necessary since it is unrealistic to expect users to have a
decent command of the English language.

4 Software Architecture

There is no need to reinvent the wheel. The analyser will
be implemented as a set of tests for OONI [14]. OONI,
which was already introduced in §2, is a framework for
network censorship analysis and provides a Python API
which can be used to develop all of the requirements
discussed above. In addition, OONI defines a custom
YAML format—YAMLOO—for analysis reports. At the
time of writing OONI cannot, however, be invoked by
running a single executable. As a result, our analyser
must be packaged together with OONI to a single Win-
dows executable. This can be done using tools such as
py2exe7. The following sections discuss a number of ar-
chitectural considerations.

4.1 Communicating Results

Eventually, the data produced by a user’s analyser—
mainly a text file containing YAMLOO data—has to
reach the Tor developers. We believe that it would be
short-sighted to define a single mechanism for the trans-
mission to happen. This would create a single point of
failure which might turn out to be easy to block for cen-
sors.

Instead, we envision several reasonable communica-
tion channels. Ideally, we would send the report in an
anonymous fashion and upload it to a hidden service. But
as already discussed in §3.1.8, we expect Tor to be cen-
sored and not an option for this. A report could be sent
manually over email. While this requires user interac-
tion, some sort of email is typically available; even in
countries with pervasive censorship. In particular, free

6URL: https://www.torproject.org/projects/gettor.html.en
7URL: http://www.py2exe.org.

5

https://www.torproject.org/projects/gettor.html.en
http://www.py2exe.org


services such as GMail8 are frequently reachable over
HTTPS.

Another option would be to automatically transmit the
report using an HTTPS POST request to a web server
operated by the Tor project. While single web servers
are straightforward to block, we could increase collat-
eral damage by running the web server inside a cloud
provider, the censor is hopefully unwilling to black-
list. Other communication channels could include instant
messaging programs or steganographic publishing sys-
tems. Unfortunately, all of these methods have in com-
mon that the user’s IP address will eventually be known
by a provider of some sort.

Furthermore, the report should contain a message di-
gest which is calculated over the YAMLOO report. This
is particularly important when the report is being sent
over email since it makes it possible to detect if the re-
port is incomplete or the user accidentally changed parts
of it.

Finally, the analyser should contain a hard-coded PGP
public key which can be used to encrypt analysis reports.
Users who decide to encrypt the report should still have
the opportunity to review a report prior to encryption and
submission. While encryption comes at the cost of key
management, we believe that the additional management
overhead is worth the increase in security in certain situ-
ations.

4.1.1 Configurable and Testable During Build

It should be possible to pass configuration parameters to
the analyser during the build process. That is necessary
because certain information will be subject to change.
This includes hard-coded IP addresses of relays or the
web servers hosting www.torproject.org. If we would be
unable to change these parameters, a censor could sim-
ply whitelist the hard-coded IP addresses and render our
analysis results useless.

All the features discussed in §3 should be testable in
an automated way. Otherwise, we might end up shipping
code which does not work in real environments or we
might not notice if improvements break existing code.

5 Discussion

We point out that motivated and strongly equipped cen-
sors would be able to identify users trying to run our
analyser. Such censors would also be able to actively
falsify our analyser’s results. Being undetectable would
require a substantially more complex concept. However,
we believe that most censors are more motivated to spend
their resources on actual blocking technology rather than

8URL: https://mail.google.com.

measurement and analysis technology. Of course, this
will change if our analyser should turn out to be a very
valuable tool in the arms race.

There are two additional important features not dis-
cussed here due to page constraints. First, our analyser
could be enhanced to be able to infer the patterns used
by DPI boxes to identify protocols. According to our
own experience, DPI boxes do not always just use simple
regular expressions but also context-sensitive languages.
This is, however, a difficult problem which might require
a client-server architecture which runs a grammatical in-
ference algorithm. Precise knowledge of the patterns
used for censorship would enable targeted circumvention
and could be fed into tools such as format-transforming
encryption [29].

Second and equally difficult, our analyser could have
features to detect the type or model of DPI box used for
censorship. This would make it possible to expose cases
similar to the use of Bluecoat in Syria [30]. While well-
designed DPI boxes not exposing their management in-
terface can be difficult to identify, it might be possible to
define a number of heuristics to cluster DPI boxes; per-
haps based on injected TCP reset segments (cf. [31]).

6 Conclusion

In this paper, we outlined the design requirements for
a censorship analyser for the Tor anonymity network.
While the majority of these requirements discuss net-
work probing techniques, we also consider usability as-
pects. We plan to implement our concept in the next step.

We believe that involving ordinary computer users in
the process of censorship analysis can greatly increase
the coverage of censorship documentation and shed light
on previously unknown types of censorship. Great care
must be taken, however, to not exploit users and in-
form them about the process. Informed consent must
be achieved whenever possible. Furthermore, we hope
to start a discussion about how to safely integrate non-
technical users into the process of censorship measure-
ment.

Acknowledgements

We want to thank Arturo Filastò, Simone Fischer-
Hübner, George Kadianakis, Karsten Loesing, Tobias
Pulls, Runa A. Sandvik and the anonymous reviewers for
their valuable feedback.

Finally, we want to express our gratitude to Internet-
fonden of the Swedish Internet Infrastructure Foundation
for supporting the author’s work with a research grant.

6

https://www.torproject.org
https://mail.google.com


References

[1] Roger Dingledine, Nick Mathewson, and
Paul Syverson. “Tor: The Second-Generation
Onion Router”. In: USENIX Security. USENIX
Association, 2004, pp. 303–320. URL:
http://static.usenix.org/event/sec04/tech/
full papers/dingledine/dingledine.pdf.

[2] The Tor Project. Censorship Wiki. URL:
https://censorshipwiki.torproject.org.

[3] Philipp Winter and Stefan Lindskog. “How the
Great Firewall of China is Blocking Tor”. In:
FOCI. USENIX Association, 2012. URL:
https://www.usenix.org/system/files/
conference/foci12/foci12-final2.pdf.

[4] The Tor Project. Directly connecting users from
Iran. URL: https://metrics.torproject.org/users.
html?graph=direct-users&start=2013-01-
01&end=2013-03-
15&country=ir&events=off#direct-users.

[5] Richard Clayton, Steven J. Murdoch, and Robert
N. M. Watson. “Ignoring the Great Firewall of
China”. In: PETS. Springer, 2006, pp. 20–35.
URL:
http://www.cl.cam.ac.uk/∼rnc1/ignoring.pdf.

[6] Sparks et al. “The Collateral Damage of Internet
Censorship by DNS Injection”. In: SIGCOMM
Computer Communication Review 42.3 (),
pp. 21–27. URL: http://conferences.sigcomm.
org/sigcomm/2012/paper/ccr-paper266.pdf.

[7] Xueyang Xu, Z. Morley Mao, and
J. Alex Halderman. “Internet Censorship in
China: Where Does the Filtering Occur?” In:
PAM. Springer, 2011, pp. 133–142. URL: http:
//www.eecs.umich.edu/∼zmao/Papers/china-
censorship-pam11.pdf.

[8] Jong Chun Park and Jedidiah R. Crandall.
“Empirical Study of a National-Scale Distributed
Intrusion Detection System”. In: ICDCS. IEEE,
2010, pp. 315–326. URL: http:
//www.cs.unm.edu/∼crandall/icdcs2010.pdf.

[9] Collin Anderson. The Hidden Internet of Iran:
Private Address Allocations on a National
Network. Tech. rep. 2012. URL:
http://arxiv.org/pdf/1209.6398v1.

[10] Alberto Dainotti et al. “Analysis of Country-wide
Internet Outages Caused by Censorship”. In:
IMC. ACM, 2011, pp. 1–18. URL:
http://conferences.sigcomm.org/imc/2011/
docs/p1.pdf.

[11] John-Paul Verkamp and Minaxi Gupta. “Inferring
Mechanics of Web Censorship Around the
World”. In: FOCI. USENIX Association, 2012.
URL: https://www.usenix.org/system/files/
conference/foci12/foci12-final1.pdf.

[12] Jedidiah R. Crandall et al. “ConceptDoppler: A
Weather Tracker for Internet Censorship”. In:
CCS. ACM, 2007, pp. 352–365. URL:
http://www.cs.unm.edu/∼crandall/
concept doppler ccs07.pdf.

[13] Andreas Sfakianakis, Elias Athanasopoulos, and
Sotiris Ioannidis. “CensMon: A Web Censorship
Monitor”. In: FOCI. USENIX Association, 2011.
URL: http://static.usenix.org/event/foci11/
tech/final files/Sfakianakis.pdf.

[14] Arturo Filastò and Jacob Appelbaum. “OONI:
Open Observatory of Network Interference”. In:
FOCI. USENIX Association, 2012. URL:
https://www.usenix.org/system/files/
conference/foci12/foci12-final12.pdf.

[15] OpenNet Initiative. URL: https://opennet.net.

[16] Hadi Asghari et al. Making Internet
Measurements Accessible for Multi-Disciplinary
Research. Tech. rep. TU Delft and Syracuse
University, 2012. URL:
http://dpi.ischool.syr.edu/MLab-
Data files/HA-MM-MvE-IMC.pdf.

[17] Marcel Dischinger et al. “Glasnost: Enabling End
Users to Detect Traffic Differentiation”. In:
NSDI. USENIX Association, 2010. URL:
http://broadband.mpi-sws.org/transparency/
results/10 nsdi glasnost.pdf.

[18] Cryptography-based Prefix-preserving
Anonymization. URL:
http://www.cc.gatech.edu/computing/
Telecomm/projects/cryptopan/.

[19] The Tor Project. Tor Browser Bundle. URL:
https://www.torproject.org/projects/
torbrowser.html.en.

[20] Tim Wilde. Great Firewall Tor Probing Circa 09
DEC 2011. 2012. URL: https://gist.github.com/
twilde/da3c7a9af01d74cd7de7.

[21] The Tor Project. An update on the censorship in
Ethiopia. 2012. URL:
https://blog.torproject.org/blog/update-
censorship-ethiopia.

[22] The Tor Project. Iran blocks Tor; Tor releases
same-day fix. 2011. URL:
https://blog.torproject.org/blog/iran-blocks-
tor-tor-releases-same-day-fix.

7

http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf
https://censorshipwiki.torproject.org
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://metrics.torproject.org/users.html?graph=direct-users&start=2013-01-01&end=2013-03-15&country=ir&events=off#direct-users
https://metrics.torproject.org/users.html?graph=direct-users&start=2013-01-01&end=2013-03-15&country=ir&events=off#direct-users
https://metrics.torproject.org/users.html?graph=direct-users&start=2013-01-01&end=2013-03-15&country=ir&events=off#direct-users
https://metrics.torproject.org/users.html?graph=direct-users&start=2013-01-01&end=2013-03-15&country=ir&events=off#direct-users
http://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf
http://www.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
http://www.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
http://www.eecs.umich.edu/~zmao/Papers/china-censorship-pam11.pdf
http://www.cs.unm.edu/~crandall/icdcs2010.pdf
http://www.cs.unm.edu/~crandall/icdcs2010.pdf
http://arxiv.org/pdf/1209.6398v1
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf
http://conferences.sigcomm.org/imc/2011/docs/p1.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final1.pdf
http://www.cs.unm.edu/~crandall/concept_doppler_ccs07.pdf
http://www.cs.unm.edu/~crandall/concept_doppler_ccs07.pdf
http://static.usenix.org/event/foci11/tech/final_files/Sfakianakis.pdf
http://static.usenix.org/event/foci11/tech/final_files/Sfakianakis.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final12.pdf
https://opennet.net
http://dpi.ischool.syr.edu/MLab-Data_files/HA-MM-MvE-IMC.pdf
http://dpi.ischool.syr.edu/MLab-Data_files/HA-MM-MvE-IMC.pdf
http://broadband.mpi-sws.org/transparency/results/10_nsdi_glasnost.pdf
http://broadband.mpi-sws.org/transparency/results/10_nsdi_glasnost.pdf
http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
https://www.torproject.org/projects/torbrowser.html.en
https://www.torproject.org/projects/torbrowser.html.en
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://gist.github.com/twilde/da3c7a9af01d74cd7de7
https://blog.torproject.org/blog/update-censorship-ethiopia
https://blog.torproject.org/blog/update-censorship-ethiopia
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix
https://blog.torproject.org/blog/iran-blocks-tor-tor-releases-same-day-fix


[23] The Tor Project. obfsproxy. URL:
https://www.torproject.org/projects/obfsproxy.

[24] The Tor Project. obfs2 (The Twobfuscator). URL:
https://gitweb.torproject.org/obfsproxy.git/
blob/HEAD:/doc/obfs2/protocol-spec.txt.

[25] The Tor Project. obfs3 (The Threebfuscator).
URL: https://gitweb.torproject.org/user/asn/
obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-
protocol-spec.txt.

[26] The Tor Project. Tor: Pluggable Transports. URL:
https://www.torproject.org/docs/pluggable-
transports.html.en.

[27] Joss Wright, Tulio de Souza, and Ian Brown.
“Fine-Grained Censorship Mapping: Information
Sources, Legality and Ethics”. In: FOCI.
USENIX Association, 2011. URL:
http://static.usenix.org/event/foci11/tech/
final files/Wright.pdf.

[28] Runa A. Sandvik. Forensic Analysis of the Tor
Browser Bundle on OS X, Linux, and Windows.

Tech. rep. The Tor Project, 2013. URL: https:
//research.torproject.org/techreports/tbb-
forensic-analysis-2013-06-28.pdf.

[29] Kevin P. Dyer et al. Protocol Misidentification
Made Easy with Format-Transforming
Encryption. Tech. rep. Portland State University,
RedJack, LLC., and University of Wisconsin,
2012. URL:
http://eprint.iacr.org/2012/494.pdf.

[30] Jillian C. York. Government Internet Surveillance
Starts With Eyes Built in the West. 2011. URL:
https://www.eff.org/deeplinks/2011/09/
government-internet-surveillance-starts-eyes-
built.

[31] Nicholas Weaver, Robin Sommer, and
Vern Paxson. “Detecting Forged TCP Reset
Packets”. In: NDSS. The Internet Society, 2009.
URL: http://www.icsi.berkeley.edu/pubs/
networking/ndss09-resets.pdf.

8

https://www.torproject.org/projects/obfsproxy
https://gitweb.torproject.org/obfsproxy.git/blob/HEAD:/doc/obfs2/protocol-spec.txt
https://gitweb.torproject.org/obfsproxy.git/blob/HEAD:/doc/obfs2/protocol-spec.txt
https://gitweb.torproject.org/user/asn/obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/user/asn/obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/user/asn/obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt
https://www.torproject.org/docs/pluggable-transports.html.en
https://www.torproject.org/docs/pluggable-transports.html.en
http://static.usenix.org/event/foci11/tech/final_files/Wright.pdf
http://static.usenix.org/event/foci11/tech/final_files/Wright.pdf
https://research.torproject.org/techreports/tbb-forensic-analysis-2013-06-28.pdf
https://research.torproject.org/techreports/tbb-forensic-analysis-2013-06-28.pdf
https://research.torproject.org/techreports/tbb-forensic-analysis-2013-06-28.pdf
http://eprint.iacr.org/2012/494.pdf
https://www.eff.org/deeplinks/2011/09/government-internet-surveillance-starts-eyes-built
https://www.eff.org/deeplinks/2011/09/government-internet-surveillance-starts-eyes-built
https://www.eff.org/deeplinks/2011/09/government-internet-surveillance-starts-eyes-built
http://www.icsi.berkeley.edu/pubs/networking/ndss09-resets.pdf
http://www.icsi.berkeley.edu/pubs/networking/ndss09-resets.pdf

	Introduction
	Related Work
	Requirements and Design
	Analysis-centric Requirements
	Network Trace of Analysis
	Difficult to Detect
	Probe the Website
	Probe the Directory Authorities
	Relay Reachability
	Bridge Reachability
	Gather Debug Information
	Anonymising Reports

	User-centric Requirements
	User-friendly Output
	Cover our Tracks
	Ease of Use and Informed Consent


	Software Architecture
	Communicating Results
	Configurable and Testable During Build


	Discussion
	Conclusion

