
ScrambleSuit: A Polymorphic Network
Protocol to Circumvent Censorship

Philipp Winter
Karlstad University
Karlstad, Sweden

philipp.winter@kau.se

Tobias Pulls
Karlstad University
Karlstad, Sweden

tobias.pulls@kau.se

Juergen Fuss
Upper Austria University of

Applied Sciences
Hagenberg, Austria

juergen.fuss@fh-
hagenberg.at

ABSTRACT

Deep packet inspection technology became a cornerstone of
Internet censorship by facilitating cheap and effective filter-
ing of what censors consider undesired information. More-
over, filtering is not limited to simple pattern matching but
makes use of sophisticated techniques such as active prob-
ing and protocol classification to block access to popular
circumvention tools such as Tor.

In this paper, we propose ScrambleSuit; a thin protocol
layer above TCP whose purpose is to obfuscate the trans-
ported application data. By using morphing techniques and
a secret exchanged out-of-band, we show that ScrambleSuit
can defend against active probing and other fingerprinting
techniques such as protocol classification and regular expres-
sions.

We finally demonstrate that our prototype exhibits little
overhead and enables effective and lightweight obfuscation
for application layer protocols.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.0 [Computer-Communication Networks]:
General—Security and protection; K.4.1 [Computers And
Society]: Public Policy Issues—Privacy, Transborder data
flow, Use/abuse of power

Keywords

Tor; bridge; pluggable transport; active probing; traffic anal-
ysis; censorship; circumvention

1. INTRODUCTION
We consider deep packet inspection (DPI) harmful. While

originally meant to detect attack signatures in packet pay-
load, it is ineffective in practice due to the ease of evasion [1,
2, 3]. At the same time, DPI technology is increasingly used
by censoring countries to filter the free flow of information

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WPES’13, November 4, 2013, Berlin, Germany.

Copyright 2013 ACM 978-1-4503-2485-4/13/11 ...$15.00.

http://dx.doi.org/10.1145/2517840.2517856.

or violate network neutrality [4]. We argue that what makes
DPI particularly harmful is the asymmetry of blocking effec-
tiveness, i.e., it is hard to stop motivated and skilled network
intruders but very easy to censor ordinary user’s Internet ac-
cess. DPI technology ultimately fails to protect critical tar-
gets but succeeds in filtering the information flow of entire
countries.

Numerous well-documented cases illustrate how DPI tech-
nology is used by censoring countries. Amongst others,
China is using it to filter HTTP [5] and rewrite DNS re-
sponses [6]. Iran is known to use DPI technology to con-
duct surveillance [7]. In Syria, DPI technology is used for
the same purpose [8]. Even more worrying, TLS intercep-
tion proxies, an increasingly common feature of DPI boxes,
are used to transparently decrypt and inspect TLS sessions
which effectively breaks the confidentiality provided by TLS.

The rise of Internet censorship led to the creation of nu-
merous circumvention tools which engage in a rapidly de-
veloping arms race with the maintainers of censorship sys-
tems. Of particular interest to censoring countries is the
Tor network [9]. While originally designed as a low-latency
anonymity network, it turned out to be an effective tool to
circumvent censorship as well. Tor’s growing success as a cir-
cumvention tool did not remain unnoticed, though. Tor is or
was documented to be blocked in many countries including
Iran [10], China [11], and Ethiopia [12], just to name a few.
We argue that many circumvention tools—Tor included—
suffer from two shortcomings which can easily be exploited
by censors.

First and most importantly, they are vulnerable to ac-
tive probing as pioneered by the Great Firewall of China
(GFW) [11]: the GFW is able to block Tor by first looking
for potential Tor connections based on the TLS client cipher
list. If such a signature is found on the wire, the GFW re-
connects to the suspected Tor bridge and tries to “speak”
the Tor protocol with it. If this succeeds, the GFW black-
lists the respective bridge. Active probing is not only used
to discover Tor but—as we will discuss—also VPNs [13] and
obfs2 [14], which is a censorship-resistant protocol. The rel-
evance of active probing attacks is emphasised by the work
of Durumeric et al. [15]. By conducting fast Internet-wide
scanning, the authors were able to find approximately 80%
of all active bridges at the time. From a censor’s point of
view, active probing is a promising strategy which greatly
reduces collateral damage caused by inaccurate signatures.
The attack is also non-trivial to defend against because cen-
sors can easily emulate real computer users.

Second, circumvention tools tend to exhibit a specific“flow
signature”which typically remains static and is the same for
all clients and servers speaking the protocol. An example is
Tor’s characteristic 586-byte signature (see §4.3.1). If a cen-
sor manages to deploy high-accuracy classifiers trained to
recognise these very flow signatures, the respective protocol
could easily be spotted and blocked. Most circumvention
tools are not polymorphic which makes them unable to sur-
vive such filters.

Tor VPN . . .

SOCKS

ScrambleSuit

TCP

IP

Figure 1:
ScrambleSuit’s
protocol stack.

In this work, we present Scram-
bleSuit; a blocking-resistant trans-
port protocol which tackles the
two above mentioned problems.
ScrambleSuit defines a thin pro-
tocol layer on top of TCP which
provides lightweight obfuscation
for the transported application
layer protocol. As shown in Fig-
ure 1, ScrambleSuit is indepen-
dent of its application layer pro-
tocol and works with any applica-
tion supporting SOCKS. As a re-
sult, we envision ScrambleSuit to
be used by, amongst other protocols, Tor and VPN to tackle
the GFW’s most recent censorship upgrades. In particular,
ScrambleSuit exhibits the following four features:

Pseudo-random payload: To an observer, ScrambleSuit’s
entire traffic is computationally indistinguishable from
randomness. As a result, there are no predictable pat-
terns which would otherwise form suitable DPI finger-
prints. This renders regular expressions for the pur-
pose of identifying ScrambleSuit useless.

Polymorphic: Despite the pseudo-random traffic, a censor
could still block our protocol based on flow character-
istics such as the packet length distribution. Scramble-
Suit is, however, able to change its shape to make it
harder for classifiers to exploit flow characteristics.

Shared secret: We defend against active probing by mak-
ing use of a secret which is shared between client and
server and exchanged out-of-band. A server only talks
to clients if knowledge of the secret is proven by the
client.

Usable: We seek to maximise ScrambleSuit’s usability. Our
protocol integrates in Tor’s existing ecosystem. Fur-
thermore, the moderate protocol overhead discussed
in §5 facilitates comfortable web surfing.

Blocking-resistant protocols can be split into two groups.
While the first group strives to mimic typically whitelisted
protocols such as HTTP [16], Skype [17, 18] and email [19],
the second group aims to look like randomness [20, 21, 22].
Randomised protocols have the shortcoming of not being
able to survive a whitelisting censor1. Nevertheless, we de-
cided in favour of randomising because mimicking comes at
the cost of high overhead and we consider whitelisting on
a nation scale—at least for most countries—unlikely even

1The same fate can meet mimicked protocols if the censor
decides to block the cover protocol. Oman is documented to
block Skype [23] which would render Skype-based circum-
vention protocols useless.

though it is often done in corporate networks and some coun-
tries appear to be experimenting with the concept [24, 25].
While at some point, our protocol might indeed become vic-
tim of a country’s whitelisting policy, we believe that our
approach provides a fast alternative in many censoring coun-
tries unwilling to go that far. So instead of maximising ob-
fuscation while maintaining an acceptable level of usability,
we seek to maximise usability while keeping an acceptable
level of obfuscation.
We finally point out that unblockable network protocols

do not exist. After all, censors could always “pull the plug”
as it was already done in Egypt [26] and Syria [27]. By
proposing ScrambleSuit, we do not claim to end the arms
race in our favour but rather to raise the bar once again.

The contributions of this paper are as follows.

1. We propose ScrambleSuit, a blocking-resistant trans-
port protocol.

2. We present two authentication mechanisms based on
shared secrets and polymorphism as a practical defence
against active probing and protocol classifiers.

3. We implement and evaluate a fully functional proto-
type of our protocol which is publicly available under
a free license.

The remainder of this paper is structured as follows. In §2
we discuss related work which is followed by an architectural
overview in §3. Then, §4 discusses ScrambleSuit’s design in
detail. The protocol is evaluated in §5 and the results are
discussed in §6. We finally conclude the paper in §7.

2. RELATED WORK
Protocol Identification: Hjelmvik and John investi-

gated to which extent supposedly obfuscated protocols such
as Skype, BitTorrent’s message stream encryption, and Spo-
tify can be identified [28]. Based on their findings, Hjelmvik
and John suggest evasion techniques for protocol designers
which should make it harder to identify obfuscated proto-
cols. Some of our design decisions were motivated by their
suggestions. Similar to that, Wiley proposed a framework
to dynamically classify network protocols based on Bayesian
models [29]. This is an important first step towards the
ability to compare and evaluate blocking-resistant transport
protocols.

Protocol Obfuscation: The Tor project developed a
blocking-resistant protocol called obfs2 [20]. The protocol
implements an obfuscation layer on top of TCP and trans-
ports Tor traffic. A passive Man-in-the-Middle (MitM) how-
ever can decrypt obfs2 traffic. The successor, obfs3 [21], uses
a customised Diffie-Hellman handshake to solve this prob-
lem. However, both, obfs2 and obfs3 can be actively probed
and do not disguise flow properties. In fact, we found that
the GFW is already blocking obfs2 bridges by actively prob-
ing them [14]. Later in this paper, we extend obfs3’s hand-
shake to be resistant against active probing. Wiley’s Dust
protocol [22] compares to obfs2 and obfs3 in that Dust pay-
load looks like random data but the key exchange is handled
out-of-band. Dust also employs packet padding to camou-
flage packet lengths. But unlike ScrambleSuit, Dust does not
consider inter-arrival times and is unable to change its flow
signature.

Weinberg et al. presented StegoTorus [16], an obfuscation
framework similar to Tor’s obfsproxy [30]. StegoTorus can

Figure 2: ScrambleSuit is a module for obfsproxy
which provides a SOCKS interface for local appli-
cations. The network traffic between two obfsproxy
instances is disguised by ScrambleSuit.

complicate protocol identification on the application layer
as well as on the transport layer. Tor connections can be
multiplexed over multiple TCP connections and the appli-
cation layer is camouflaged by mimicking a cover protocol
such as HTTP. SkypeMorph, as presented by Moghaddam
et al. [17] disguises Tor traffic as Skype video traffic. Similar
work was done by Houmansadr et al. with FreeWave which
is able to carry network traffic over VoIP connections [18].
Another attempt to tunnel otherwise censored network traf-
fic over a “whitelisted” protocol was done by Zhou et al.
by proposing SWEET [19] which uses email as its cover
medium. With CensorSpoofer, Wang et al. propose to de-
couple the upstream from the downstream channel for cen-
sorship resistance [31]. The low-bandwidth upstream chan-
nel uses steganography whereas the high-bandwidth down-
stream channel makes use of IP spoofing to fool censors.

Houmansadr et al. claim that mimicking a cover proto-
col rather than using it as an actual medium is a flawed
approach [32]. The authors showed numerous aspects in
which StegoTorus, SkypeMorph and CensorSpoofer differ
from their respective cover medium.

Lincoln et al. proposed DEFIANCE [33]: an architec-
ture to protect Tor bridges from being probed and their
respective descriptors2 from being harvested by crawlers.
The authors accomplish these goals by developing a novel
rendezvous protocol as well as a technique called address-
change signaling.

Port-knocking-based Authentication: Vasserman et
al. proposed SilentKnock: an undetectable authentication
system based on port knocking [34]. Clients can authenti-
cate themselves towards a server with a single TCP SYN
segment. If the authentication does not succeed, the server
does not reply with a SYN/ACK segment, thus appearing
offline.

Smits et al. adapted SilentKnock to better work with Tor
bridges [35]. The result is called BridgeSPA. Like Silent-
Knock, BridgeSPA does not protect against connection hi-
jacking and faces practical problems such as the inability to
cope with NAT and the dependence on Linux kernels. While
ScrambleSuit can not hide its “aliveness”, it is not hindered
by NAT, renders connection hijacking useless, and works on
every platform having a Python interpreter.

3. ARCHITECTURAL OVERVIEW
ScrambleSuit is a module for obfsproxy which is an ob-

fuscation framework developed by the Tor project [30]. As
long as obfsproxy is running on the censored client as well

2A bridge descriptor is essentially a tuple containing the
bridge’s IP address, port and fingerprint.

Figure 3: Internally, ScrambleSuit handles authenti-
cated encryption of application data, client authen-
tication as well as flow reshaping using a packet mor-
pher and delayer.

as on the server, all network traffic in between both commu-
nication points can be obfuscated as dictated by the respec-
tive obfuscation modules. Figure 2 illustrates that obfsproxy
acts as a proxy between the Tor client and the Tor bridge.
While specifically designed for Tor, obfsproxy can be used by
any application as long as it supports the SOCKS protocol.

Internally, ScrambleSuit is composed of several compo-
nents which are depicted in Figure 3. Outgoing network data
is first encrypted and then padded by the packet morpher.
Before these packets are then sent over the wire, the packet
delayer uses small artificial delays to disguise inter-arrival
times. Finally, incoming network data is first reassembled
to complete ScrambleSuit protocol messages and, after de-
cryption, finally passed on to the local application.

3.1 Threat Model
Our adversary is a nation-state censor who desires to

block unwanted network protocols and services which would
otherwise allow users within the censoring regime the re-
trieval of unfiltered information or to evade the national fil-
tering system. The censor is making use of payload analysis,
flow analysis as well as active probing to identify and then
block undesired protocols.

Furthermore, the censor has full active and passive control
over the national network. The censor can passively monitor
all traffic entering and leaving its networks in line rate. We
further expect the censor to actively tamper with traffic;
namely to inject, drop, and modify traffic as well as hijack
TCP sessions.

The censor can also select a subset of suspicious traffic
for further inspection on the slow path3. This could involve
active probing as done by the GFW in order to block the
Tor network [11]. We model our censor to also conduct
active MitM attacks. While we believe that passive analysis
and active probing are significantly easier to deploy, there is
evidence that censors are starting to—or at least have the
ability to—conduct active MitM attacks as well [36].
Our adversary is also training and deploying statistical

classifiers to identify and block protocols. While compu-
tationally expensive, it would be imaginable that a censor
uses this strategy at least on the slow path and perhaps even
on the fast path when using inexpensive flow features and
efficient classifiers.

3We define the slow path as the minute analysis of a small
traffic subset as opposed to the fast path which covers the
majority of all network traffic and, as a result, has to be
processed quickly.

3.1.1 Adversary Limitations

We expect the censor to be subject to economical con-
straints. In particular, we assume that the censor is not us-
ing a whitelisting approach meaning that only well-defined
protocols pass the national filter. Whitelisting implies sig-
nificant over-blocking and we expect this approach to col-
lide with the censor’s economical incentives. We also expect
the censor to not block protocols when there is only weak
evidence for the protocol being blacklisted. This is a direct
consequence of avoiding over-blocking to minimise collateral
damage.

Finally, we assume that the censor does not have access
to or can otherwise influence censored users’ computers. We
believe that such a scenario is likely to occur in corporate
networks but not on a national scale.

4. PROTOCOL DESIGN
This section will discuss ScrambleSuit’s defence against ac-

tive probing, its encryption and header format as well as how
we achieve polymorphism.

4.1 Thwarting Active Probing
We defend against active probing by proposing two mutual

authentication mechanisms which rely on a secret which is
shared out-of-band. A ScrambleSuit connection can only be
established if both parties can prove knowledge of this very
secret. While one authentication mechanism (see §4.1.4) is
designed to work well in Tor’s ecosystem, the other mecha-
nism (see §4.1.2) provides additional security and efficiency
if ScrambleSuit is used by other application protocols such
as a VPN.

With respect to Tor, there already exists an out-of-band
communication channel which is used to distribute bridge
descriptors to censored users. Naturally, we make use of
this channel. If, however, ScrambleSuit is used to tunnel
protocols other than Tor, users have to handle out-of-band
communication themselves.

4.1.1 Proof-of-Work (Again) Proves Not to Work

Before deciding in favour of using a secret exchanged out-
of-band, we investigated the suitability of client puzzles.
Puzzles—a variant of proof-of-work schemes—could be used
by a server to time-lock a secret. This secret can then only
be unlocked by clients by spending a moderate amount of
computational resources on the problem. One particular
puzzle construction, namely time-lock puzzles as proposed
by Rivest et al. [37], provides appealing properties such
as deterministic unlocking time, asymmetric work load and
inherently sequential computation which means that adver-
saries in the possession of highly parallel architectures have
no significant advantage over a client with a single CPU.

While a single client puzzle can not be solved in paral-
lel, a censor is able to solve multiple puzzles in parallel by
assigning one puzzle to every available CPU core. This is
problematic because our threat model includes censors with
powerful and parallel architectures. We estimated the Tor
network’s bridge churn rate and found that the rate of new
bridge IP addresses joining the network (i.e., the amount of
puzzles to solve) is not high enough to be able to increase a
well-equipped censor’s work load beyond the point of becom-
ing impractical ; at least not without becoming impractical
for clients as well. This balancing problem is analogous to

Legend:

T : ticket

P : padding

M : mark

k: master key

Tt || P || M || MACkt
(Tt||P)

Enckt
(kt+1 || Tt+1)

Enckt
(Confirm Tt+1)

handshake complete

Enckt
(Non-Tor traffic)

Client Server

Figure 4: The client redeems a valid session ticket Tt
containing the master key kt. The server responds
by issuing a new ticket Tt+1 for future use. After
the client confirmed the receipt, both parties then
exchange application data.

why proof-of-work schemes are also believed to be unpracti-
cal for the spam problem [38].

In summary, proof-of-work schemes would not require a
shared secret but we believe that this small usability im-
provement would come at the cost of greatly reduced cen-
sorship resistance. A censor in the possession of powerful
computational resources would certainly be slowed down but
could ultimately not be stopped. Active probing would sim-
ply become a matter of investing more resources.

4.1.2 Authentication Using Session Tickets

We now present the first of our two authentication mecha-
nisms. We envision it to be used by insecure protocols which,
unlike Tor, can not protect against active MitM attacks. A
client can authenticate herself towards a ScrambleSuit server
by redeeming a session ticket. A session ticket needs to be
obtained only once out-of-band. Subsequent connections are
then bootstrapped using tickets issued by the server during
the respective previous connection. A real world analogy
would be Alice redeeming a ticket in order to gain access
to a football stadium. Upon entering the stadium (i.e., suc-
cessful authentication), the guards give Alice a new ticket
so that she is able to return for the next match. The same
procedure then takes place for the next match. Session tick-
ets are standardised in RFC 5077 [39] and part of TLS since
version 1.0. We employ only a subset of the standard since
we do not need its full functionality.

The basic idea is illustrated in Figure 4. The three-way
handshake starts with the client redeeming a session ticket.
The server then responds by issuing a new ticket. Finally,
the client confirms the receipt of the newly issued ticket.

ScrambleSuit servers issue new session tickets Tt+1 which
embed a future shared master key kt+1 and an issue date d

indicating the ticket’s creation time. Session tickets are sym-
metrically encrypted and authenticated with secret keys kS

4

only known to the server, i.e., Tt+1 = EnckS
(kt+1 || d). As

a result, a ticket is opaque to the client. Note that together
with the ticket, a client also has to learn the master key kt+1

in order to be able to derive the same session keys as the

4For simplicity, we refer to these keys as just kS while they
are in fact two symmetric keys: one for encryption and one
for authentication.

server; so clients always obtain the tuple (kt+1 || Tt+1) from
servers.

Session tickets have the advantage that the server does
not have to keep track of issued tickets. Instead, the server’s
state is outsourced and stored by clients. This reduces a
server’s load. To verify whether a ticket is still valid, servers
simply decrypt the ticket and check the issue date d embed-
ded in the ticket.

Whenever a client successfully connects to a ScrambleSuit
server, the server issues a new ticket concatenated to the ac-
cording master key (kt+1 || Tt+1) for the client. Recall that
the ticket is encrypted and opaque to the client which is the
reason why the master key is prepended. This tuple is then
placed in a special ScrambleSuit control message (see §4.2)
which is sent immediately after a ticket was successfully re-
deemed. Coming back to the real world example, Alice now
has her new ticket which makes it possible for her to return
for the next match.

Finally, the client confirms receipt of the new ticket by
sending a dedicated confirmation message to the server. Af-
ter that, the three-way ticket handshake is completed and
application data can be exchanged.

Pseudo-random padding: A censor could now conduct
traffic analysis by looking for TCP connections which always
begin with the client sending |T | bytes to the server. To
obfuscate the ticket’s length, we introduce random padding
P and authenticate the ticket Tt as well as the padding P by
computing the message authentication code MACkt

(Tt || P)
with kt being the shared master key obtained by the client
together with the ticket. Both parties will derive session
keys from kt as discussed in §4.2.

Locating the MAC: The MAC is computationally indis-
tinguishable from the pseudo-random padding. To facilitate
localisation of the MAC, we place a cryptographic mark M

right in front of it. The mark is defined as M = MACkt
(Tt).

After extracting the ticket from the client’s first chunk of
bytes, the server is now able to calculate the mark and lo-
cate the MAC.We use HMAC-SHA256-128 [40] for the MAC
and the mark.

Key rotation: We mentioned earlier that a ScrambleSuit
server manages secret keys kS which are used to encrypt
and authenticate session tickets. This prevents clients from
tampering with tickets and the server can verify that a newly
received and authenticated ticket was, in fact, issued by the
server. Servers rotate their kS keys after a period of seven
days. After the generation of new kS keys, the superseded
keys are kept for another seven days in order to decrypt and
verify (but not to issue!) tickets which were issued by the
superseded keys. As a result, tickets are always valid and
redeemable for a period of exactly seven days; no matter
when they were issued. As a result, as long as a user keeps
reconnecting to a ScrambleSuit server at least once a week,
key continuity is ensured and there is no need for additional
out-of-band communication.

Foiling replay: At this point, a censor could still inter-
cept a client’s ticket and replay it. This would make the
server issue a new ticket for the censor. While the censor
would not be able to read the resulting ScrambleSuit control
message—the shared master key kt would be unknown—it
is sound design to prevent communication without prior au-
thentication.

We prevent replay attacks—or in other words: ticket dou-
ble spending—by caching the master key kt embedded in a

Figure 5: ScrambleSuit bridges send their descriptor
to the Tor project’s bridge authority ➀. From there,
it is distributed to censored users who learn about
IP address, port and the secret out-of-band ➁. Fi-
nally, direct connections can be established ➂.

ticket. If a server encounters an already cached kt, it does
not reply. We begin to cache a key kt after a new session
ticket was issued and the client confirmed that she correctly
received the new ticket by using a special ScrambleSuit mes-
sage type (see §4.2). We introduced the confirmation step
because otherwise a censor could preplay a ticket, i.e., inter-
cept it and send it before the client. That way, the server
would add it to the replay table and would then reject the
client’s ticket because it would appear to be replayed. This
would allow the censor to invalidate the tickets of clients.
With the confirmation step, however, censors are no longer
able to launch preplay attacks.

Inadequate for Tor: Session tickets provide a strong
level of protection. Active probing and replay attacks are
foiled while forward secrecy is provided. As a result, we
envision session tickets to be satisfactory for most applica-
tion protocols which do not have these properties. Session
tickets alone do not, however, integrate well with Tor’s ex-
isting ecosystem. The reason lies in how Tor bridges are
distributed to users. The process is illustrated in Figure 5.
Volunteers will set up ScrambleSuit bridges which then pub-
lish their descriptors—most notably IP address, port and
shared secret—to the bridge authority which then feeds this
information into the BridgeDB component ➀. In the subse-
quent step, the gathered descriptors are distributed to cen-
sored users ➁. The two primary distribution channels are
email and HTTPS [41]: users can ask for bridges over email
or they can visit the bridge distribution website5 and obtain
a set of bridges after solving a CAPTCHA. Finally, users
can establish ScrambleSuit connections ➂.
The problem is that one bridge descriptor is typically

shared by many users. All these users would end up with
an identical session ticket. This causes two severe problems.
First, our replay protection mechanism does not allow reuse
of session tickets. Only the first user would be able to au-
thenticate herself. Second, session ticket reuse would lead
to identical byte strings at the beginning of a ScrambleSuit
handshake which would be a strong distinguisher. These
problems lead us to an additional authentication mechanism,
discussed in §4.1.4, which is optimised for Tor and can func-
tion with a secret which is shared by many users as shown
in the scenario in Figure 5.

4.1.3 Tor-specific Session Tickets

If ScrambleSuit is used to tunnel Tor traffic (as opposed
to other application protocols such as a VPN), a slightly

5URL: https://bridges.torproject.org.

https://bridges.torproject.org

Legend:

T : ticket

P : padding

M : mark

E: epoch

k: master key

Tt || P || M || MACkt
(Tt||P ||E)

Enckt
(kt+1 || Tt+1)

handshake complete

Enckt
(Tor traffic)

Client Server

Figure 6: The Tor-specific session ticket handshake.
In contrast to Figure 4, it 1) has no ticket confirma-
tion message and it 2) employs a timestamp E.

modified session ticket handshake is used. As illustrated in
Figure 6, the only two differences are:

1. The ticket confirmation message is no longer necessary.

2. The MAC in the first message contains the variable E

holding a timestamp.

Recall that the purpose of the ticket confirmation message
is to foil preplay attacks. When Tor is transported by Scram-
bleSuit, preplay attacks are no longer problematic because
if a ticket is lost, the alternative authentication mechanism
discussed in §4.1.4 is used instead. This possibility to “fall
back”means that a lost ticket no longer implies the inability
to authenticate as it does with the classical ticket scheme.

The variable E holds the current Unix timestamp divided
by 3600, i.e., the number of hours which have passed since
the epoch. Its purpose is to reduce the amount of keys in
the replay cache. While this requires clients and servers to
have loosely synchronised clocks, the server has to cache re-
deemed keys for a period of only one hour rather than seven
days. We could not use E in the classical ticket scheme il-
lustrated in Figure 4 because it would enable an attack. A
censor could repeatedly terminate connections after a client
tried to redeem its session ticket. After a while, the variable
E will change since it holds a timestamp. This means that
the MAC over the ticket handshake would change whereas
the ticket would not change. We consider this a strong dis-
tinguisher.

4.1.4 Authentication Using Uniform Diffie-Hellman

Our second authentication mechanism is an extension of
the Uniform Diffie-Hellman (UniformDH) handshake which
was proposed in the obfs3 protocol specification [21, §3].
obfs3’s handshake makes use of uniformly distributed public
keys which are only negligibly different from random bytes
(see Appendix A). As a result, UniformDH can be used to
agree on a master key kt without a censor knowing that
Diffie-Hellman is used.

In contrast to obfs3, our version of UniformDH is based on
the 4096-bit modular exponential group number 16 defined
in RFC 3526 [42]. When initiating a UniformDH handshake,
the client first generates a 4096-bit private key x. The least
significant bit of x is then unset in order to make the number
even. The public key X is defined as X = gx (mod p) where
g = 2. The server computes its private key y and its public
key Y the same way. To prevent a censor from learning that
X is a quadratic residue mod p—a clear distinguisher—the

Legend:

X: public key

Y : public key

P : padding

M : mark

E: epoch

k: master key

X || PC || MC || MACkB
(X||PC ||E)

Y || PS || MS || MACkB
(Y ||PS ||E)

Enckt
(kt+1 || Tt+1)

handshake complete

Enckt
(Tor traffic)

Client Server

Figure 7: After client and server agreed on the mas-
ter key kt using Uniform Diffie-Hellman, the server
is issuing a new session ticket for the client. After-
wards, both parties exchange Tor traffic.

client randomly chooses to send either X or p − X to the
server. The server can then derive the shared master key by
calculating kt = Xy (mod p). Since the private keys x and
y are even, the exponentiations Xy (mod p) and (p − X)y

(mod p) result in the same shared master key.

4.1.5 Extending Uniform Diffie-Hellman

In its original form, the UniformDH construction does not
protect against active probing. A censor who suspects Uni-
formDH can simply probe the supposable bridge and oppor-
tunistically initiate a UniformDH handshake. To prevent
that attack, we now turn UniformDH’s anonymous hand-
shake into an authenticated handshake in order to be resis-
tant against active attacks.

We do so quite similar to the session tickets discussed
in §4.1.2. As depicted in Figure 7, we concatenate pseudo-
random padding P , the mark M , and a MAC. The MAC au-
thenticates the respective public key as well as the padding.
The MAC is keyed by a shared secret kB which is distributed
together with the Tor bridge’s IP:port tuple over email or
HTTPS (see step ➀ in Figure 5). Similar to tickets, the
client’s mark MC = MACkB

(X) is used to easily locate the
MAC. Note that kB can be reused because it is only used
to key the MAC. The handshake is conducted using Unifor-
mDH with randomly chosen public keys. As a result, two
subsequent UniformDH handshakes based on the same kB
will appear different to a censor. We defend against replay
attacks by adding E, the Unix epoch divided by 3600, to
the MAC and cache the MAC for a period of one hour.

A successful UniformDH key agreement is followed by the
server issuing a session ticket for the client. The client will
then redeem this ticket upon connecting to the server the
next time. Accordingly, we expect the UniformDH hand-
shake to be done only once: namely when a Tor client con-
nects to a bridge for the first time. From then on, session
tickets as presented in §4.1.3 will be used for authentication.

To a censor, the payload of both authentication schemes
is computationally indistinguishable from randomness. Fur-
thermore, both schemes employ a two-way handshake and
padding is used for the two handshakes to exhibit the same
average length. As a result, a censor who is assuming that
a server is running ScrambleSuit is unable to tell whether
a client successfully authenticated herself by using Unifor-
mDH or by redeeming a session ticket.

16-byte
MAC

2-byte
Total length

2-byte
Payload length

1-byte
Flags

(optional)
Payload

(optional)
Padding

Plain Encrypted and authenticated

Figure 8: ScrambleSuit’s message header format. The
entire message is computationally indistinguishable
from randomness.

Table 1: ScrambleSuit’s protocol message flags.
Flag name Bit # Meaning

FLAG_PAYLOAD 1 Application data.

FLAG_NEW_TICKET 2 Newly issued session ticket
and master key.

FLAG_ACK_TICKET 3 Acknowledgement of receipt
of the session ticket.

FLAG_PRNG_SEED 4 PRNG seed to reproduce
probability distributions.

FLAG_REKEY 5 Initiate rekeying before
AES’ counter wraps.

We finally stress that bootstrapping ScrambleSuit using
UniformDH provides less security than when bootstrapped
using session tickets. Since the secret key kB for UniformDH
will be used by multiple clients, a malicious client in the pos-
session of kB who is able to eavesdrop on the connection of
another client using the same ScrambleSuit server can con-
duct active MitM attacks. While Tor does protect against
active MitM attacks6, this can be problematic for applica-
tion protocols other than Tor. Therefore, we emphasise that
session tickets are the preferred authentication mechanism
for insecure protocols whereas our UniformDH extension’s
sole purpose is to make ScrambleSuit work well in Tor’s in-
frastructure. Finally, we discuss usability considerations of
our authentication mechanisms in Appendix C.

4.2 Header Format and Confidentiality
Our protocol employs a custom message format whose

header is illustrated in Figure 8. In a nutshell, ScrambleSuit
exchanges variable-sized messages with optional padding.
The padding is always discarded by the remote machine.

The first 16 bytes of the header are reserved for an HMAC-
SHA256-128 which protects the integrity and authenticity of
the protocol message. In accordance with the encrypt-then-
MAC principle, the HMAC is computed over the encrypted
remainder of the message. The secret key required by the
HMAC is derived from the shared master key kt.

The HMAC is followed by two bytes which specify the
total length of the protocol message. ScrambleSuit’s max-
imum transmission unit is 1448-byte-sized messages. To-
gether with an IP and TCP header (which includes the
timestamping option), this adds up to 1500-byte packets
which fill an Ethernet frame. In order to be able to distin-
guish padding from payload, the next two bytes determine
the payload length. If no padding is used, the payload length
equals the total length.

To separate application data from protocol signaling, we
define a 1-byte message flag field. The semantics of all five
flags is explained in Table 1. The first bit signals application

6A Tor client contains hard-coded keys of the directory au-
thorities which then sign the network consensus.

data in the message body whereas a message with the second
bit set contains a newly issued session ticket. The third bit
(which can be set together with the first bit) confirms the
receipt of a session ticket. Bit number four allows the server
to send a pseudo-random number generator (PRNG) seed
to the client which is used for our traffic analysis defence
(see §4.3). Bit five initiates rekeying which happens before
the counter used for AES overflows. To prevent entropy
exhaustion attacks, rekeying can only be triggered by the
server. We reserve the remaining three bits for future use.

The header is then followed by the message payload which
contains the application protocol transported by Scramble-
Suit. We employ encryption in order to hide the applica-
tion protocol, the padding as well as ScrambleSuit’s header.
With regard to Tor, this means that the already encrypted
Tor traffic is wrapped inside yet another layer of encryption.
For encryption, we use 256-bit AES in counter mode. The
counter mode effectively turns AES into a stream cipher.
We use two symmetric keys: one for the traffic C → S and
one for S → C. Both symmetric keys as well as the respec-
tive nonces for the counter mode are derived from the shared
256-bit master key using HKDF based on SHA256 [43].

4.3 Polymorphic Shape
So far, we discussed defences against censors aiming to

analyse packet payload or conduct active attacks to reveal
ScrambleSuit’s presence. However, a censor could make use
of traffic analysis, i.e., analyse communication aspects other
than the payload. In this section, we propose lightweight
countermeasures to diminish—but not to defeat!—such at-
tacks. In particular, we will teach every ScrambleSuit server
to generate its own and unique “protocol shape”7.
Our definition of ScrambleSuit’s shape is twofold: we con-

sider packet lengths and inter-arrival times. While encrypt-
ing our protocol messages renders payload analysis useless,
these two flow metrics still leak information about the trans-
ported application [44, 45, 46]. As a result, we seek to dis-
guise these characteristics in order to decrease the accuracy
of protocol classifiers trained to identify our protocol. Our
approach to this problem is protocol polymorphism.

We achieve polymorphism by creating one protocol shape
for every server. When a ScrambleSuit server bootstraps
for the first time, it randomly generates a 256-bit seed.
This seed is then fed into a PRNG which is used to ob-
tain two discrete probability distributions. These two dis-
tributions dictate the desired shape of packet lengths and
inter-arrival times. Furthermore, a server communicates its
unique PRNG seed to clients (see Table 1) after success-
ful authentication. Since the seed is shared by both par-
ties, they can generate identical probability distributions
and thus shape their traffic the same way. A censor moni-
toring two distinct ScrambleSuit servers will observe different
distributions for packet lengths and inter-arrival times.

Once our PRNG is seeded, we generate the two distri-
butions by first determining the amount of bins n which is
uniformly chosen from the set {1..100}. In the next step, we
assign each bin bi for 1 ≤ i ≤ n a probability by randomly
picking a value in the interval]0, 1 −

∑i−1

j=0
bj [with b0 = 0.

The following gives an example for four bins.

7This happens similar to the scramble suits in Philip K.
Dick’s novel “A Scanner Darkly”.

b0 ← 0 (1)

b1
R
←]0, 1− b0[(2)

b2
R
←]0, 1− b0 − b1[(3)

bn
R
←]0, 1− b0 − ...− bn−1[(4)

4.3.1 Packet Length Adaption

It is well known that a network flow’s packet length distri-
bution leaks information about the network protocol [28, 44]
and even the content [47, 46]. For instance, a large fraction
of Tor’s traffic is composed of 568-byte packets which is the
result of Tor’s internal use of 512-byte cells plus TLS’ header
(see Figure 10). These 568-byte packets form a strong dis-
tinguisher which can be used to spot a Tor flow by simply
capturing a few dozen network packets as shown by Wein-
berg et al. [16]. To defend against such simple applications
of traffic analysis, we modify the packet length distribution
of our transported application.

Typically, non-interactive TCP applications transmit seg-
ments filling the network link’s maximum transmission unit
(MTU) as long as they have enough to “say”. Applications
will only send packets smaller than the MTU if there is not
enough data in the send buffer. Due to their sheer volume8,
we deem MTU-sized packets to be of no interest to censors.
What we aim to disguise is only packets smaller than the
MTU. This is done by randomly sampling a packet length
from the probability distribution over all our packet lengths.
The original packet length is then padded to fit the sampled
packet length. The padding can be anything in between 0
and 1520 bytes. The reason for 1520 instead of 1499 bytes is
that the smallest unit we can transmit is an empty Scram-
bleSuit message: 21 bytes.

4.3.2 Inter-Arrival Time Adaption

Analogous to packet lengths, the distribution of inter-
arrival times between consecutive packets has discriminative
power and can be used by censors to identify protocols [49].
While inter-arrival times are frequently distorted by jitter,
overloaded middle boxes and the communicating end points,
it would be no sound strategy to assume the network to be
unreliable enough to render measurements difficult.

We employ an obfuscation mechanism analogous to the
packet length adaption discussed earlier: first, the shared
PRNG seed is used to generate a pseudo-random probabil-
ity distribution. After the amount of bins is determined,
each bin is assigned a probability in the range of [0, 10[mil-
liseconds. The motivation for this choice is explained in Ap-
pendix B. Random samples are then drawn from this distri-
bution which are used to artificially delay network packets.
Similar to the implementation of SkypeMorph [17], we make
use of a dedicated send buffer which is processed indepen-
dently of the locally incoming data. This decoupling of the
incoming and outgoing data stream makes it possible to “re-
shape” inter-arrival times.

4.3.3 Shortcomings

It is important to note that for a censor armed with a well-
chosen set of features and sufficient computational resources,

8According to a study conducted by CAIDA [48], MTU-
sized packets form a significant fraction of all observed
packet lengths.

Figure 9: Our experimental setup used to measure
ScrambleSuit’s obfuscation and performance.

traffic analysis can be a powerful attack. Robust defences,
on the other hand, are believed to be expensive [45]. For
instance, Dyer et al.’s simple yet powerful VNG++ classi-
fier [45] only makes use of coarse features such as connec-
tion duration, total bytes transferred and the “burstiness” of
a flow. Significantly decreasing VNG++’s accuracy would
cause a drastically increased protocol overhead.

Nevertheless, traffic analysis does not give censors a cer-
tain answer. False positives are always a problem and can
lead to over-blocking. As mentioned in our threat model, we
believe that the censor might use traffic analysis to select a
subset of traffic for closer inspection but not to block flows.

4.4 Cryptographic Assumptions
Our authentication mechanisms rely on 1) AES-CBC, 2)

pseudo-random initialisation vectors, 3) HMAC, 4) pseudo-
random padding and 5) uniformly distributed Diffie-Hellman
public keys. Exchanged application data is then encrypted
using AES-CTR and authenticated by an HMAC. We expect
all data exchanged between ScrambleSuit servers and clients
to be computationally indistinguishable9 from random data
of the same length. As a result, we have the following as-
sumptions regarding our cryptographic building blocks. We
assume AES to be a pseudo-random permutation and our
HMAC to be a pseudo-random function. The padding is as-
sumed to come from a cryptographically secure PRNG and
the public keys are assumed to be uniformly distributed (see
obfs3 [21]).

5. EXPERIMENTAL EVALUATION
We implemented a fully functional prototype of Scramble-

Suit in the form of several Python modules for obfsproxy10.
Our prototype consists of approximately 2,200 lines of code.
We used the library PyCrypto [51] for cryptographic primi-
tives. The measurements discussed below were all conducted
using this prototype.

As illustrated in Figure 9, our experimental setup con-
sisted of two Debian GNU/Linux machines which were con-
nected over a router performing the measurements. All three
machines were connected over 100 Mbit/s Ethernet. We ex-
pect this setup to be ideal for a censor because it minimises
network interference such as jitter or packet fragmentation.
As a result, we believe that a censor would do worse in prac-
tice. Both of our machines were running Tor v0.2.4.15-rc and
obfsproxy. The Tor bridge was configured to remain private

9Our goal is to achieve a security level equivalent to at least
128 bits of symmetric security as defined in [50].

10The code is available under a free license at
http://veri.nymity.ch/scramblesuit/.

http://veri.nymity.ch/scramblesuit/

0 500 1000 1500

0
.0

0
.4

0
.8

Packet length (bytes)

E
m

p
ir

ic
a

l
C

D
F

ScrambleSuit

Tor

(a) Client-to-server.

0 500 1000 1500

0
.0

0
.4

0
.8

Packet length (bytes)

E
m

p
ir

ic
a

l
C

D
F

ScrambleSuit

Tor

(b) Server-to-client.

0.000 0.005 0.010 0.015

0
.0

0
.4

0
.8

Inter arrival times (seconds)

E
m

p
ir

ic
a

l
C

D
F

ScrambleSuit

Tor

(c) Client-to-server.

0.000 0.005 0.010 0.015

0
.0

0
.4

0
.8

Inter arrival times (seconds)

E
m

p
ir

ic
a

l
C

D
F

(d) Server-to-client.

Figure 10: Tor’s and ScrambleSuit’s packet length dis-
tribution and inter-arrival times for both, client-to-
server and server-to-client traffic.

and only used by our client. The bridge then relayed all
traffic into the public Tor network. Note that ScrambleSuit
was only “spoken” in between the client and the bridge.

5.1 Blocking Resistance
It is difficult to evaluate the effectiveness of our obfus-

cation techniques since ScrambleSuit does not have a cover
protocol to mimic. Otherwise, our evaluation would sim-
ply investigate the similarity between our protocol and its
cover protocol. Instead of measuring ScrambleSuit’s close-
ness to a mimicked protocol, we measure the deviation from
its transported application, i.e., Tor. Intuitively, higher de-
viation would imply better obfuscation.

We obtained traces of packet lengths and inter-arrival
times for ScrambleSuit and Tor. In the following, we quali-
tatively compare both traces. To create network traffic for
these traces, we repeatedly downloaded the 1 MB Linux ker-
nel v1.0 from kernel.org11 on the client. We downloaded the
file ten times over Tor and ScrambleSuit, respectively. The
measurements only covered the download and not Scramble-
Suit’s authentication or Tor’s bootstrapping.

The two packet length distributions are illustrated in Fig-
ure 10(a) and 10(b). The dark blue lines represent Tor flows
whereas bright orange lines depict ScrambleSuit. The packet
length distributions clearly show the prevalence of Tor’s 586-
byte packets; even more so in client-to-server traffic where
the purpose of these packets is flow control. While server-to-
client traffic carries less 586-byte packets, they still form a
significant fraction of overall packet lengths. ScrambleSuit ef-
fectively eliminates this traffic signature and transmits more
MTU-sized packets. Recall that every ScrambleSuit down-
load represents only one specific shape. Different servers
exhibit different shapes.

11URL: https://www.kernel.org/pub/linux/kernel/v1.0/
linux-1.0.tar.bz2.

Figure 10(c) and 10(d) depict the inter-arrival times de-
rived from the same data. Again, Tor is shown as dark blue
and ScrambleSuit as bright orange lines. The inter-arrival
times in Figure 10(c) tend to be rather high—only roughly
60% of Tor packets had an inter-arrival delay below 15 ms—
because the bulk data was travelling from the server to the
client. For this reason, the delays are significantly smaller
in Figure 10(d).

Once again, ScrambleSuit visibly deviates from Tor’s dis-
tribution. However, as we will show in §5.2.2, artificially in-
creased inter-arrival times have a negative effect on through-
put.

5.2 Performance
We are interested in both computational as well as net-

work overhead. The following sections discuss the amount
of overhead ScrambleSuit carries compared to a bare Tor
connection.

5.2.1 Cryptographic Overhead

Our two authentication mechanisms come with small com-
putational overhead. For both parties, UniformDH requires
two modular exponentiations and two MAC generations12.
Session tickets—which constitute the majority of authen-
tications—are even cheaper: the client again calculates two
MACs whereas the server symmetrically decrypts the ticket
and verifies two MACs.

After authentication, protocol messages are symmetrically
encrypted and protected by a MAC. We expect the low
computational overhead to make ScrambleSuit suitable for
resource-constrained devices such as smartphones.

5.2.2 Network Overhead

Our protocol’s network overhead is increased by the ar-
tificial inter-arrival times, packet padding and the protocol
header. In order to gain a good understanding of the exact
network overhead, we created a 1,000,000-byte file contain-
ing random bytes and placed it on a web server operated
by Karlstad University. We then downloaded this file using
wget; 25 times over HTTP, Tor, ScrambleSuit and Scramble-
Suit without inter-arrival time obfuscation, respectively. For
Tor and ScrambleSuit, we established a new circuit for every
download but we used the same entry guard to eliminate
unnecessary variance. All data was captured after a Tor
circuit has been established, so handshakes are not part of
the data. We then calculated the mean µ and the standard
deviation σ for several performance metrics. The results are
depicted in Table 2.

The goodput refers to the application layer throughput.
We achieved very high values for the HTTP download be-
cause the file transfer could be carried out over the LAN. Tor
averaged at roughly 280 KB/s and ScrambleSuit achieved
slightly more than half of that. Just like Tor, ScrambleSuit
exhibits high standard deviation. The main reason for this
is differences in Tor circuit throughput. ScrambleSuit with-
out inter-arrival time obfuscation is comparable to Tor. In
fact, it exceeds Tor’s throughput but this can again be ex-
plained by varying circuit throughput. This shows that the
obfuscation of inter-arrival times has the biggest impact on
ScrambleSuit’s throughput (see also Appendix B).

12It is necessary to calculate the authenticating MAC as well
as the mark used to locate the MAC.

https://www.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.bz2
https://www.kernel.org/pub/linux/kernel/v1.0/linux-1.0.tar.bz2

Table 2: Mean (µ) and standard deviation (σ) of the goodput, transferred KBytes and the total overhead.
The data was generated based on the download of a 1,000,000-byte file.

HTTP Tor ScrambleSuit ScrambleSuit-nodelay

µ σ µ σ µ σ µ σ

Goodput 6.3 MB/s 3.4 MB/s 286 KB/s 227 KB/s 148 KB/s 61 KB/s 321 KB/s 231 KB/s

C→S KBytes 23.1 1.6 66.4 6.5 122.9 24.1 111.9 17.9

S→C KBytes 1047 20.7 1130 12.8 1397.8 125.7 1342.7 112.2

Total overhead 7% 2.2% 19.6% 1.9% 52.1% 15% 45.5% 13%

The next two rows of Table 2 refer to the transferred
KBytes from client to server (C→S) and server to client
(S→C). Note that these metrics cover all the data which
was present on the wire; including IP and TCP header.
The consideration of IP and TCP overhead is important be-
cause ScrambleSuit’s packet padding mechanism introduces
additional TCP/IP packets. Unsurprisingly, Tor transferred
more data than HTTP because of Tor’s and TLS’ protocol
overhead. ScrambleSuit transferred the most data because of
the additional protocol header as well as the varying packet
lengths. Given ScrambleSuit’s 1448-byte MTU, the 21-byte
protocol header only accounts for 1.5% overhead.

The last row in Table 2 illustrates the total protocol over-
head which is simply a function of the previous two rows.
HTTP has the lowest overhead followed by Tor and finally
ScrambleSuit. Our protocol exhibits 45–50% overhead which
is about twice as much as Tor.

6. DISCUSSION
Active Probing: A censor could still actively probe a

ScrambleSuit server. Upon establishing a TCP connection,
a censor could proceed by sending arbitrary data. However,
without knowing the UniformDH shared secret or possessing
a valid session ticket, authentication can not succeed and the
server will remain silent.

In contrast to SilentKnock and BridgeSPA, ScrambleSuit
does not disguise its “aliveness”. While this approach does
leak information13, it has the benefit of making ScrambleSuit
significantly easier to deploy due to lack of platform depen-
dencies such as the kernel interface libnetfilter_queue to
parse raw network packets in userspace.

Injection, Modification, Dropping: A censor could
tamper with an established ScrambleSuit connection by in-
jecting, modifying or dropping packets. After authentica-
tion, all exchanged data is authenticated which allows the
communicating parties to detect such tampering. If the au-
thenticating HMAC of either party is invalid, the connection
is terminated immediately.

Hijacking a ScrambleSuit connection is reduced to the same
problem; a censor would bypass authentication but is un-
able to talk to the other party because the session keys are
unknown. Finally, dropped packets would be handled by
TCP’s retransmission mechanism whereas terminated con-
nections could manually be restarted by users.

Payload Analysis: Payload analysis would only yield
data which is computationally indistinguishable from ran-

13A censor learns that a server is online but unwilling to talk
unless given the “correct” data.

domness. While most encrypted protocols negotiate session
parameters in cleartext, VPNs with pre-shared keys and Bit-
Torrent’s message stream encryption also bootstrap using
high-entropy network packets. Aside from that, it is difficult
to survey how many “fully-random” protocols already exist
in the wild. One approach would be to monitor large-scale
network links and determine which fraction of TCP streams
transports only high-entropy data. Similar work was done
by White et al. [52] but the authors focused on per-packet
rather than on per-connection measurements.

Ideally, more applications considered legitimate by censors
would start transporting only high-entropy payload, thus
inflating the set of protocols ScrambleSuit can hide amongst.
This could be achieved by a major browser employing such
encryption on the transport layer or even by an extension
for the TLS protocol which would provide optional support
for such a mode.

Flow Analysis: Flow analysis would yield a unique dis-
tribution of packet lengths and inter-arrival times which is
different for every ScrambleSuit server. While strong traffic
analysis defence is expensive, these attacks will always have
a range of uncertainty causing false positives. Our goal was
to further increase this uncertainty. We placed more value
on defeating active probing attacks because in contrast to
traffic analysis, they enable deterministic protocol identifi-
cation.

Future Work: There is room for stronger traffic analysis
defence. In particular, ScrambleSuit could be extended to
keep track of the “burstiness” of exchanged traffic which is—
amongst other features—exploited by the powerful VNG++
classifier. These bursts could then be deliberately distorted
with the intention to confuse VNG++. Our shared PRNG
seed could be used to make this distortion server-specific.

7. CONCLUSION
We presented ScrambleSuit; a lightweight transport proto-

col which provides obfuscation for applications such as Tor.
The two major contributions of our protocol are the ability
to defend against active probing and simple protocol classi-
fiers. We achieve the former by proposing two authentica-
tion mechanisms—one general-purpose and the other specif-
ically for Tor—and the latter by proposing morphing tech-
niques to disguise packet lengths and inter-arrival times.

We further developed a prototype of ScrambleSuit and
used it to conduct an experimental evaluation. We discussed
the effectiveness of our obfuscation techniques as well as
ScrambleSuit’s overhead. Our evaluation suggests that our
protocol can provide decent protection against censors who
do not over-block significantly. As a result, we believe that

our protocol can provide a practical alternative in countries
which do not whitelist Internet traffic.

In the near future, we aim to deploy ScrambleSuit as part
of the Tor browser bundle.

Acknowledgements

We want to thank the anonymous reviewers, George Kadi-
anakis, Harald Lampesberger, Stefan Lindskog, and Michael
Rogers who all provided valuable feedback which improved
this paper. We further want to express our gratitude to
Internetfonden of the Swedish Internet Infrastructure Foun-
dation for supporting the main author’s work with a research
grant.

All our data and code is freely available at:
http://veri.nymity.ch/scramblesuit/.

8. REFERENCES
[1] Thomas H. Ptacek and Timothy N. Newsham. Insertion,

Evasion, and Denial of Service: Eluding Network Intrusion
Detection. Technical report, Secure Networks, Inc., 1998.

[2] Olli-Pekka Niemi, Antti Levomäki, and Jukka Manner.
Dismantling Intrusion Prevention Systems (Demo). In
SIGCOMM. ACM, 2012.

[3] Mark Handley, Vern Paxson, and Christian Kreibich.
Network Intrusion Detection: Evasion, Traffic
Normalization, and End-to-End Protocol Semantics. In
USENIX Security. USENIX Association, 2001.

[4] Marcel Dischinger, Alan Mislove, Andreas Haeberlen, and
Krishna P. Gummadi. Detecting BitTorrent Blocking. In
IMC. ACM, 2008.

[5] Richard Clayton, Steven J. Murdoch, and Robert N. M.
Watson. Ignoring the Great Firewall of China. In PETS.
Springer, 2006.

[6] Sparks, Neo, Tank, Smith, and Dozer. The Collateral
Damage of Internet Censorship by DNS Injection.
SIGCOMM Computer Communication Review, 42(3), 2012.

[7] Christopher Rhoads and Loretta Chao. Iran’s Web Spying
Aided By Western Technology, 2009. URL:
http://online.wsj.com/article/SB124562668777335653.html.

[8] Jillian C. York. Government Internet Surveillance Starts
With Eyes Built in the West, 2011. URL:
https://www.eff.org/deeplinks/2011/09/
government-internet-surveillance-starts-eyes-built.

[9] Roger Dingledine, Nick Mathewson, and Paul Syverson.
Tor: The Second-Generation Onion Router. In USENIX
Security. USENIX Association, 2004.

[10] The Tor Project. Iran. URL: https:
//censorshipwiki.torproject.org/CensorshipByCountry/Iran.

[11] Philipp Winter and Stefan Lindskog. How the Great
Firewall of China is Blocking Tor. In FOCI. USENIX
Association, 2012.

[12] The Tor Project. Ethiopia. URL: https://censorshipwiki.
torproject.org/CensorshipByCountry/Ethiopia.

[13] Charles Arthur. China tightens ’Great Firewall’ internet
control with new technology, 2012. URL:
http://www.guardian.co.uk/technology/2012/dec/14/
china-tightens-great-firewall-internet-control.

[14] GFW actively probes obfs2 bridges, 2013. URL:
https://bugs.torproject.org/8591.

[15] Zakir Durumeric, Eric Wustrow, and J. Alex Halderman.
ZMap: Fast Internet-Wide Scanning and its Security
Applications. In USENIX Security. USENIX Association,
2013.

[16] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran,
Linda Briesemeister, Steven Cheung, Frank Wang, and Dan
Boneh. StegoTorus: A Camouflage Proxy for the Tor
Anonymity System. In CCS. ACM, 2012.

[17] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad
Derakhshani, and Ian Goldberg. SkypeMorph: Protocol
Obfuscation for Tor Bridges. In CCS. ACM, 2012.

[18] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and
Andrew Singer. I want my voice to be heard: IP over
Voice-over-IP for unobservable censorship circumvention. In
NDSS. The Internet Society, 2013.

[19] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar, and
Nikita Borisov. SWEET: Serving the Web by Exploiting
Email Tunnels. In HotPETS. Springer, 2013.

[20] The Tor Project. obfs2 (The Twobfuscator). URL:
https://gitweb.torproject.org/pluggable-transports/obfsproxy.
git/blob/HEAD:/doc/obfs2/obfs2-protocol-spec.txt.

[21] The Tor Project. obfs3 (The Threebfuscator). URL:
https://gitweb.torproject.org/pluggable-transports/obfsproxy.
git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt.

[22] Brandon Wiley. Dust: A Blocking-Resistant Internet
Transport Protocol. Technical report, University of Texas
at Austin, 2011.

[23] Viewing cable 09MUSCAT1039, SKYPE CRACKDOWN
IN OMAN, 2009. URL:
http://wikileaks.org/cable/2009/11/09MUSCAT1039.html.

[24] Russian “Clean Internet” experiment gets green light, 2013.
URL: http:
//rt.com/politics/anti-pedophile-safe-internet-russian-169/.

[25] Small Media. Iranian Internet Infrastructure and Policy
Report: Election Edition 2013 (April - June), 2013.

[26] Alberto Dainotti, Claudio Squarcella, Emile Aben,
Kimberly C. Claffy, Marco Chiesa, Michele Russo, and
Antonio Pescapé. Analysis of Country-wide Internet
Outages Caused by Censorship. In IMC. ACM, 2011.

[27] Eva Galperin and Jillian C. York. Syria goes dark, 2012.
https://www.eff.org/deeplinks/2012/11/syria-goes-dark.

[28] Erik Hjelmvik and Wolfgang John. Breaking and Improving
Protocol Obfuscation. Technical report, Chalmers
University of Technology, 2010.

[29] Brandon Wiley. Blocking-Resistant Protocol Classification
Using Bayesian Model Selection. Technical report,
University of Texas at Austin, 2011.

[30] The Tor Project. obfsproxy. URL:
https://www.torproject.org/projects/obfsproxy.

[31] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir
Houmansadr, and Nikita Borisov. CensorSpoofer:
Asymmetric Communication using IP Spoofing for
Censorship-Resistant Web Browsing. In CCS. ACM, 2012.

[32] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov.
The Parrot is Dead: Observing Unobservable Network
Communications. In Security & Privacy. IEEE, 2013.

[33] Patrick Lincoln, Ian Mason, Phillip Porras, Vinod
Yegneswaran, Zachary Weinberg, Jeroen Massar, William
Simpson, Paul Vixie, and Dan Boneh. Bootstrapping
Communications into an Anti-Censorship System. In FOCI.
USENIX Association, 2012.

[34] Eugene Y. Vasserman, Nicholas Hopper, John Laxson, and
James Tyra. SilentKnock: Practical, Provably Undetectable
Authentication. In ESORICS. Springer, 2007.

[35] Rob Smits, Divam Jain, Sarah Pidcock, Ian Goldberg, and
Urs Hengartner. BridgeSPA: Improving Tor Bridges with
Single Packet Authorization. In WPES. ACM, 2011.

[36] Martin Johnson. China, GitHub and the
man-in-the-middle, 2013. URL: https://en.greatfire.org/
blog/2013/jan/china-github-and-man-middle.

[37] Ronald L. Rivest, Adi Shamir, and David A. Wagner.
Time-lock Puzzles and Timed-release Crypto. Technical
report, Massachusetts Institute of Technology, 1996.

[38] Ben Laurie and Richard Clayton. “Proof-of-Work” Proves
Not to Work. In WEIS, 2004.

[39] Joseph Salowey, Hao Zhou, Pasi Eronen, and Hannes
Tschofenig. RFC 5077: Transport Layer Security (TLS)
Session Resumption without Server-Side State, 2008.

http://veri.nymity.ch/scramblesuit/
http://cs.unc.edu/~fabian/course_papers/PtacekNewsham98.pdf
http://cs.unc.edu/~fabian/course_papers/PtacekNewsham98.pdf
http://cs.unc.edu/~fabian/course_papers/PtacekNewsham98.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/sigcomm/p285.pdf
http://static.usenix.org/events/sec01/full_papers/handley/handley.pdf
http://static.usenix.org/events/sec01/full_papers/handley/handley.pdf
http://www.mpi-sws.org/~mdischin/papers/08_imc_blocking.pdf
http://www.cl.cam.ac.uk/~rnc1/ignoring.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf
http://conferences.sigcomm.org/sigcomm/2012/paper/ccr-paper266.pdf
http://online.wsj.com/article/SB124562668777335653.html
https://www.eff.org/deeplinks/2011/09/government-internet-surveillance-starts-eyes-built
https://www.eff.org/deeplinks/2011/09/government-internet-surveillance-starts-eyes-built
http://static.usenix.org/event/sec04/tech/full_papers/dingledine/dingledine.pdf
https://censorshipwiki.torproject.org/CensorshipByCountry/Iran
https://censorshipwiki.torproject.org/CensorshipByCountry/Iran
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final2.pdf
https://censorshipwiki.torproject.org/CensorshipByCountry/Ethiopia
https://censorshipwiki.torproject.org/CensorshipByCountry/Ethiopia
http://www.guardian.co.uk/technology/2012/dec/14/china-tightens-great-firewall-internet-control
http://www.guardian.co.uk/technology/2012/dec/14/china-tightens-great-firewall-internet-control
https://bugs.torproject.org/8591
https://zmap.io/paper.pdf
https://zmap.io/paper.pdf
http://www.owlfolio.org/media/2010/05/stegotorus.pdf
http://www.owlfolio.org/media/2010/05/stegotorus.pdf
http://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
http://www.cypherpunks.ca/~iang/pubs/skypemorph-ccs.pdf
http://www.cs.utexas.edu/~amir/papers/FreeWave.pdf
http://www.cs.utexas.edu/~amir/papers/FreeWave.pdf
http://petsymposium.org/2013/papers/zhou-censorship.pdf
http://petsymposium.org/2013/papers/zhou-censorship.pdf
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/blob/HEAD:/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/blob/HEAD:/doc/obfs2/obfs2-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt
https://gitweb.torproject.org/pluggable-transports/obfsproxy.git/blob/HEAD:/doc/obfs3/obfs3-protocol-spec.txt
http://blanu.net/Dust.pdf
http://blanu.net/Dust.pdf
http://wikileaks.org/cable/2009/11/09MUSCAT1039.html
http://rt.com/politics/anti-pedophile-safe-internet-russian-169/
http://rt.com/politics/anti-pedophile-safe-internet-russian-169/
http://smallmedia.org.uk/IIIPJune.pdf
http://smallmedia.org.uk/IIIPJune.pdf
http://www.caida.org/publications/papers/2011/outages_censorship/outages_censorship.pdf
http://www.caida.org/publications/papers/2011/outages_censorship/outages_censorship.pdf
https://www.eff.org/deeplinks/2012/11/syria-goes-dark
http://www.iis.se/docs/hjelmvik_breaking.pdf
http://www.iis.se/docs/hjelmvik_breaking.pdf
http://blanu.net/BayesianClassification.pdf
http://blanu.net/BayesianClassification.pdf
https://www.torproject.org/projects/obfsproxy
http://hatswitch.org/~nikita/papers/censorspoofer.pdf
http://hatswitch.org/~nikita/papers/censorspoofer.pdf
http://hatswitch.org/~nikita/papers/censorspoofer.pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
http://www.cs.utexas.edu/~amir/papers/parrot.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final7.pdf
https://www.usenix.org/system/files/conference/foci12/foci12-final7.pdf
http://www-users.cs.umn.edu/~hopper/silentknock_esorics.pdf
http://www-users.cs.umn.edu/~hopper/silentknock_esorics.pdf
http://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
http://www.cypherpunks.ca/~iang/pubs/bridgespa-wpes.pdf
https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
https://en.greatfire.org/blog/2013/jan/china-github-and-man-middle
http://people.csail.mit.edu/rivest/RivestShamirWagner-timelock.ps
http://www.cl.cam.ac.uk/~rnc1/proofwork2.pdf
http://www.cl.cam.ac.uk/~rnc1/proofwork2.pdf
https://tools.ietf.org/html/rfc5077
https://tools.ietf.org/html/rfc5077

[40] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. RFC
2104: HMAC: Keyed-Hashing for Message Authentication,
1997.

[41] Zhen Ling, Xinwen Fu, Wei Yu, Junzhou Luo, and Ming
Yang. Extensive Analysis and Large-Scale Empirical
Evaluation of Tor Bridge Discovery. In INFOCOM. IEEE,
2012.

[42] Tero Kivinen and Mika Kojo. RFC 3526: More Modular
Exponential (MODP) Diffie-Hellman groups for Internet
Key Exchange (IKE), 2003.

[43] Hugo Krawczyk and Pasi Eronen. RFC 5869: HMAC-based
Extract-and-Expand Key Derivation Function (HKDF),
2010.

[44] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and
Luca Salgarelli. Traffic Classification through Simple
Statistical Fingerprinting. SIGCOMM Computer
Communication Review, 37(1), 2007.

[45] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, I Still See You: Why
Efficient Traffic Analysis Countermeasures Fail. In Security
& Privacy. IEEE, 2012.

[46] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob
Johnson. Touching from a Distance: Website
Fingerprinting Attacks and Defenses. In CCS. ACM, 2012.

[47] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and
Thomas Engel. Website Fingerprinting in Onion Routing
Based Anonymization Networks. In WPES. ACM, 2011.

[48] CAIDA. Packet size distribution comparison between
Internet links in 1998 and 2008, 2010. URL:
http://www.caida.org/research/traffic-analysis/pkt size
distribution/graphs.xml.

[49] Mohamad Jaber, Roberto G. Cascella, and Chadi Barakat.
Can we trust the inter-packet time for traffic classification?
In ICC. IEEE, 2011.

[50] ECRYPT II Yearly Report on Algorithms and Keysizes,
2012.

[51] Dwayne C. Litzenberger. PyCrypto - The Python
Cryptography Toolkit. URL:
https://www.dlitz.net/software/pycrypto/.

[52] Andrew M. White, Srinivas Krishnan, Michael Bailey,
Fabian Monrose, and Phillip Porras. Clear and Present
Data: Opaque Traffic and its Security Implications for the
Future. In NDSS. The Internet Society, 2013.

APPENDIX

A. UNIFORMDH PUBLIC KEYS
UniformDH public keys form a distinguisher because they

are not distributed over the entire space of 4096 bits. Public
keys are always smaller than the modulus defined in RFC
3526 [42]. The unused bit space is, however, small enough
for this distinguisher to be negligible. The probability P of
a censor observing a UniformDH public key smaller than the
4096-bit modulus n (see reference [42] for n’s value) equals:

P =
n

24096 − 1

A censor could now monitor a server’s handshakes over an
extended period of time in order to determine if the full 4096-
bit space is never used which would be a sign of UniformDH.
Doing that, a censor needs

ln(0.5)

ln(P)
≈ 266

observations to have a confidence greater than 50% that
a server is conducting UniformDH handshakes. Such an
amount of observations is unpractical.

B. INTER-ARRIVAL TIME PARAMETERS

●

●

●

●

●
●

●
●
●
●
●
●●

●●
●●
●●●

●●●
●●●●

●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

100 500 2000 10000

1
0
0

3
0
0

5
0
0

Original BW (Kbyte/s)

E
ff
e
c
ti
ve

 B
W

 (
K

b
y
te

/s
)

● 2.5ms

5.0ms

7.5ms

Figure 11: The cost in
bandwidth when employ-
ing three different obfus-
cation delays.

The artificial increase
of inter-arrival times has
a negative impact on
throughput. If cho-
sen too high, it can
quickly become a nui-
sance to users. Figure 11
illustrates the mapping
from original bandwidth
(without obfuscation) to
effective bandwidth (af-
ter obfuscation) under
three different average
obfuscation delays. The
higher the average delay,
the smaller is the effec-

tive bandwidth. The plotted data is based on the following
equation which yields the overhead α.

α =

(

BPS

MTU
· E[d]

)

·
1

1000
+ 1

The variable MTU refers to the maximum transmission unit
which is typically 1500. BPS stands for “bytes per second”
and refers to the original bandwidth of the available network
link. E[d] represents the expected value of the respective
probability distribution d, i.e., the average obfuscation de-
lay. In Figure 11, we plot the expected values 2.5, 5 and
7.5 milliseconds, respectively. ScrambleSuit uses the interval
of [0, 10[milliseconds for artificial delays. This interval has
an expected value of 5ms which we believe to be a reason-
able balance between this obfuscation/performance trade-
off. It is ultimately limited to an effective throughput of 300
Kbyte/s and, when Tor is transported, can achieve through-
puts around 150 Kbyte/s as we showed in our experimental
evaluation.

C. USABILITY CONSIDERATIONS
In order for a user to successfully connect to a Scramble-

Suit server, she needs a triple: an IP address, a TCP port
and a secret which is either the UniformDH secret kB or a
session ticket tuple (kt || Tt). We expect these triples to be
distributed mostly electronically; over email, instant mes-
saging programs or online social networks. As a result, a
user can simply copy and paste the entire triple into her
configuration file.

We do, however, also expect verbal distribution of Scram-
bleSuit triples, e.g., over a telephone line. To facilitate this,
we define the encoding format of secrets and tickets to be
Base32 which consists of the letters A–Z, the numbers 2–
7 as well as the padding character “=”. The numbers 0
and 1 are omitted to prevent confusion with the letters I
and O. Since there is no distinction between uppercase and
lowercase letters, we hope to make verbal distribution less
confusing and error-prone. After all, a ScrambleSuit bridge
descriptor would look like:
Bridge scramblesuit 1.2.3.4:443 password=NCA6I6GZZD42BWUB

We believe that the prefix password= will find more accep-
tance amongst users than simply appending the secret.

https://www.ietf.org/rfc/rfc2104.txt
https://www.ietf.org/rfc/rfc2104.txt
http://www.cs.uml.edu/~xinwenfu/paper/Bridge.pdf
http://www.cs.uml.edu/~xinwenfu/paper/Bridge.pdf
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc3526
http://tools.ietf.org/html/rfc3526
https://tools.ietf.org/html/rfc5869
https://tools.ietf.org/html/rfc5869
http://www.sigcomm.org/sites/default/files/ccr/papers/2007/January/1198255-1198257.pdf
http://www.sigcomm.org/sites/default/files/ccr/papers/2007/January/1198255-1198257.pdf
http://kpdyer.com/publications/oakland2012-peekaboo.pdf
http://kpdyer.com/publications/oakland2012-peekaboo.pdf
http://www.cs.sunysb.edu/~xcai/fp.pdf
http://www.cs.sunysb.edu/~xcai/fp.pdf
http://lorre.uni.lu/~andriy/papers/acmccs-wpes11-fingerprinting.pdf
http://lorre.uni.lu/~andriy/papers/acmccs-wpes11-fingerprinting.pdf
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
http://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
http://www-sop.inria.fr/members/Chadi.Barakat/ICC2011.pdf
http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
https://www.dlitz.net/software/pycrypto/
http://cs.unc.edu/~amw/resources/opaque.pdf
http://cs.unc.edu/~amw/resources/opaque.pdf
http://cs.unc.edu/~amw/resources/opaque.pdf

	Introduction
	Related Work
	Architectural Overview
	Threat Model
	Adversary Limitations

	Protocol Design
	Thwarting Active Probing
	Proof-of-Work (Again) Proves Not to Work
	Authentication Using Session Tickets
	Tor-specific Session Tickets
	Authentication Using Uniform Diffie-Hellman
	Extending Uniform Diffie-Hellman

	Header Format and Confidentiality
	Polymorphic Shape
	Packet Length Adaption
	Inter-Arrival Time Adaption
	Shortcomings

	Cryptographic Assumptions

	Experimental Evaluation
	Blocking Resistance
	Performance
	Cryptographic Overhead
	Network Overhead

	Discussion
	Conclusion
	References
	UniformDH Public Keys
	Inter-Arrival Time Parameters
	Usability Considerations

