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Abstract—

Virtual Private Networks are effective in bypassing Internet
censorship. Extensive research has been done to obfuscate VPN
traffic in order to circumvent control filtering. In this paper, we
introduce a new threat model in which a censorship body can
use home routers running a custom firmware or an embedded
OS to identify VPN connections. Monitoring network traffic at
home routers enables efficient and accurate fingerprinting of VPN
traffic before the traffic is NATed to the Internet. The proposed
model leverages a vulnerability in VPN implementations. Exper-
imental results highlight its ability to fingerprint with negligible
false positives/negatives. The purpose of the study is to increase
awareness of this issue and inspire others to take this threat
model as a reasonable risk that needs to be addressed.

Keywords—Virtual Private Networks, Traffic Fingerprinting,
Censorship

I. INTRODUCTION

Virtual private network (VPN) services have become in-
creasingly popular as means of hiding Internet activity, partic-
ularly in contexts where Internet censorship and surveillance
are prevalent. A VPN tunnels network activity via a secured
channel to a VPN server and from the VPN server to the
requested websites or services. VPN services are used not
only by journalists or activists who may be vulnerable to
monitoring or targeting, but also by general public who value
their online privacy while browsing the web over public WiFi
networks, connecting remotely to their workplace services, or
to access content/services that may be censored in certain
parts of the Internet. As VPNs have become more widely
used, censorship bodies such as states seeking to control
and restrict Internet access that are often motivated by moral
or religious values have invested heavily in developing and
deploying sophisticated censorship technologies to prevent
the dissemination of information, suppress challenges to their
official narrative, maintain authority, and prevent disruptions
in society [1], [2].

A typical way people connect to the Internet is through
home routers. Home routers act as gateways and provide
local devices/peripherals a convenient and cost-effective way
to access the Internet. However, home routers can also be a
point of vulnerability due to security and privacy breaches if
they are not properly secured or maintained. Attackers can gain
control of private home routers by using a backdoor built into
the router [3] or by exploiting a vulnerability in the router’s
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Fig. 1. An end-device on a home network using a VPN will have all its

traffic destined to the VPN server.

code [4], [5]. Home routers are often provided for free with
Internet contracts and come with a customized firmware or
an embedded operating system. While this can be convenient
for users, it also means that home routers may not be trusted
especially if they have not been tested by a third party.

In this paper, we introduce a new threat model in which a
censorship body aiming to fingerprint VPN traffic does so by
leveraging custom home router firmware using a simple statis-
tical model. The proposed approach is simpler, more efficient
and more accurate compared to existing VPN fingerprinting
techniques such as Machine Learning (ML) algorithms [6]-
[8]. VPN fingerprinting at home routers further offers many
advantages. Besides distributing the processing load on home
routers rather than relying on a centralized infrastructure,
it overcomes the widely used obfuscation techniques that
are used to avoid detection using Deep Packet Inspection
(DPI) [9], [10] and overcomes the obfuscation caused by mul-
tiple devices communicating behind a single IP address (NAT
box). It also enables real-time detection of VPN connections.
The simplicity of the calculations needed at home routers adds
negligible overhead.

The key idea behind our threat model is that end devices
using a VPN connection will, by default, send all their traffic to
the same destination (the VPN server) identified by its public
IP address — Refer to Figure 1. On the other hand, non-VPN
traffic is typically sent to a mix of different destinations; e.g.
websites, weather widget, OS update server, etc. We tested the
identified threat model in realistic setups. Experimental results



highlight its ability to detect VPN connections with negligible
false positives/negatives. To the best of our knowledge, this
threat model was not considered in the literature. The purpose
of our study is to increase awareness of this issue and inspire
others to take this threat model as a reasonable risk that needs
to be addressed.

The rest of this paper is organized as follows: In section II,
we describe the threat model. In section III, we explain the
design of the fingerprinting algorithm. In section IV, we
evaluate the threat model in realistic setups and report on
our findings. In section V, we compare our work with other
research on the subject. We finally conclude in section VI

II. THREAT MODEL

Our threat model relies on fingerprinting VPN traffic at
home routers due to their ability to access user traffic before it
is Network Address Translated (NATed), allowing for tracking
the traffic of each device individually.

The feasibility of this attack can arise from exploiting
vulnerabilities in the routers, by modifying the firmware of the
routers, or even during the common practice of provisioning
home routers through specialized servers managed by Internet
Service Providers (ISPs). These servers possess the capability
to distribute updates to these routers [11]. Even the supply
chain of home routers can be tampered with by censorship
bodies without the user’s knowledge [12].

Our threat model assumes that alterations implemented in
the user’s home router are solely for passive traffic analysis
purposes and do not involve any active modifications of the
traffic in order to prevent raising suspicion. Also, given the
typical limited capabilities of home routers, the attack should
not require substantial computational power in order to avoid
deteriorating performance.

The proposed threat compromises a common design vulner-
ability in major VPN implementations in which all user traffic
is tunneled to a single public IP address. The home router can
track the packets exchanged between any device on the local
network and a public IP address over time to fingerprint VPN
connections. We next provide the details of our proposal.

III. DESIGN

Our fingerprinting technique involves tracking contacted
public IP addresses over time from each internal (home)
device. Our technique relies on the notion of a session. A
session for a home device is a duration of time in which the
home device is exchanging packets with the same public IP
address. A new session is initiated (and the old one terminated)
when a new public IP address for the device is detected at the
home router. The home router counts the number of packets,
PACKETS _COUNT , in each device session, and if the
count exceeds a threshold, 7', a potential VPN connection is
reported.

Figure 2 illustrates the fingerprinting idea. It displays
the PACKETS_COUNT for consecutive sessions of a
device over time. In this example, A VPN connection
was established during the last session leading to a large
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Fig. 2. Visual Representation of Fingerprinting VPN Connections.

4000
3500
3000
2500
2000
1500
1000
500
0 el
0 200 400 600 800 1000 1200 1400 1600

# packets in session

Time [seconds]

— Session counter VPN session

Fig. 3. VPN Fingerprinting from an actual packet trace. Dark area corresponds
to active VPN connection.

PACKETS_COUNT , as all device traffic is headed to the
same VPN server (with the same public IP address), exceeding
T and leading to a VPN connection being reported. However,
note there is another session (the fourth session in the Figure),
which does not correspond to a VPN connection, but still
has PACKETS_COUNT exceeding T . This motivates the
need to observe PACKETS_COUNT exceeding T only
for sessions after exceeding a certain amount of time, which
we refer to as the WINDOW . The choice of the threshold,
T , and the value of the WINDOW are important for an
accurate fingerprinting, and should strike a balance between
the ability to detect short VPN connections while minimizing
false negatives (miss-classifications) and false positive reports.
We evaluate the impact of the different choices in section IV.
Figure 3 displays the PACKETS_COUNT for consec-
utive sessions of a device over time from an actual trace of
packets collected at a home router. The dark area corresponds
to an active VPN connection. An important point to note is that
the PACKETS_COUNT value does not start increasing
once the VPN becomes active as the home device may still
have open connections that are not using the VPN tunnel.
This leads to packets, which are not destined to the VPN
server, being noticed at the home router and to the creation of



new sessions. This leakage behavior delays the detection of
VPN connections to some extent and highlight the need for a
relatively large WINDOW . Although this is not a problem
for long sessions, short VPN sessions can slip through the
proposed detection method. After the leakage is resolved, the
router creates a session for the VPN server and counts the
packets until they reach the time window, which is set at 300
seconds in this example. The router checks the packet count
and reports the IP address as belonging to a VPN server. It
then starts a new session. In this trace, the VPN connection
lasts for more than the time window but does not complete
another window before being terminated. Notably, Our model
is not bound by specific VPN protocol specifications, granting
it the ability to identify a broad array of VPN protocols for
comprehensive detection.

Note that the home router doing the fingerprinting does
not have to maintain much information nor conduct much
processing. Basically the router maintains for each home end-
device (identified by its private IP address) the following
information about the device latest session: (1) timestamp
reflecting the time the session started, (2) session public IP
address, (3) PACKETS_COUNT for the session. When a
new packet from the home device is received at the router,
the router checks the public IP address and if it is new IP,
a new session is created (updating timestamp and public IP
address, set packet count to zero). Otherwise it increment
PACKETS_COUNT and then check algorithm metric: the
window and PACKETS_COUNT .The algorithm has an
additional feature called “overlapping windows” that helps re-
duce sensitivity to the choice of metrics. This feature considers
packet counts for two complete consecutive windows that have
the same public IP address. If they satisfies an overlapping
threshold, it flags the connection as a VPN.

The pseudo-code in Algorithm 1 and 2 provides the
logic of the proposed fingerprinting algorithm applied at the
home router. It relies on the H[src| data structure stor-
ing the details of the session associated with home de-
vice with IP address src, where H[src|.dst, H[src|.ts and
H{src].count represent the destination IP address, timestamp
and PACKETS_COUNT values of the session, respec-
tively. Note that the pseudo-code considers both ingress and
egress traffic of the home network. A VPN connection is
reported only if both (1) the session time exceeds WINDOW
amount of time, and (2) the session PACKETS_COUNT
exceeds a threshold 7' .

While the fingerprinting can report a suspected VPN con-
nection, verifying whether it is actually a VPN connection can
be done by the back-end infrastructure of the censorship body,
for example through IP probing as performed by Diwen Xue et
al. in [13]. Our code with compilation instructions is publicly
available in a git repository [14].

IV. EXPERIMENTAL RESULTS

We evaluated the threat model (1) on a home router in
a realistic setup that mimics a conventional home network
consisting of a variety of end devices and (2) on a playback

Algorithm 1 Analyze new packet
1: procedure ANALYZEIP(src, dst,ts)

2: if not 7s_internal(src) then - Ingress
3: sre, dst +— dst, sre > Flip
4: if 2s_internal(dst) then © Internal communication
5: return

6: if src & H then > Initial record
7 Hsre] + [0,0,0,0]

8 if H[src].dst # dst then > New connection
9: H|src|.dst + dst

10: Hlsrc).ts + ts

11: H|sre|.count + 0

12: H{src|.count < H|[src].count + 1

13: if ts — H|src|.ts > WINDOW then

14: if IsSuspectedVPN(src) then

15: Report(sre, dst, ts)

16: H|sre|.ts + ts

17: H|srec|.count_prev « H|[src|.count

18: H|src].count < 0

Algorithm 2 Decide if a source IP is suspected as a VPN
1: procedure ISSUSPECTEDVPN(s7c)
2: if H[src|.count > T then
3: return T'rue
4: if H[src].count_prev + H[src].count
> WINDOW_OV ERLAP then
5 return I'rue
6: return False

of an IoT dataset to gain deeper insights into the behavior
of IoT devices. We next provide the experimental details and
discuss the results.

We implemented our statistical model as a module in the
Linux kernel of the NETGEAR R6120 router, which has 580
MHz processor, 16 MB of ROM, and 64 MB of RAM. This
router was chosen due to its modest hardware capabilities in
order to demonstrate that our statistical model is capable of
operating on weak routers. We changed the original firmware
of NETGEAR router to OpenWrt [15] which is an open-source
operating system for networking devices that allows users to
customize and extend their functionality.

In our experiments, we tested a variety of devices, which
were divided into three main groups: (1) computers, (2)
cell phones, and (3) IoT. We also tested different Operating
systems on computers and cell phones. Using this conventional
setup, we conducted two types of experiments: Controlled and
uncontrolled as we detail next.

A. Controlled Tests

Prior to evaluating our statistical model, we conducted a
controlled test where a single device within the home network
performed a predefined activity for a limited duration. The
objective of this test was to gather statistical data regarding
the characteristics of the observed sessions. This data was
then used to determine appropriate values for the parameters



TABLE I
CONTROLLED SETUP RESULTS SUMMARY

Category Device Activity Measurement | Number Average Longest # Packets In
Duration Sessions | Session [sec] | Session [sec] | Longest Session
Idle 20 minutes 582 1.4622 710 2
Linux OS Streaming 20 minutes 651 1.9416 27 3,709
(Ubuntu 22.04) Surfing 20 minutes 28175 0.0439 8 2
Downloading | 20 minutes 1149 0.9965 238 487,350
Idle 20 minutes 388 2.5515 486 2
Computers Mac OS (MacBook Streaming 20 minutes 1,612 0.7593 41 40
MacOS Big Sur) Surfing 20 minutes 17,306 0.0682 105 247
Downloading | 20 minutes 1,242 0.9686 185 14,168
Idle 20 minutes 252 4.2937 79 10
Windows OS Streaming 20 minutes 9,577 0.1326 10 6
(Windows 10) Surfing 20 minutes 33,387 0.035 8 10
Downloading | 20 minutes 4,070 0.3091 20 29,380
Android (Galaxy Idle 40 minutes 17,328 0.1405 147 6
Cell Note 10) Steaming 30 minutes 17,012 0.1099 19 2
phones iOS (iPhone Idle 40 minutes 278 8.7842 449 2
Pro max 13) Streaming 30 minutes 2,067 0.8684 18 136
Printer Idle 40 minutes 10 172.4 332 14
(HP Laser.Jet M402dw) ii”mdr:qngn gs | 20 minutes 5 2412 302 11
IdOeTvices Smart Bulb Idle 40 minutes 11 218.9091 301 16
(Merkury) f;'r‘]‘r’]'q';gn gs | 30 minutes 6 230.8333 301 73
Smart TV Idle 40 minutes 40 21 111 9
(Samsung TU7100D) | Streaming 30 minutes 1,278 1.4108 34 90
Vacuum cleaner Idle 20 minutes 4 243 328 18
({Robot 980) fg;%’;gn gs | 15 minutes 3 201.3333 303 94
WiFi Camera Idle 40 minutes 14 164.2857 316 48
(Merkury) Streaming 40 minutes 17,892 0.1373 1 328

WINDOW and T, capable of avoiding mis-classification
of non-VPN traffic as VPN traffic. The predefined activities
for this controlled test were (1) streaming, (2) idle state,
(3) web browsing, (4) file downloading, and (5) sending
commands. Table I reports on the number of sessions observed
over a period of time, the average session time, the longest
session time and the number of packets in the longest session
in each tested scenario. For example, for an idle Windows 10
operating system, we observed 252 sessions over the course
of 20 minutes. An important observation based on the results
is that many IoT devices lead to a small number of sessions
compared to the non-IoT devices. This highlights the fact that
non-IoT devices typically connect to multiple IP addresses in
the absence of VPN connections, while IoT devices connect
with a small number of IP addresses even in the absence of
VPN connections. Based on these characteristics, IoT devices
may be more challenging to our algorithm. In order to further
study the behavior of IoT devices, we conduct an analysis on
an IoT dataset in the subsequent section.

B. IoT Dataset

We applied our statistical model to the CIC IoT dataset
[16], which was collected in 2022 at the Canadian Institute
of Cybersecurity. The dataset consists of packet traces of IoT

devices that were recorded while researchers were freely using
these devices. Specifically, we checked the active traces for
a variety of devices such as cameras, smart lights, speakers,
doorbells, door/window sensors, base stations, motion sensors,
actuators, multi-sensors, weather stations/sensors, smart hubs,
smart plugs, smart coffee makers, smart TVs, and smart
boards. The dataset did not have any VPN connections.
Figure 4 displays the misclassification percentage for different
combinations of WINDOW and Threshold T values,
obtained through an analysis of the dataset.

C. Choosing WINDOW and T

The selection of appropriate values for the WINDOW
and T parameters requires a careful balance. A window that
is overly large might overlook legitimate VPN sessions, while
one that is too small could lead to an increased number of
false positives. Based on the sessions characteristics provided
in Table I and the insights from Figure 4, we recommend
considering WINDOW ranging from 5 to 50 minutes. While
several combinations are plausible, our final decision was to
set the WINDOW to 300 seconds and the 7 parameter
to 500 packets. Upon applying this configuration to the IoT
dataset, we observed that out of all identified sessions, only
two devices were mis-classified as having VPN sessions. The
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Fig. 4. False Positive Ratio for the CIC IoT dataset.

first device, a Google Nest Cam, connected to the Google
cloud server at nexusapi — usl.dropcam.com. The second
device communicated with the Alibaba cloud server. The
primary challenge is classifying IoT devices that generate
significant traffic during a single prolonged session, as is
the case with WiFi cameras. These mis-classifications can be
effectively addressed at the censorship body.

D. Uncontrolled Tests

We tested our algorithm with these configuration in uncon-
trolled test spanning four days, in which we freely interacted
with several devices, including a Smart TV, WiFi camera,
smart bulbs, Windows PC, and Android and iOS smartphones.
During this test, we intentionally introduced VPN connections
using different VPN providers, and used these connections to
download content. We tested VPN connections by different
VPN providers such as ProtonVPN [17], Hide.me [18], Turbo
VPN [19], Kaspersky VPN [20], Hotspot Shield [21], Secure
VPN [22], Fast VPN Pro [23], VPN Super [24], and VPN
Gate [25]. The providers were selected based on their popu-
larity in the Google Play Store. Table II provides the results
for each VPN provider. The router was able to successfully
flag all VPN connections of 7 out of the 9 that were tested.
We analyzed the applications that were not detected, and we
found that Hotspot Shield has traffic leakage where not all
traffic tunneling via the secure channel as was reported by
Khan er al. [26]. KasperskyVPN was tunnelling all traffic to
a single server; however, the client was exchanging packets
with a second server every 300 seconds, and since this is our
time window the VPN connection was not detected, in order to
detect KasperskyVPN traffic the window size should be less
than 300 seconds. Throughout our uncontrolled experiment,
we did not encounter any false positives among the tested
devices.

V. RELATED WORK

Extensive efforts were aimed at fingerprinting VPN traffic
for censorship. These can be classified based on whether they
rely on Deep Packet Inspection (DPI) [13], [27], [27]-[29] or
Machine Learning techniques [6]-[8].

TABLE II
UNCONTROLLED SETUP RESULTS FOR VPN PROVIDERS.

App name Downloads | Result
ProtonVPN 10M | Detected
Hide.me IM | Detected
Turbo VPN 100M | Detected
Kaspersky VPN 100M | Undetected
Hotspot Shield 100M | Undetected
Secure VPN 100M | Detected
Fast VPN Pro 50M | Detected
VPN Super 50M | Detected
VPN Gate N/A | Detected

Deep packet inspection (DPI) is a method of examining
packets passing through a network to identify its type [29].
The authors in [27] [28] study Russia’s national firewall,
Sovereign RuNet, and its censorship capabilities. They find
that Russia deployed DPI devices in a decentralized way close
to end users, allowing fine-grained control over privately-
owned ISPs but the censorship was centrally coordinated.
Researchers in [27] also suggested that deploying censorship
devices close to end users is more effective. Our threat model
involves censorship fingerprints located inside home routers,
distributed in a decentralized manner. The authors in [13]
show that fingerprinting OpenVPN is feasible and practical at
scale for censorship states. They use DPI to fingerprint VPN
connections during the handshake and then probe servers to
confirm by eliciting protocol-specific behavior that reveals the
OpenVPN server. Their implementation in the core network
requires high computational power, while our threat model
operates in the home network without the need for DPI
and with a much simpler model that requires significantly
less computational power. Additionally, our model is capable
of fingerprinting VPN connections across widely used VPN
protocols.

Along another dimension, studies have been performed to
overcome the limitations of DPI using machine learning (ML)
algorithms. ML algorithms extract the statistical features or
characteristics extracted from the packet flow. In [6], Sikha
Bagui et al. compare the performance of 6 ML algorithms to
detect VPN traffic. In [7], Shane Miller et al. use a multi-layer
ANN to detect VPN connections. In [8], Lulu et al. compare
CAE and CNN in their ability to fingerprint VPN traffic. In
contrast to our model, which requires lower computational
resources, these methods are costly and typically require
higher computing power. In addition, obfuscation techniques
could potentially undermine the efficacy of these methods,
making them less reliable compared to our model.

In [30], the authors exploit vulnerability in UNIX-like
operating systems based on the weak host model to determine
if a connected user is using VPN and make inferences about
the websites they are visiting, and inject data into the TCP
stream. In contrast, our research is passive in nature, aimed
at fingerprinting and blocking VPN connections through cen-
sorship measures, rather than actively injecting data into the
network.

Many efforts aimed at evading censorship. In [31], the



obfsproxy was introduced to encrypt traffic to disguise the true
nature of the traffic, making it difficult for censors to detect
and block. The OpenVPN protocol has adopted this technique
to aid users in circumventing censorship efforts [32]. In [33]
a circumvent tool is proposed using volunteers to provide a
VPN relay service using various VPN protocols. Our statistical
model can identify VPN connections offered by these tools
effectively at scale as their VPNs tunnel all user traffic through
a single server.

VI. CONCLUSIONS AND FUTURE WORK

In this study, we introduce a new unexplored threat model
to user privacy and propose a simple but effective technique
where a censorship body seeking to censor cyberspace by
blocking uses’ access to VPN servers can do so by leveraging
the mission into home routers. We tested the technique using
network traffic datasets and by conducting controlled and
uncontrolled experiments mimicking a small house network.
We were able to achieve a 100% detection rate for all VPNs
that connect to a single VPN server.

In order to counter the threat, we propose widespread adop-
tion of traffic splitting, so that not all traffic is tunneled through
one secure channel. This helps to neutralize network traffic.
Additionally, we recommend not keeping a VPN session for an
extended period of time, as VPN tunnels can switch between
VPN servers at random time intervals. In conclusion, our study
aims to raise awareness of the issue and encourage others to
take the threat model seriously.
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