
Proceedings on Privacy Enhancing Technologies ; 2016 (4):4–20

Frederick Douglas*, Rorshach, Weiyang Pan, and Matthew Caesar

Salmon: Robust Proxy Distribution for
Censorship Circumvention
Abstract: Many governments block their citizens’ ac-
cess to much of the Internet. Simple workarounds are
unreliable; censors quickly discover and patch them.
Previously proposed robust approaches either have
non-trivial obstacles to deployment, or rely on low-
performance covert channels that cannot support typi-
cal Internet usage such as streaming video. We present
Salmon, an incrementally deployable system designed
to resist a censor with the resources of the “Great Fire-
wall” of China. Salmon relies on a network of volunteers
in uncensored countries to run proxy servers. Although
any member of the public can become a user, Salmon
protects the bulk of its servers from being discovered
and blocked by the censor via an algorithm for quickly
identifying malicious users. The algorithm entails identi-
fying some users as especially trustworthy or suspicious,
based on their actions. We impede Sybil attacks by re-
quiring either an unobtrusive check of a social network
account, or a referral from a trustworthy user.

Keywords: Censorship

DOI 10.1515/popets-2016-0026
Received 2016-02-29; revised 2016-06-02; accepted 2016-06-02.

1 Introduction
The Internet has proven to be an extremely powerful
tool for enabling the free flow of information. Authori-
tarian governments have always been highly concerned
with the control of information, and so they perceive the
Internet in its natural form to be a grave threat. They
seek to eliminate dissemination of inconvenient facts, to
stifle free discussion of viewpoints different from their
own, and especially to prevent the coordination of mass

*Corresponding Author: Frederick Douglas: University
of Illinois Urbana-Champaign, fed2@illinois.edu
Rorshach: rorshach.d@gmail.com
Weiyang Pan: University of Illinois Urbana-Champaign,
pan30@illinois.edu
Matthew Caesar: University of Illinois Urbana-Champaign,
caesar@cs.illinois.edu

action. This last point has become a particular concern
in the past few years, as social media platforms have
proven excellent for coordinating protests.

As a result, many countries impose restrictions on
their citizens’ Internet use. These restrictions can take
the form of dropping packets to/from particular IP ad-
dresses, disrupting resolution of DNS queries, and even
inspecting packets headed to search engines to filter out
undesirable queries. Any attempt to circumvent censor-
ship must defeat all of these techniques. The simplest
solution is to tunnel all traffic through an encrypted con-
nection to a secret proxy server: the secure tunnel hides
destination IP addresses, and guards against DNS inter-
ference and deep packet inspection. The vulnerability is
then the server’s identity: the server is viable for by-
passing the censorship only so long as the censor does
not know there is a proxy server at that IP address.

Salmon starts with the simple approach of assem-
bling a collection of proxy servers, and fixes the vulner-
ability with an algorithm for distributing those proxy
servers to the general public, while minimizing the num-
ber of servers a censor whose agents control some user
identities can discover and block.

Salmon’s algorithm has three core components. 1)
We track the probability that each user is an agent of the
censor (suspicion), and ban likely agents. 2) We track
how much trust each user has earned, and distribute
higher-quality servers accordingly. Trust also helps keep
innocent users out of trouble, by isolating them from
newer users, where the censor agents are more likely to
be found. 3) Highly trusted users are allowed to rec-
ommend their friends to Salmon. We maintain a social
graph of user recommendations, and assign members of
the same connected component — a recommendation
ancestry tree — to the same servers, whenever possible.

Other works [16, 22] have employed techniques with
the same overall theme of gradually identifying and
punishing suspicious users. Salmon is more robust than
other approaches, thanks mainly to its trust levels. Our
simulations show that the addition of our trust level
logic significantly reduces how many users the censor
can cut off from access to proxy servers. rBridge [22],
the most robust previous server distribution technique,

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 5

allows over three times as many users to be cut off from
the system as Salmon (§5.5).

Salmon’s other main advantage over similar systems
lies in striking the proper balance between making the
system easily accessible to the general public, and mak-
ing it difficult for the censor to insert many of its agents
into the system. Previous proposals have gone a bit too
far in one of those directions. In addition to recommen-
dations, Salmon can optionally accept new users who
can prove ownership of a well-established Facebook ac-
count. If Facebook is blocked, existing robust but low-
bandwidth techniques are sufficient for getting the user
through Salmon’s registration process. The system can
therefore be made open even to people who do not know
any longtime Salmon users.

Salmon’s name comes from its trust levels: just as
salmon swimming upstream must hop up small water-
falls, and might briefly fall backwards, users need to
advance up the trust levels. As a bonus, ‘salmon’ can
be translated to Persian as ‘free (as in freedom) fish’!

2 Salmon

2.1 Threat model

We assume that the censor is a branch of a national gov-
ernment, able to take full control of any router or server
inside the country. We also assume that the censor is
content to merely block access, rather than seek out
and arrest those who attempt to access forbidden ma-
terial. If the government did decide to carry out large-
scale arrests against our users, they could easily do so
by contributing many servers to our system as honey-
pots, and recording the users they receive. There is no
good solution to this problem, short of manually verify-
ing server volunteers. Even using onion routing will not
prevent the censor from observing that specific citizens
are evading censorship.

We assume the censor can employ large amounts
of human labor. A task that requires tens or hundreds
of full-time employees is within the capabilities of our
censor. The Chinese government already has a much
larger force monitoring posts on Chinese social media
sites such as Weibo and Renren [1].

In summary, we assume:
– The censor has enough employees to perform labor-

intensive tasks, such as examining a list of servers.
– Our users are not personally targeted by the censor.

– The censor cannot identify proxies via traffic finger-
printing. Anti-fingerprinting is important and has
been studied [18, 21, 23], but is orthogonal to server
distribution.

– The censor may try to block as many servers as it
can immediately, or may be willing to simply dis-
cover servers, and not take action for months.

To reiterate, we are assuming that the censor cannot
identify proxies via traffic fingerprinting only because
proxy distribution is not an interesting question if the
censor has this capability. Careful proxy distribution
schemes are useful when the censor can block circum-
vention resources if and only if it receives the same in-
formation that a legitimate user needs to utilize them.
If the censor can identify circumvention traffic, it has
no reason to bother attacking the distribution mecha-
nism. Both the fingerprinting problem and its solutions
are generic to most circumvention systems.

2.2 Problem statement

Salmon is built to solve a single deceptively simple prob-
lem. We are in possession of some sensitive information
that we wish to distribute to a large group of users, most
of whom are strangers to us. Mixed in among those users
are agents of an adversary — in our case, the censor. The
adversary can use the secret information to damage us,
and so tries to learn as much as possible. When the
adversary inflicts that damage, the fact that they have
learned the information is revealed to us. However, we
do not know how they learned it.

In terms of censorship circumvention, we have:
– We want to give proxy server IP addresses to any

interested user living under censorship.
– The censor’s employees can pose as ordinary users.
– A censor can choose to block any proxy it discovers.
– Such a block reveals to us that the censor somehow

learned there was a proxy server at that address.

This problem’s difficulty comes from the requirement to
keep the system open to all potential users, combined
with censors’ ability to behave identically to good users
for as long as they wish. In fact, it’s clear from these two
facts that a perfect solution — one that keeps all servers
from being blocked — is impossible: until the censor
blocks a server, its agents can remain indistinguishable
from good users.

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 6

0

5000

10000

15000

20000

40 60 80 100 120 140

U
se
rs

Time (days)

Level 6
Level 5
Level 4
Level 3
Level 2
Level 1
Level 0

Fig. 1. Evolution over time of the proportions of users in different
trust levels. Every day, for every 30 users, one new user enters the
system at level 0.

2.3 Algorithm

So long as we open our system to the general public, a
perfect solution is impossible. Perfection is not required,
however: a censor that can only block 10 out of 1,000
servers has certainly not accomplished much. Our goal
is to limit the censor’s ability to block servers. Block-
ing servers is simply the tool the censor uses to work
towards its actual goal: denying our users free Internet
access. Therefore, we perform all evaluations in terms of
how many users remain able to access one of our servers
in the wake of the censor’s attack. We now describe the
algorithm.

Salmon’s algorithm has three core components. 1)
We track the probability that each user is an agent of
the censor (suspicion) and ban likely agents. 2) We track
how much trust each user has earned, and distribute
higher-quality servers accordingly. 3) We maintain a
social graph of user recommendations; when assigning
servers, we group together members of the same con-
nected component.

Suspicion: The censor’s weapon is its ability to
hide among real users while damaging the system. When
three users are the suspects for a blocked server, we
have no choice but to say they each are equally likely
to be the culprit. That is, in a block event on a server
with n users, we consider each user to be innocent with
probability n−1

n . Note that we are defining “users of the
server” to include every user we have given the server’s
address to; no matter when they last connected, a user
never “leaves” a server.

0

2000

4000

6000

8000

10000

12000

14000

0 20 40 60 80 100

U
se
rs

Time (days)

Level 6
Level 5
Level 4
Level 3
Level 2
Level 1
Level 0

Fig. 2. Similar to fig. 1, but the system launches with 20 special
users (friends of the administrators), who are considered to be
above the trust hierarchy, and can recommend one level 6 user
per day. Level 6 users recommend one level 5 user every four
weeks.

Salmon’s algorithm for weeding out agents builds
this information into something less uncertain: the prob-
ability that a user is not an agent is the product of its
probabilities of innocence from every block event it has
been involved with. Throughout the paper we use the
more concise term “suspicion” — the complement of the
probability of innocence. We permanently ban any user
whose suspicion exceeds the threshold of suspicion, T .

Trust levels: In a system like Salmon, some users
can reasonably be considered more trustworthy than
others: most obviously, friends and friends-of-friends of
the people running the system. Additionally, a user who
has known a proxy address for months without the ad-
dress getting blocked seems less likely to be an agent.
We base this heuristic on the censor’s optimal strategy:
as we will demonstrate, the censor does not benefit (in
terms of maximizing users without access to Salmon)
from waiting long periods of time before beginning to
block the servers its agents have collected.

Salmon quantifies the concept of trust with discrete
trust levels. All entities in the system — both users and
servers — live in a single specific trust level at any given
time. When the system assigns a server to a user, it will
only choose a server of the user’s trust level. Users can
move up and down over time. Servers only move up.

Level 0 is the entry trust level. Users not recom-
mended by a trusted user start here. There are negative
levels to accommodate level 0 groups who experience a
server block, extending as far down as a user could pos-
sibly fall before being banned: users are banned solely

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 7

on high suspicion, not low trust. The levels reach up to
a maximum of L, a parameter to be decided upon.

A user loses a trust level every time a server whose
address it knows is blocked. A user gains a trust level if
it goes for a period of time without its assigned server
being blocked. That period doubles every level: promo-
tion from level n to n+1 takes 2n+1 days, e.g. promotion
to level 6 takes over two months. (Levels ≤ 0 all take
one day). We chose the exponential durations to strike
a balance between quickly lifting good users out of the
less desirable bottom levels, and protecting the highest
levels. As we describe in the next subsection, forcing the
censor to endure hefty delays is a very effective defense,
especially given that we allow users to join via recom-
mendation. We chose maximum level L = 6 as a good
compromise in the same tradeoff.

A server’s trust level is the minimum trust level of
its assigned users. For instance, if a new server is as-
signed to a level 2 user, the server has been chosen to
start at trust level 2. If another level 2 user is assigned
to the server, and then the first user attains level 3, the
server remains at level 2. Then, if the second user attains
level 3 before any other users are assigned to the server,
the server rises to level 3. Of course, a server never loses
trust levels, because its users would only lose a trust
level if it were blocked!

The trust levels benefit higher-trust users in two
ways. First, servers are not equal. Although we re-
quire a minimum bandwidth (100KB/s) from our vol-
unteers, more generous volunteers might provide more.
For instance, our own servers each offer about 1.5MB/s.
Salmon assigns faster servers to more trusted users.

Second, users at higher trust levels are better iso-
lated from censor attacks. Only a censor willing to leave
servers unblocked for months at a time, or able to obtain
a recommendation from a trusted user, will get access
to servers at high trust levels. Our innocent high trust
users are therefore less likely to experience server block
events, and to be banned.

Recommendation graph: To help the trust level
logic give high quality servers to as many deserving users
as possible, Salmon incorporates a recommendation sys-
tem: a user at maximum trust level L may recommend
friends to Salmon; these friends join at level L−1. Users
whom Salmon axiomatically assumes trustworthy (i.e.,
friends of the directory server admins) are sent to a spe-
cial level outside of the hierarchy, which is attainable
only in this manner. They can recommend other users
to level L, and are allowed to recommend after a much
shorter delays than level L users: once per D∗ days vs.

once per DL days. We have chosen D∗ = 1, DL = 30, as
we describe in §3.6.

We must be careful about allowing such recommen-
dations in the system we have described thus far: rec-
ommendations give a patient censor the ability to expo-
nentially grow a collection of agents at high trust levels.
The censor could reach practically any agent/user ratio
it desired. There are two ways to deal with the censor
recommendation issue.

First, and most simply, we can delay the censor.
Getting significant exponential growth from the recom-
mendation system takes several months: the first wave
of users must wait over four months to recommend the
second wave; the second and all subsequent waves must
wait over two months to begin recommending. We ex-
pect that our volunteer servers can change IP addresses
somewhat easily — easily enough that many would be
willing to do so once every several months, but certainly
not as frequently as e.g. once a week. We discuss this
defense further in §3.5.

In addition to recovering from a recommendation-
based mass block, we can take prophylactic action.
Users want to avoid being grouped with agents, so they
should naturally want to be grouped with their recom-
mend{er,ee}s: real-world friends whom they trust not
to be agents. We use the following logic: when assigning
a new server to a user u, we first look for one that has
already been given to a member of its connected com-
ponent — always a tree, so call it T (u) — in the rec-
ommendation graph. It is natural to group users in this
way, as friends could easily share proxy login creden-
tials among themselves regardless of our logic. Indeed,
a design discussed later (Proximax [16]) is built entirely
upon this fact. Because this sharing of servers among
friends is so natural, this logic takes precedence over
the trust levels: a user may be placed on a higher-level
server if it includes a recommendation friend.

If there are no such servers with room left, we in-
stead choose a server with enough free slots for all of
T (u). Enough slots on the chosen server are reserved to
ensure that the rest of the users in the tree can join
later. Let M be the maximum users allowed in a group.
If |T (u)| ≥ M , only a fresh, unassigned server will be
used. Helpfully, this means that a group of M or more
friends who build an agent-free recommendation tree
receive servers guaranteed to be agent-free.

Just as the trust levels keep innocent, highly trusted
users isolated from impatient censor agents, the recom-
mendation graph tends to keep agents who were created
by recommendation in groups with themselves. Both
mechanisms share a fundamental purpose: keeping cen-

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 8

sor agents as tightly grouped together as possible. The
more evenly the agents can spread throughout the sys-
tem, the more servers they will discover.

It is possible that some users might wind up in the
same recommendation tree as an agent, e.g. if the cen-
sor hands out free recommendation codes in an Internet
forum. Users should be careful about the source of their
recommendations. This scenario does not spell guaran-
teed banning for the user u, however; it simply makes
them more likely to be grouped with an agent, depend-
ing on what fraction of users in T (u) are agents.

Summary: Users are given one server at a time.
The server is shared among a group of users. If a user’s
server gets blocked, we trust the user less, and sus-
pect them more. Suspicion is used to decide on bans for
users. Trust is used to reward reliable users with bet-
ter servers, and to keep them safe from the collateral
damage of an impatient censor. Users gain trust if the
servers they have been given remain unblocked for long
periods of time. Highly trusted users can recommend a
limited amount of friends to become highly trusted. In
the undirected graph of recommendations, members of
a connected component are given the same servers.

3 Implementation
The previous section presented the theoretical design
of Salmon: the algorithm for careful proxy distribu-
tion. This section deals with the real-world details of
our implementation: the architecture of the system’s
software components, restricting account creation with
Facebook, our choice of values for the tunable parame-
ters present in our design, and a possible attack stem-
ming from a practical issue not included in the threat
model.

3.1 Components

Our implementation of Salmon comprises three compo-
nents: a Windows client program for the users (∼ 4,300
C++ SLOC, as counted by the CLOC tool, excluding
GUI code); a server daemon for the volunteers (Linux
and Windows; ∼ 1,400 C SLOC for the Linux version);
and a central directory server to keep track of servers,
and distribute their IP addresses to users (∼ 2,700 D
and 1,000 C++ SLOC, using MongoDB for storage). All
of the components have been released under the GPLv3,
and are available at https://github.com/SalmonProject.

The entirety of the algorithm described in this paper
is carried out by the directory server. Since the censor
can easily block the directory server, the client program
communicates with it via any commonly used encrypted
email service that the censor does not block (or control).
The email address used to communicate with the direc-
tory server serves as a Salmon account’s identifier.

Underneath our own client and server programs, we
run SoftEther VPN. SoftEther is mature, and comes
tested for censorship circumvention by VPN Gate [19].
Throughout the paper, we discuss distributing “proxy
server addresses.” In reality, the directory server also
provides the Salmon client with the server’s X.509 cer-
tificate, and with login credentials, which it must also
instruct the server in question to accept.

Our algorithm is vulnerable if the censor can cre-
ate an arbitrary number of user identities. After such a
censor begins attacking, any server that has not already
received a full load of innocent users will be blocked.
Therefore, we must be very careful about how we al-
low new users to join the system. We accept new user
registrations in two ways, which we now describe.

3.2 Facebook registration

A user can create a new Salmon account by demonstrat-
ing ownership of a valid Facebook account. In our initial
deployment, a “valid” Facebook account is simply one
that existed before 2015. Any enhancements to Face-
book’s screening of fake accounts would make Salmon
more robust, by weeding out any accounts the censor
created earlier, e.g. for social engineering purposes [2].
Cat-and-mouse games could be played with account re-
quirements, such as post frequency or patterns. For a
more sophisticated defense, the system could attempt
to shut out accounts with fake profile pictures. For in-
stance, it could require profile pictures to show a face,
check via reverse image search that those pictures do
not exist outside of Facebook, and reject any Facebook
account whose face matches other accounts that already
created a Salmon identity.

Of course, Facebook is itself a prime censorship tar-
get. Low bandwidth covert channels, such as through
Skype [15] or email [26] are helpful here. While their per-
formance is not quite what users would want for general
Internet usage, they are sufficient for Salmon’s one-time
registration process, with its single Facebook post.

To prevent double registrations, the directory server
must remember which Facebook profiles have created
Salmon accounts. Since our logic must be able to test

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 9

a Facebook profile for membership in the set of already
used profiles, an intruder who gains control over the di-
rectory server will be able to do the same. To prevent the
intruder from going beyond membership tests, and ob-
taining a full list of Salmon Facebook profiles, we store
the links hashed.

Our use of Facebook is not guaranteed to limit the
censor to one Salmon account per employee. Iran, in
particular, is known to already be using realistic fake
profiles to try to make connections to Iranian Facebook
users, who are typically much more careful with privacy
settings than the typical Facebook user. In the case of
China, “one account per employee” might actually be
overwhelming for a Salmon deployment with hundreds
or thousands of servers, given the size of its censorship
operation. (That said, those employees would be vastly
more likely to have active, well established accounts on
Renren than on Facebook). In such a case, we could
disable Facebook registration, so that new users could
only join via recommendation. The closest design would
then be rBridge, relative to which Salmon would still
provide an easier and more reliable path for new users to
join, even without non-recommended account creation.

Therefore, the Facebook registration mechanism
can be removed without dismantling Salmon; it is an
additional feature meant to provide openness equal
to VPN Gate, while being significantly harder to
block. Since VPN Gate is currently successfully serv-
ing users (as of May 2016), this is a good goal. A
recommendation-only version of Salmon would still
serve users, and until that becomes necessary, the sys-
tem is open to the public.

Even if the censor suddenly adds many agents and
discovers many servers before we realize we need to dis-
able Facebook registration, we can have servers reset IP
addresses once Facebook registration is disabled. In the
time before we are forced to disable Facebook, we grow
much more rapidly, and with a more widely seeded so-
cial graph, than we could with only recommendations.

3.3 Recommended registration

A user can create an account at the recommendation of
an existing user who is sufficiently trusted by the sys-
tem. This process is simple: the directory server gener-
ates a short alphanumeric code for the recommender to
give to the recommendee, and when the recommendee
registers, they provide the code rather than proving
ownership of a Facebook profile. The recommendee must
not begin its life immediately able to recommend, or else

a censor with a single recommender account could in-
stantly create arbitrarily many identities. The details of
when recommendation is possible, and what the result
is for the recommendee, are described in §2.3.

Also described in §2.3 is the fact that part of the
algorithm involves tracking who recommended whom.
That is, we are storing some subset of a social graph of
our users, perhaps making the machine storing it a tar-
get. However, an attacker gaining access, especially a na-
tional censor, would in fact not find much new informa-
tion. The graph stored is a tiny shadow of a true social
graph. The graph is a forest of trees, with each user hav-
ing at most one incoming recommendation edge. With
n− 1 edges for n users, a recommendation forest would
have fewer than 1% of the edges of the corresponding
set of Facebook users.

Additionally, national censors may have other op-
tions for collecting this sort of data. Of the two coun-
tries we are most interested in, China and Iran, only
Iran might need to resort to breaking into servers to ob-
tain social network data about its citizens. Renren, the
Chinese Facebook clone, is as ubiquitous in China as
Facebook is in free countries. The Chinese government
certainly has access to all of Renren’s data; there is not
much more they could want.

Finally, we are not directly storing edges between
Facebook IDs, but rather between email addresses,
which we suggest to be a fresh account just for Salmon,
in case a censor distributes malicious copies of Salmon to
steal passwords. An email address is linked to a hash of
a Facebook ID (if the user registered with Facebook).
While these measures do not make meaningful social
connection data irretrievable, they do mean that an
intruder will not directly find a subset of Facebook’s
graph. In particular, the hashing means that if the in-
truder does not already know that a certain Facebook
account exists, they will not know what they are looking
at when they see it in the graph.

3.4 Detecting blocked servers

In addition to being blocked by the censor, servers can
also simply go offline, as many volunteer servers will be
individuals’ personal computers. It is crucial to distin-
guish between these cases, or else churn (to say nothing
of a censor providing intentionally short-lived servers)
would cause many users to be needlessly banned.

We want to view a server as “blocked” if it is still
functioning perfectly fine, and connections to it only fail
due to a censor’s interference. The censor only controls

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 10

traffic within its own country, and so we can conclude a
server is blocked if and only if a host outside the censor-
ing country can reach the server at the same time that
the client cannot. The check is done by the directory
server.

Experience has led us to cover some corner cases,
such as a server coming online just as the client reports
it to be down, or a client with intermittent internet ac-
cess. Unfortunately, putting this issue to rest on the the-
oretical side requires more than patching a few bugs. If
there is an ongoing non-zero probability that a user’s
server will be erroneously classified as blocked, then
eventually that user is going to be banned. We hope our
implementation is robust enough that these erroneous
bans would take years, but without formal verification
of the entire system, we cannot be sure. Ideally, some
more sophisticated approach, which would take these
observations as input, and prevent or reduce false posi-
tives at the cost of increasing false negatives, should be
used. The development of such an approach would be
an interesting avenue of research.

3.5 Server churn

Salmon prevents churn from causing erratic availability
for users by adding new servers to a group — without
penalizing the group’s users — when all of the group’s
servers are offline, but not blocked. Users stay on the
same server until it goes offline, at which point they are
entitled to receive a new server. They also retain access
to the previous server, and can choose to switch back to
it whenever it comes back online. When told to connect,
the Salmon client attempts connections to its collected
servers in order of a rough heuristic score of advertised
bandwidth and observed RTT. Servers observed to be
offline within the last week are tried after all others.

While the assignment of multiple servers to a sin-
gle group adds significant complexity to the implemen-
tation, it does not change the algorithmic concepts. A
group of servers with at least one online at any given
time provides essentially the same service as a single
server that is always online. All clients in the group are
entitled to learn about all of the group’s servers, and
no clients outside the group are entitled to learn any.
Therefore, for purposes of analysis, we assume that each
group of users receives a single server, which is always
usable until blocked by the censor. We refer to users be-
ing “grouped together” or “assigned to a server”; these
terms are synonymous.

Additionally, some servers, such as those run on
home Internet connections, may periodically change IP
addresses. Our implementation allows the client to stay
with such a server. The server keeps the directory in-
formed of its address, and when the client tells the di-
rectory that the server is offline, the directory simply
informs the client of the new address.

This IP address churn can in fact be extremely use-
ful to the system, if it can be intentionally induced. A
blocked server can “return to life” by simply changing
its IP address, and reconnecting to the directory server
(which will of course not assign it to the exact same
group of users that got it blocked). A volunteer can
provide an email address at which to be notified if their
server becomes blocked. The email includes instructions
for forcing a typical home Internet connection to change
IP addresses.

3.6 System parameters

Our implementation assigns up to 10 users to a sin-
gle group, and asks servers to provide a minimum of
100KB/s. We hope that many of our volunteers will
provide more than the minimum; the servers we are our-
selves hosting each provide around 1.5MB/s.

Ultimately, the question of group size comes down
to a fundamental tradeoff: serving more users with a
given number of servers on one hand, and providing
more bandwidth and limiting the censor’s ability to
block servers on the other. We wanted to push the group
size as high as possible while both staying safe from
the censor, and providing users with good throughput.
Given our minimum bandwidth requirement of 100KB/s
for the servers, if all clients in a group of 10 attempt
to transfer large amounts of data simultaneously over
TCP, they will each get around 10KB/s. We did not
want to design into the system the potential for users
to see single digit KB/s bandwidth: dial-up, which any
modern VPN-based anti-censorship technique ought to
outpace, is 7KB/s. Therefore, on the implementation
side, we decided on 10 as the upper bound. On the al-
gorithmic side, our simulations using size 10 groups were
sufficiently robust.

Our simulations led us to set the suspicion threshold
T = 1

3 . For our maximum group size M = 10, users are
banned after witnessing 4 server blocks in full groups.

We chose highest level L = 6 as a compromise be-
tween allowing users to become highly trusted in a rea-
sonable timeframe, and keeping the censor recommend-
ing agents at a slow rate. Similarly, we chose D∗ = 1

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 11

day and DL = 30 days for the wait between recommen-
dations for special users and level L users, respectively.

3.7 Volunteer safety

A Salmon server’s logs are an appealing target for the
censor. The censor could gather Salmon logs with much
less effort by running honeypot servers, but volunteers
should still be aware of this point. More immediately,
as a side effect to providing users with unfiltered Inter-
net access, Salmon causes users’ actions to appear to
come from the server they are using. This obviously has
the potential to cause trouble for the server volunteers,
which must be prevented.

We do not know how various legal systems would ul-
timately parse this issue, but logically speaking, a Tor
exit node and a volunteer VPN server ought to be equiv-
alent in terms of liability. A Tor exit node breaking laws
is indistinguishable from its users breaking laws. A VPN
volunteer who breaks laws and fabricates logs showing
their users doing it is similarly indistinguishable. Be-
cause Tor has managed to function without anything
terrible happening to its exit node providers, we expect
that VPN server volunteers should be equally safe.

BitTorrent deserves a special mention, as the most
likely source of abuse. We block BitTorrent by only al-
lowing outgoing connections to common ports, such as
DNS, HTTP(S), ssh, etc. Skype is content with access to
80&443, and at least in Iran, torrents are not censored,
so this policy is not restrictive.

3.8 Privacy

Some circumvention approaches build on top of Tor,
or otherwise attempt to provide users with privacy /
anonymity. As a one-hop VPN-based approach, which
furthermore relies on unvetted volunteers to provide
servers, Salmon users should not feel private. We clearly
convey this fact, including the example of potential gov-
ernment honeypots, which should get users’ attention
(and is easily the greatest threat). Privacy would be
ideal (and the lack of privacy disqualifies Salmon for
truly dangerous activities), but given the prevalence of
paid VPN services as a circumvention method, Salmon
is not any worse than the status quo.

Fig. 3. The interface of a logged in Salmon client. The advanced
options include recommendations, and sending server credentials
to mobile devices.

3.9 Usability

We want Salmon to be easily available to all censored In-
ternet users, not just technically adept ones. Our initial
client implementation is for Windows, and is compatible
back to XP. A SoftEther client is available for Linux; if
there is sufficient demand, the Salmon client can easily
be modified to run under Wine, as its Windows-specific
code is almost entirely simple GUI components.

The client runs on top of SoftEther, and takes care
of all configuration tasks. Even when the client has
amassed a list of servers, the user is presented with
a single simple “Connect” button (figure 3), and the
Salmon client finds the best available one to connect
to. The email-based communication with the directory
server can be handled automatically by the client, using
the vmime library. There is also a manual email option
as a fallback. The client is available in English, Chinese,
and Persian.

The client can export its list of server credentials
to iOS (in convenient one-tap .mobileconfig files) and
Android devices, as SoftEther supports L2TP IPSEC.

3.10 The zig-zag attack

Proxy-based techniques without careful distribution,
such as VPN Gate or the direct distribution of Tor [5]
hidden bridges, face a problem known as the zig-zag at-
tack [3]. In this attack, the censor somehow discovers a
few servers, and watches their citizens’ traffic for con-
nections to those servers. Citizens communicating with
the servers are assumed to be using the same circumven-
tion system, and so any other IP addresses they commu-
nicate with are worth close inspection, since there are
likely to be some new proxy servers among them.

This exact attack does not affect careful distribution
schemes such as Salmon, because clients are not free to
try any server whenever they wish. However, a variant,
which we will call the active zig-zag attack, does apply.
The difference is simple: the censor now blocks a server
once it has finished observing its users, forcing the users

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 12

onto new servers. In addition to discovering servers, the
attack would damage the reputations of the innocent
users who had been placed on those servers.

Defending against the zig-zag attack entails mak-
ing it difficult for the censor to confirm the presence of
a proxy server. Such a defense requires both authenti-
cation and camouflage. If the server cannot verify that
a given connection is coming from a user who is “sup-
posed” to be talking to them, it has no choice but to
act as a functioning proxy, fully exposing itself to a zig-
zagging censor. The server’s behavior after deciding to
reject a connection is just as important: if it doesn’t look
like a legitimate, innocuous server, the censor might still
block it. The situation then becomes a steganographic
arms race.

Each Salmon user has unique login credentials for
each of their servers. Connecting to a server without
valid credentials yields a page from what appears to
be an ordinary HTTPS server (since credentials are re-
quested via HTTP authentication). Of course, the is-
sue of camouflage goes beyond authentication behavior,
most notably to traffic fingerprinting. However, counter-
fingerprinting techniques apply to just about any cir-
cumvention system, including those based on Tor.

The censor could also take another, more limited
approach to zig-zagging, in which the discovery of one
server in a group can reveal the rest. Suppose the cen-
sor is secretly in control of a popular site that it cen-
sors, and has the site give cookies to visitors. A Salmon
user (with one server known to the censor) who repeat-
edly visits this site via different VPN servers (due to
churn), presenting the same cookie with each visit, will
prove to the censor that the IP addresses seen present-
ing the cookie are VPN servers. Note that not all of
these VPN servers, even the originally discovered one,
need to be Salmon servers for this attack to be effec-
tive. To mitigate this threat, users should use incog-
nito/private browsing while on Salmon, and should not
leave a browser session open for days at a time.

3.11 Deployment

We have a small initial deployment of Salmon running,
with a few servers and about a dozen users in Iran and
China. After working through some bugs, such as un-
stable Internet connections causing the client program
to wrongly report a server block, the system is working
for these users. Traffic fingerprinting therefore does not
appear to be in use.

Our most interesting experience involved the WiFi
at one user’s university. The WiFi is public but with
very limited bandwidth, except for connections to the
school’s VPN. However, connecting to another VPN
prevents the use of SoftEther in its default configura-
tion, short of using a VM. There is no particular indica-
tion that the purpose of this setup was to interfere with
circumvention; one of the authors attended a school in a
free country with the same setup. This problem can be
solved by having the client’s traffic enter the tunnel at a
higher layer, such as with SOCKS. The SoftEther client
has a SOCKS mode, although SOCKS entails additional
configuration, and should not be our default.

4 Related work
Some anti-censorship systems force a censor to choose
between entirely blocking a legitimate service their cit-
izens find useful, and accepting that their censorship
can be evaded. Ideally, such an approach should force
the censor to do no less than blocking the entirety of the
Internet outside the country’s borders. In theory, that
extreme option is always available, as demonstrated by
North Korea. In practice, however, a country whose cit-
izens have already experienced the Internet is unlikely
to be able to turn back the clock.

Other circumvention techniques rely on helpers that
can be blocked by the censor with no collateral dam-
age, and so are effective only as long as those helpers
stay hidden from the censor. Any such approach faces
the same fundamental problem that Salmon addresses:
users learn enough about the helpers to block them,
and it is difficult to prevent the censor from posing as
an ordinary user. Members of this class are the closest
relatives to Salmon; we compare against them.

To summarize, the outside helpers that circumven-
tion uses fall into one of two groupings. Their communi-
cation with users is either easily blocked, so the helper
must be kept hidden; or too hard/painful for the censor
to block, so the helper need not be hidden.

4.1 Easily blocked helpers

VPN Gate: We assume the censor can assign many
full-time human employees to the task of shutting down
censorship circumvention systems. If the censor cannot
afford to keep humans watching our system for new
servers to block, then a careful distribution algorithm

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 13

might not be necessary: if automated large-scale block-
ing can be stopped, this sort of censor would be stymied.
VPN Gate [19] takes this approach.

VPN Gate publishes (in chunks of 100 for each
query) a complete list of the servers in its system. By
mixing in fake IP addresses, and addresses of real web
sites the censor does not want to block, VPN Gate
makes it impossible for the censor to directly block the
entire list. To stymie the obvious solution of testing all
the addresses for the presence of a functioning VPN
server with an automated scan, the proxy servers coor-
dinate to detect and ignore patterns of connection at-
tempts that appear to come from an automated scan-
ning process.

A system that relies on the ability to identify au-
tomated probes is not robust. For one thing, other
spaces, such as click fraud, have seen sophisticated tech-
niques developed for making automated behavior look
human [17]. More fundamentally, even without such
techniques, a censor with enough resources has the op-
tion to make its scanning processes fully human.

A simple harvesting script running for 9 days on a
single free Amazon EC2 instance was able to verify that
3,101 IP addresses are working VPN Gate servers. The
harvester script tested 44,039 IP addresses. We evaded
the collective defense mechanism while harvesting from
just a single IP address by exploiting VPN Gate’s raison
d’être: after verifying a VPN server by successfully con-
necting to it, the scraper uses that connection to make
its next query for new servers.

With the list we compiled, a censor could, with
no collateral damage, essentially completely shut down
VPN Gate. Only a handful of unreliable servers would
remain available, hidden among many blocked servers.

Tor: Tor’s [5] goal of Internet privacy is orthogonal
to our goal of Internet access. However, the Tor Project
has also attempted to provide access to censored users
by distributing hidden “bridge” relays, but without a
rigorous method for pinpointing infiltration by a cen-
sor. Designs using Tor do so only to gain Tor’s privacy;
their ability to provide access would not be reduced by
switching to one-hop proxies. Similarly, Salmon’s tech-
niques could be used to distribute Tor bridges, rather
than proxy servers.

Careful proxy distribution: Previous proposals
have taken approaches similar to Salmon. Like Salmon,
these techniques aim to prevent a censor acting exactly
like an ordinary user from discovering too many servers.
These proposals include recent work such as Proxi-
max [16] and rBridge [22], earlier work such as keyspace
hopping [7], and an analysis of Tor blocking [4] contain-

ing a sketch of a proto-Salmon or -rBridge. These tech-
niques differ from Salmon, and from each other, both in
the algorithms they use to identify censor agents, and in
how they attempt to limit the number of agent users the
censor can register. Keyspace hopping, the earliest work
in this space, relies entirely on computational puzzles to
rate-limit the censor. The later works consider distribu-
tion strategies.

Proximax [16] is purely invitation-based, with an
approach even more open than Salmon’s rate-limited
recommendations. In fact, “invitation” is not quite the
right term. The vast majority of users are not offi-
cial Proximax users; friends simply share any and all
servers they discover. The system compensates for this
openness by being much more restrictive with distribu-
tion of new servers. Only the very small group of of-
ficially registered users, who are roughly equivalent to
Salmon’s special above-the-trust-system users, are given
fresh servers. Proximax tracks which servers given to
which registered users become blocked, and prefers to
give servers to the registered users whose friends get
the fewest servers blocked.

rBridge, discussed next, was demonstrated to resist
a censor’s attack somewhat more effectively than Proxi-
max. Proximax’s less accurate discernment makes intu-
itive sense: it operates at a coarser resolution. Proximax
tracks behavior at the granularity of entire social graph
clusters, whereas Salmon and rBridge examine individ-
ual users.

rBridge: Like Salmon, rBridge [22] seeks to dis-
tribute proxy servers (Tor bridges, specifically) to the
public while limiting a censor’s ability to block them.
As its core feature, rBridge prevents the central direc-
tory server from learning which users received which
servers, in order to protect users from an attack in the
context of Tor. Users receive a stream of credits while
their servers remain unblocked, and can redeem credits
to receive more servers. Users can only join via recom-
mendation, and existing users are only eligible to obtain
recommendation tickets if they keep their credit balance
above a threshold. Salmon offers major improvements
over rBridge in a few regards: robustness, accessibility
for new users, and efficient use of server resources.

First and most simply, Salmon is far more robust to
an attacking censor than rBridge. Salmon’s trust levels,
combined with permanent banning, make it over three
times as robust to the sort of attack that rBridge con-
siders, as we show in our evaluation section (§5.5).

Second, rBridge does not offer a particularly
friendly, or even predictable, path to becoming a user.
rBridge only accepts new users who have gotten an in-

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 14

vitation ticket from a friend, which the directory server
distributes to random users who have kept their credit
balance above a threshold. We seek to provide access
to all censored users, not just friends of trusted users.
rBridge users have no way to know when (if ever) a
ticket might be issued to them. They have no control
over the process, beyond requesting few enough bridges
to remain eligible to receive a ticket.

Third, by designing specifically for Tor, rBridge ac-
cepts significantly degraded performance for any given
amount of server resources. Tor’s multi-hop design re-
sults in a third of the aggregate bandwidth and twice the
RTT (for Tor’s default of 3 hops) of a one-hop system
with equivalent server resources. VPN Gate cites per-
formance as a reason for providing VPN servers rather
than Tor bridges. Because our first concern is provid-
ing high performance circumvention, we also prefer the
one-hop design.

In theory, Salmon, rBridge, and any other careful
distribution approach can distribute either Tor bridges
or VPN servers. The choice is not tied to the details of
the distribution strategy, but rather to implementation
goals. That said, rBridge’s tradeoffs and distinguishing
features would be wasted outside the context of Tor.

Flash proxies [8] are an especially creative attack
on the censor’s ability to block proxies. Rather than
hiding the servers, this approach aims to constantly
add new ones to the system, so quickly that the censor
simply cannot keep up. Participating websites embed
scripts that turn visiting web browsers into Tor bridges
for the duration of their visit to the page.

4.2 Hard to block helpers

Decoy routing: Radically different from proxy server
approaches, decoy routing seeks to embed censorship
circumvention into the fabric of the Internet. This con-
cept was independently proposed as decoy routing [14],
Cirripede [11] and Telex [25]. Tapdance [24] is an evo-
lution of Telex, which is less disruptive to ISPs’ net-
works. Rebound [6] makes no changes to how packets
are routed, to help remain undetected, in exchange for
diminished bandwidth.

Clients use specially chosen values for randomized
fields (TCP ISNs for Cirripede, TLS hello nonces for
Telex) to complete a key exchange and indicate their
desire to access censored sites. Routers throughout the
Internet are modified to monitor for, and divert such
flows to servers that forward the traffic to the desired
destination. The entire exchange is invisible to the cen-

sor: the client initiates the connection to a site that is
allowed by the censor, and known to use TLS. Until the
traffic reaches the decoy router, it is indistinguishable
from traffic truly meant for the cover site.

Although decoy routing can withstand [13] the best
proposed attacks [20], there is a deployability problem.
For instance, to our knowledge, four years after the re-
lease of Telex only the University of Michigan network
is running Telex decoys. This type of system cannot be
deployed just anywhere: it must live inside ISP-grade
routers in the most heavily transited portions of the In-
ternet, so that all censored users will have at least one
path to an innocuous site that passes through a decoy
router. Large ISPs are for-profit companies with no spe-
cial interest in free speech, who might even seek good
business relations with censoring governments.

Domain fronting: [9] In addition to decoy rout-
ing’s strategy of redirecting traffic at collaborating
nodes in the network layer of the Internet, it is possible
to do similar redirections further up the stack. CDNs
can function by having browsers address HTTP(S) re-
quests to the true logical destination (the domain name
in the “Host” field of the HTTP header), but physically
send them to an IP address controlled by the CDN. If
that CDN server does not have the requested item, it
can retrieve it from the true server, and then finish the
client’s request. If the HTTP Host field is hidden inside
a TLS session, and the visible portion of the request
(such as DNS resolution) pretends to be aimed at an in-
nocuous site also hosted on that CDN, the censor cannot
distinguish requests to blocked sites from requests to in-
nocuous sites. If the blocked site we redirect to is a proxy
server, then general circumvention is accomplished.

The question at the heart of this technique is
whether the censor is willing to block many foreign sites
that its citizens use, and which it ideally would like to
allow, in order to keep its censorship in place. There are
currently working implementations of domain fronting;
just as with VPN Gate, for the time being, this tech-
nique is effective. However: Google, with its highly pop-
ular assorted services, ought to be one of the best exam-
ples of unpalatable collateral damage, and yet China has
now completely blocked it. With domestic versions of all
web services popular among Chinese users, we should
not assume that there is any major web company that
the Chinese government is not willing to block.

Piggybacking: Anything that sends encrypted and
authenticated messages to any recipient in the world,
and is allowed by the censor, can be used to break cen-
sorship. Email is a good candidate: SMTPS and IMAPS
are now standard, and email is too deeply embedded

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 15

into the modern world for a censor to block entirely. In-
dividual providers such as Gmail may be blocked, but
many providers are available. In fact, due to these qual-
ities, Salmon clients use email as a low bandwidth (and
high latency, relative to the Internet) uncensorable tun-
nel to the central directory server. SWEET [26] takes
this communication a step further: it uses email to carry
the user’s actual Internet traffic.

Other proposals tunnel IP packets through secure
VoIP calls [12], or video calls [15]. Tunneling only
through VoIP does not meet our bandwidth goals, as
it is essentially dial-up (or worse, given the aggressive
psychoacoustic compression algorithms used in modern
voice communication). Worse, because systems such as
Skype have no reason to recover dropped packets, the
censor can attack covert tunnelled flows with tolerable
levels of disruption to Skype calls [10]. Furthermore, se-
cure VoIP and video chat do not enjoy the status of
being painful for a censor to block. In fact, these proto-
cols are often targets themselves, for the same reasons
that censors block social media platforms.

5 Evaluation
To demonstrate that Salmon can withstand an at-
tack by a realistic censor, we simulated users and cen-
sor agents requesting proxy servers. We measured how
many servers the censor can block, and how many cen-
sor agents and innocent users are banned. Ultimately,
though, the censor cares most about how many users
are left without access when it has done all the damage
it can. This quantity (as a fraction of all users) is used
for the vertical axis of the charts.

To ensure that the simulations are faithful to
the real system, the simulation environment was built
around our implementation of the central directory
server: the component of the system where all of the
algorithm logic lives. Specifically, functions that would
be called upon receipt of an email from a client, or a
message from a server sent through TLS, are instead
called directly from the simulation framework.

The simulation iterates through one day at a time,
having each user check whether they have access to a
server, and requesting a new one if not. Agents behave
similarly, and additionally have the opportunity to block
any server they have been given, whenever their strategy
dictates.

All simulations have 10,000 users, including the cen-
sor’s agents, which comprise {1%, 2%, 5%, 10%} of all

users. Each of these percentages represent a serious at-
tack by the censor: even at the lowest level, the censor
has assembled 100 real Facebook accounts, and gone
through the Salmon registration process for each one.
The users join the system in the pattern depicted in Fig-
ure 2, representing exponential word-of-mouth growth,
as well as a steady flow of recommendations from the
small number of “special” trust level users (the Salmon
administrators’ personal friends).

We vary the number of servers available to the sys-
tem, from 1,000 to 2,000. The charts’ horizontal axes
represent a related quantity: users per server, varying
from 5 to the system’s maximum of 10. In our implemen-
tation, a user who registers when all servers are full is
informed of the lack, and encouraged to ask any friends
they have in free countries to consider becoming Salmon
volunteers. As a fallback, they are given 16 confirmed
(by the process in §4.1) VPN Gate servers.

Allowing newly registered users to go without
Salmon servers when no empty servers are available has
a major benefit for the older users. If a Salmon sys-
tem can grow for a time without the censor inserting
agents, an increasing number of users actually become
invincible to (having their servers discovered by) the
censor. Suppose the system gains a significant initial
userbase by the time the censor takes notice and be-
gins inserting agents. Salmon fills servers one by one,
rather than evenly distributing users among all available
servers, and server groups have a hard cap on member-
ship. Therefore, any user whose server group is filled be-
fore agents begin joining is invincible to being banned.

While the system’s logic — whether to give a user
a server, which server to give, when to ban a user, rec-
ommendations — is deterministic, the simulations are a
random process. The order in which users (with agents
mixed in) act is randomized for each run of the simula-
tion, leading to different groupings of users, and there-
fore different effects from the blocking of servers. We
ran all of our simulations multiple times; the points on
our charts are means, and the bars are 95% confidence
intervals. 10 replications were enough to shrink most of
the 95% confidence interval bars smaller than the charts’
point icons.

5.1 Adversary strategy

The most important aspect of this sort of simulation
is the behavior of the adversary. Our simulated adver-
sary should follow the strategy that best achieves the
real-world adversary’s goal. Against Salmon’s distribu-

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 16

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

Fr
ac
tio

n
of

us
er
s
w
ith

ou
t
ac
ce
ss

to
se
rv
er
s

Systemwide user/server ratio

10% agents
5% agents
2% agents
1% agents

Fig. 4. This simulation omits the trust level mechanism, benefit-
ting the censor. Vertical axis represents users without access to
servers after the censor has blocked all the servers it can.

tion strategy, a censor can essentially never block every
single citizen from using Salmon; because server groups
fill up, a single full group without agents is safe for-
ever. The adversary therefore has the quantitative goal
of maximizing the fraction of users whom it can cut off
from the Salmon system.

Due to the design of the system, one agent repre-
sents four opportunities to block a server (assuming the
agent only blocks when its group is full). Therefore, a
censor with A agents has the potential to block up to 4A

servers. A server needs only one agent assigned to it for
the censor to be able to block it. Blocking a server costs
the censor one blocking opportunity for every agent who
had been assigned to the server, and therefore every
agent beyond the first in a given group is a waste. Then
the optimal course of events for the censor is for all
agents to always be alone in their groups.

Once an agent is in the system and has requested a
server, the only action it can perform is to block its cur-
rent server. As long as the agent’s server is not blocked,
nothing besides trust will change for the agent and its
group. The agent will never see any other servers, and
no other users will join (once the group has filled) or
leave the group. The censor can only control when its
agents will be in the market for a new server, and there-
fore has two levers to build a strategy with: when agents
first join the system, and when they block servers.

If all of the agents joined at once, all but the first
and last few would be placed in all-agent groups. In
this situation, a quarter of the censor’s blocking oppor-
tunities have already been expended in the worst way

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

Fr
ac
tio

n
of

us
er
s
w
ith

ou
t
ac
ce
ss

to
se
rv
er
s

Systemwide user/server ratio

10% agents
5% agents
2% agents
1% agents

Fig. 5. Same as Figure 4, but with trust level logic enabled. The
users join the system in the same pattern as in Figure 2.

possible: not only have a minimum of servers been dis-
covered, but there has been no collateral damage to le-
gitimate users. On the other hand, the censor must be
sure not to insert agents too slowly relative to the rate
at which real users join, or multiple groups will fill en-
tirely with real users, becoming invincible (within our
distribution system). Of course, if there are fewer agents
than groups, this is inevitable, but lagging behind the
rate of joining users exacerbates the problem.

In the real world, learning this rate should be diffi-
cult for the censor, as we do not publish user statistics.
It is overwhelmingly unlikely that the censor would be
able to land its agents exactly in every tenth spot. For
evaluation purposes, the most natural compromise be-
tween this perfect censor, and one that has all agents
join at once, is the only other simple configuration: a
uniformly random permutation of the order in which
users (including agents) join, while agents are joining.

The other question of censor strategy is the timing
of server blocks. It turns out that having all agents block
simultaneously does not clump them in the same way
that having them all join simultaneously would. At the
time of the mass block, there is a certain distribution
of users and agents, based on when the agents joined,
across levels and groups. A mass block event simply
reshuffles the group component of that distribution.

5.2 Benefit of trust levels

To show the effect of Salmon’s trust level logic, we ran
two sets of simulations: one with the standard trust level

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 17

logic (Figure 5), and one without (Figure 4). In both
cases, we assume the censor is not patient enough to
wait over four months for its agents to be able recom-
mend more into the system. Such a censor is considered
in §5.4. Users enter the system in the pattern described
in Figure 2, and the censor begins attacking when the
userbase (sans agents) reaches 10,000: day 94.

Because users leave level 0 after just two days, its
membership is consistently quite small. The censor’s
agents are more effective the more evenly distributed
throughout the system they are. Therefore, having all
agents join at once, or initiating blocking while most
agents are at the same level, would accomplish very lit-
tle. We therefore assume the censor is at least somewhat
patient: it is willing to wait long enough to distribute
its agents into levels 0, 1, and 2. (Recall that we fight
more patient adversaries with the servers’ ability to oc-
casionally change IP addresses.)

5.3 Recommendation attack

In the algorithm design section (§2.3), we discussed the
possibility of a patient censor using the recommenda-
tion system to grow a huge network of agents. We have
one solution in place: forcing this process to cost at least
several months of inactivity on the part of the censor,
and then having volunteers change their IP addresses af-
ter the mass block. However, we should also attempt to
minimize the number of servers that would be affected
by such a mass block in the first place. We therefore
checked whether our strategy of grouping users by rec-
ommendation helps in this regard.

With our chosen delays for trust level promotion
and recommendations, it would take an extremely pa-
tient censor to achieve true exponential growth. The
initial batch of agents must wait over 4 months to be
able to recommend, having started from level 0, and the
agents they recommended must wait over 2 months to
make recommendations of their own. The censor must
therefore wait for well over 6 months before the growth
even begins to be exponential. If the censor must wait
this long, we have already won. The censor has allowed
an effective censorship circumvention system to be freely
available to its citizens for over 6 months. Furthermore,
even when the censor does mass-block servers in this
manner, this will be a very infrequent event, so it will
not be much of a burden for our server volunteers to
acquire new IP addresses, as described earlier.

Therefore, we consider an only somewhat patient
censor, who is only willing to wait long enough to rec-

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

5 6 7 8 9 10 5 6 7 8 9 10

20% agents
10% agents
4% agents
2% agents

30% agents
15% agents
6% agents
3% agents

Fig. 6. Agents and users all start at trust level 6. Agents each
recommend {1,2} new agents (left, right). Users {are not, are}
grouped to servers by recommendation tree (top, bottom). Agent
percentages refer to final fraction after recommendations.

ommend one or two additional agents per original agent
(requiring a wait of 4 or 5 months respectively). Even if
agents make just one recommendation, their ranks are
doubled; a censor may judge the wait to be acceptable
in exchange for that benefit. Figure 6 shows the benefit
of our logic of grouping users from the same recommen-
dation tree together: larger initial batches of agents can
cut off from Salmon the majority of users, even up to
over 95%, if this logic is not in place. The system’s weak-
ness when not enforcing the recommendation grouping
is due to lack of assistance from the trust levels: against
the somewhat patient adversary, the agents and users
will all have reached the highest trust level together by
the time the blocking starts.

5.4 Patient censor

Of course, a censor may choose to have its agents lie
dormant, appearing to be innocent users, and thereby
save the ability to block many servers simultaneously for
an emergency. Although we can rely on our IP address
change defense for eventual recovery in such a situa-
tion, the bulk of the blocked servers would likely remain
blocked for a day or two, while volunteers got around to
changing their IP addresses. In a fast moving situation,
the censor might be satisfied with just one or two days
of disruption.

This is a hard problem, and unfortunately one that
can potentially affect any circumvention system: if the
censor develops some effective countermeasure, it can
wait to deploy it until it will have high impact. For
instance, VPN Gate is described as having evolved

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 18

through a cat and mouse game with the Chinese censor.
According to its statistics page, it is currently successful
in serving users in China. Given how easily we were able
to automatically enumerate the real VPN Gate servers
(§4.1), it seems unlikely that the censor was perma-
nently stumped. The censor may have decided to stop
putting effort into the cat and mouse game, saving its
next move for when it badly needed to shut down VPN
Gate for a specific reason.

This is an important problem, and a solution would
make anti-censorship systems considerably more robust.
A good solution would have to mutate a circumvention
system without outright replacing it: if the fallback is
something that could run alongside the normal system,
rather than in place of it, then choosing to hide it from
the censor is simply a tradeoff between robustness and
capacity. A system such as Salmon could make that
tradeoff by keeping a reserve of unused servers.

Salmon does not fully solve this problem, but it can
at least mitigate it somewhat. Users whose server groups
are filled before the censor starts infiltrating agents into
the system are guaranteed to stay safe, with their servers
remaining unblocked. In this way, at least some core
of trusted users would retain their access during the
censor’s emergency blocking.

5.5 Comparison with rBridge

We compared Salmon to rBridge, the most robust sim-
ilar proxy distribution proposal. We adapted the simu-
lations of Salmon depicted by figure 5 to the conditions
of rBridge’s original evaluations: censor agents join by
being recommended by innocent users, rather than via
Facebook. In Salmon’s case, this means they join at level
5, rather than 0, and have tied themselves to an unfor-
tunate innocent user with the recommendation logic.
We consider the same 5% agent case as in the original
rBridge evaluations.

We changed rBridge’s group size from the original
choice of 40 to Salmon’s choice of 10 (the group size con-
siderations are the same for both Salmon and rBridge).
We assume the censor will wait just long enough for its
agents to earn enough rBridge credits to request 2 ad-
ditional servers. We assume that the innocent rBridge
users have accumulated infinite rBridge credits: they al-
ways have the right to request a new server.

rBridge gives all users 3 servers for robustness to
churn, which Salmon accomplishes by giving free re-
placement servers for down (but not blocked) servers.
rBridge cannot have the robustness to churn extracted

0

0.2

0.4

0.6

0.8

1

5 6 7 8 9 10

Fr
ac
tio

n
of

us
er
s
w
ith

ou
t
ac
ce
ss

to
se
rv
er
s

Systemwide user/server ratio

rBridge
Salmon

Fig. 7. Comparison of Salmon and rBridge. The censor attacks as
in the rBridge paper: by being recommended by innocent users.
5% of 10,000 users are agents.

from its algorithm logic: due to the requirement to keep
user-server mappings secret from the directory server,
users cannot report an offline-or-blocked server to the
directory for it to confirm which is the case. Querying
on a specific server requires anonymity, unlike receiving
a random server, which can be accomplished with non-
anonymous OT. If the user’s only Tor bridge is unavail-
able, it cannot have an anonymous conversation with
the directory. Therefore, rBridge must treat server churn
the same as the censor’s blocking, incurring the damage
to users of a “blocked” server when Salmon would incur
none. We therefore evaluate rBridge with its suggested
parameter of 3 servers per user.

Figure 7 shows the results of our comparison.
Salmon is much more able to weather the censor’s at-
tack than rBridge, losing fewer than a third as many
users as rBridge: 22% vs 69% at the highest system
load. Salmon’s trust levels and recommendation group-
ing keep the agents corralled among a small minority of
the users. This limits the damage they can do, especially
at user/server ratio 10, where no blocked server can be
replaced, and being grouped with an agent guarantees
that a user will be shut out of the system. rBridge’s
agents are spread evenly throughout the system, maxi-
mizing the innocent users’ exposure to them.

5.6 Steady state

The previous simulations all consider a censor who over
time amasses a large number of agents in the system,
and then tries to shut it down in one fell swoop. Also

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 19

of interest is the case of a censor who is content to be
a nuisance, using a constant trickle of agents to block
a constant trickle of servers (and perhaps with some
collateral damage).

Consider the end result of the previous analyses:
the censor is out of agents. Therefore, any user who has
not been banned, and is in a full group, is invulnerable.
In fact, they become invulnerable as soon as they join
their agent-free group, even before the last agent has
been banned from the system. This indicates that these
simulations might give useful information even without
looking at the end results with an assumption that the
censor will never return.

We will define an attack wave to be the agents and
users who join the system during any contiguous period
of time. For those who are only ever grouped with other
members of their wave, the environment is identical to
the previous “static” simulations, i.e., the probability
of being banned is equivalent to the fraction of banned
users that the simulations compute. Most groups can
be packed full, unless recommendation component sizes
are nearly all between six and nine. Therefore, the frac-
tion of users banned in static simulations ought to ap-
proximate the rate at which users are banned, given
the current probability that new users are agents, and
(relative to the rate of new users) the current rate at
which servers are joining. However, we leave a fully rig-
orous analysis for future work. Additionally, we have
not formally proven that the censor strategy we eval-
uate against is optimal; a formal proof of the censor’s
strategy’s optimality would also make for a good com-
ponent of a future analysis of Salmon’s algorithm.

6 Conclusion
Anti-censorship via volunteer proxy servers is an attrac-
tive approach: it is easy to deploy, it provides perfor-
mance sufficient for all typical uses of the Internet, and
censored users are already familiar with the concept of
proxy/VPN servers. However, proxy servers are vulner-
able to being blocked. Previous approaches have been
either too loose, or too strict: e.g., VPN Gate [19] is
open to the world but defends only against somewhat
lazy censors, while rBridge [22] users have an (unpre-
dictably) hard time inviting friends.

Salmon strikes a good balance: registering a new
Salmon account requires either a Facebook account that
is older than Salmon, or a recommendation from a
highly trusted Salmon user, with the ability to recom-

mend limited to once per month. These are substantial
obstacles to a censor trying to quickly inject enough of
its agents to cause significant damage; at the same time,
any ordinary Facebook user can easily join.

By banning suspicious users, and partitioning users
based on trust, Salmon limits the damage a censor
can inflict. The censor’s agents are concentrated into
a smaller set of users; banning them brings less collat-
eral damage to innocent users. These techniques provide
significantly better defense than previous approaches.

6.1 Theory and Implementation

This paper describes both an algorithm for weeding out
agents of a censor trying to discover VPN servers, and
an actual implementation of such a system. There are
many real-world details that do not fit meaningfully into
the theoretical analysis. There are some reasonable but
not axiomatic assumptions that must be made to keep
these details out of the analysis, and if these assump-
tions are violated, the system’s algorithmic performance
could be worse than expected.

Most prominent is the blocked-server detection de-
scribed in §3.4. Although our detection mechanism has
been iterated through some edge cases, we actually need
a guarantee of zero false positives, or else all legitimate
users will be banned given enough time. In practice, a
not-quite-perfect system might be close enough to per-
fect that a user can survive for years or decades, but
there is no way to know ahead of time. This issue could
also interfere with an aspect of the analysis: the invul-
nerability that users gain when they are in a full group
without censor agents. A user who is hit with a false
positive must join a new group; a previously invulnera-
ble user could join a group with an agent.

In addition to server churn issues, the behavior
of real world users will certainly also add complica-
tions. In the theoretical analysis, our goal is to pre-
serve good users’ access to the system. In the real world,
a user might find another circumvention system, leave
the country, etc. Such an abandoned account cannot be
counted in Salmon’s favor. If many such accounts piled
up, we should consider optimizations, such as merging
groups with inactive users (with inactive users immedi-
ately banned if the merged group sees a block).

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

Salmon: Robust Proxy Distribution for Censorship Circumvention 20

References
[1] What is internet censorship? Amnesty Intl., March 2008.
[2] Iran hackers use fake Facebook profiles to spy on US and

Britain. The Telegraph, May 2014.
[3] Dingledine, R. https://blog.torproject.org/blog/research-

problems-ten-ways-discover-tor-bridges, 2011.
[4] Dingledine, R., and Mathewson, N. Design of a

blocking-resistant anonymity system.
[5] Dingledine, R., Mathewson, N., and Syverson, P.

Tor: The second-generation onion router. In Proceedings
of the 13th Conference on USENIX Security Symposium -
Volume 13 (Berkeley, CA, USA, 2004), SSYM’04, USENIX
Association.

[6] Ellard, D., Jones, C., Manfredi, V., Strayer, W. T.,
Thapa, B., Van Welie, M., and Jackson, A. Rebound:
Decoy routing on asymmetric routes via error messages. In
IEEE 40th Conference on Local Computer Networks (LCN)
(2015), pp. 91–99.

[7] Feamster, N., Balazinska, M., Wang, W., Balakr-
ishnan, H., and Karger, D. Thwarting web censorship
with untrusted messenger discovery. In Privacy Enhancing
Technologies 2003 (Dresden, Germany, March 2003).

[8] Fifield, D., Hardison, N., Ellithorpe, J., Stark, E.,
Boneh, D., Dingledine, R., and Porras, P. Evading
censorship with browser-based proxies. In Privacy Enhancing
Technologies (2012), Springer, pp. 239–258.

[9] Fifield, D., Lan, C., Hynes, R., Wegmann, P., and
Paxson, V. Blocking-resistant communication through
domain fronting. Proceedings on Privacy Enhancing Tech-
nologies 2015, 2 (2015), 1–19.

[10] Geddes, J., Schuchard, M., and Hopper, N. Cover your
acks: Pitfalls of covert channel censorship circumvention.
In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), pp. 361–372.

[11] Houmansadr, A., Nguyen, G. T. K., Caesar, M., and
Borisov, N. Cirripede: circumvention infrastructure using
router redirection with plausible deniability. In Proceedings
of CCS (2011).

[12] Houmansadr, A., Riedl, T. J., Borisov, N., and
Singer, A. C. IP over Voice-over-IP for censorship cir-
cumvention. CoRR abs/1207.2683 (2012).

[13] Houmansadr, A., Wong, E. L., and Shmatikov, V. No
direction home: The true cost of routing around decoys. In
Proceedings of the 2014 Network and Distributed System
Security (NDSS) Symposium (2014).

[14] Karlin, J., Ellard, D., Jackson, A. W., Jones, C. E.,
Lauer, G., Mankins, D. P., and Strayer, W. T. Decoy
routing: Toward unblockable internet communication.

[15] Li, S., Schliep, M., and Hopper, N. Facet: Streaming
over videoconferencing for censorship circumvention. In Pro-
ceedings of the 13th Workshop on Privacy in the Electronic
Society (2014), ACM, pp. 163–172.

[16] McCoy, D., Morales, J. A., and Levchenko, K. Prox-
imax: Fighting censorship with an adaptive system for distri-
bution of open proxies. In Proceedings of the International
Conference on Financial Cryptography and Data Security
(St Lucia, February 2011).

[17] Miller, B., Pearce, P., Grier, C., Kreibich, C., and
Paxson, V. What’s clicking what? techniques and inno-
vations of today’s clickbots. In Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, 2011,
pp. 164–183.

[18] Mohajeri Moghaddam, H., Li, B., Derakhshani, M.,
and Goldberg, I. Skypemorph: Protocol obfuscation for
tor bridges. In Proceedings of the 2012 ACM conference on
Computer and communications security (2012), pp. 97–108.

[19] Nobori, D., and Shinjo, Y. VPN Gate: A volunteer-
organized public VPN relay system with blocking resistance
for bypassing government censorship firewalls. In Proceed-
ings of the 11th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 14) (Seattle, WA, 2014),
USENIX, pp. 229–241.

[20] Schuchard, M., Geddes, J., Thompson, C., and Hop-
per, N. Routing around decoys. In Proceedings of the 2012
ACM conference on Computer and communications security
(2012), pp. 85–96.

[21] Wang, Q., Gong, X., Nguyen, G. T., Houmansadr, A.,
and Borisov, N. Censorspoofer: asymmetric communica-
tion using ip spoofing for censorship-resistant web browsing.
In Proceedings of the 2012 ACM conference on Computer
and communications security (2012), pp. 121–132.

[22] Wang, Q., Lin, Z., Borisov, N., and Hopper, N.
rBridge: User reputation based tor bridge distribution with
privacy preservation. In NDSS (2013).

[23] Weinberg, Z., Wang, J., Yegneswaran, V., Briese-
meister, L., Cheung, S., Wang, F., and Boneh, D.
Stegotorus: a camouflage proxy for the tor anonymity sys-
tem. In Proceedings of the 2012 ACM conference on com-
puter and communications security (2012), pp. 109–120.

[24] Wustrow, E., Swanson, C. M., and Halderman, J. A.
Tapdance: End-to-middle anticensorship without flow block-
ing. In 23rd USENIX Security Symposium (USENIX Security
14) (2014), pp. 159–174.

[25] Wustrow, E., Wolchok, S., Goldberg, I., and Hal-
derman, J. A. Telex: Anticensorship in the network in-
frastructure. In Proceedings of the 20th USENIX Security
Symposium (August 2011).

[26] Zhou, W., Houmansadr, A., Caesar, M., and Borisov,
N. SWEET: Serving the web by exploiting email tunnels.
Privacy Enhancing Technologies Symposium (2013).

 - 10.1515/popets-2016-0026
Downloaded from PubFactory at 07/20/2016 05:30:06PM

via free access

https://blog.torproject.org/blog/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/blog/research-problems-ten-ways-discover-tor-bridges

