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ABSTRACT
Deep packet inspection (DPI) technologies provide much-
needed visibility and control of network traffic using port-
independent protocol identification, where a network flow is
labeled with its application-layer protocol based on packet
contents. In this paper, we provide the first comprehensive
evaluation of a large set of DPI systems from the point of
view of protocol misidentification attacks, in which adver-
saries on the network attempt to force the DPI to mislabel
connections. Our approach uses a new cryptographic prim-
itive called format-transforming encryption (FTE), which
extends conventional symmetric encryption with the ability
to transform the ciphertext into a format of our choosing.
We design an FTE-based record layer that can encrypt arbi-
trary application-layer traffic, and we experimentally show
that this forces misidentification for all of the evaluated DPI
systems. This set includes a proprietary, enterprise-class
DPI system used by large corporations and nation-states.
We also show that using FTE as a proxy system incurs no
latency overhead and as little as 16% bandwidth overhead
compared to standard SSH tunnels. Finally, we integrate
our FTE proxy into the Tor anonymity network and demon-
strate that it evades real-world censorship by the Great Fire-
wall of China.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software; C.2.0
[Computer-Communication Networks]: Security and
protection

Keywords
deep packet inspection; protocol classification; regular ex-
pressions; censorship circumvention; applied cryptography

A preliminary version of this work appeared in the proceedings of
the 20th ACM Conference on Computer and Communications Security
(CCS), 2013. This is the full version.

1. INTRODUCTION
Network operators increasingly deploy deep packet inspec-

tion (DPI) to improve visibility into network activities and
control those activities based on identified application-layer
protocols and content. The most advanced in-use DPI sys-
tems use regular expressions to encode fingerprints for, in
particular, the protocols of interest, and whether packet con-
tents match against these expressions informs what is often
called port-independent protocol identification [3, 10, 12, 24,
35]. This may be followed by other, potentially more sophis-
ticated, traffic and content analysis methods, or may lead to
filtering or other discriminatory behavior. For example, cor-
porations use DPI to block file-sharing protocols that often
cause accidental data leakage, while ISPs often use DPI to
throttle bandwidth-heavy BitTorrent traffic [22, 53]. More
controversially, nation-states use DPI to censor their citi-
zens’ use of the Internet, in part by blocking privacy tools
like Tor [14].

Despite their growing roles in many security-critical set-
tings, we are unaware of any work that specifically studies
the robustness of state-of-the-art DPI protocol-identification
tools in the face of dedicated attacks. Thus, we address
the following question: are there practical attacks that will
force any regular-expression-based DPI into misclassifying
connections as protocols of the attacker’s choosing? And,
if such attacks do exist, can these misclassified connections
carry practically useful amounts of information?

The results of our work conclude that, indeed, misclassifi-
cation attacks exist against enterprise-grade DPI, and that
these attacks can be mounted while carrying sufficient infor-
mation to surf the web, transfer files, and use Tor. Rather
than building an array of ad-hoc schemes to trick specific
DPI systems, we instead target the implicit premise under-
lying modern DPI: that regular expressions (regexes) are
sufficient for identifying network protocols. To that end, we
develop a generic approach for controlling the format of en-
crypted data, so that it will match whatever regex we desire
to specify. With this ability, we can force protocol misiden-
tification across a broad range of DPI systems.

The development of a generic approach to evasion of regex-
based DPI implies that, for settings with adversarial net-
work users, future protocol-identification systems will have
to move to more expensive techniques based on machine
learning [26, 33, 34, 55], active probing [28], or something
else entirely. At the same time, the approach also suggests
a promising way forward for tools aiming to circumvent net-
work censors.

Format-Transforming Encryption. The foundation of



our approach is a new cryptographic primitive called format-
transforming encryption (FTE). It allows the user to input a
regex of their choosing and output ciphertexts that are guar-
anteed to match it. This gives FTE a built-in mechanism
for forcing misidentification by regex-based DPI. It will ad-
ditionally achieve more traditional privacy and authenticity
goals.

We consider a variety of methods to specify the regular
expressions that are input to the FTE scheme. In those sce-
narios where we know which DPI systems are being used,
the simplest method is lifting them directly from systems
themselves, or manually creating them using knowledge of
RFCs and the DPI code. When we do not have informa-
tion about the DPI system, we provide a simple procedure
for learning regexes from network traces of the application-
protocols that we wish our traffic to match.

Under the hood, our FTE scheme relies heavily on well-
known algorithms for ranking strings in a given regular lan-
guage [17]. The algorithms were previously suggested for use
in the related context of format-preserving encryption [5],
however, as far as we are aware, our work gives the first im-
plementation and performance analysis of the algorithms.
To realize a working FTE proxy system capable of tunnel-
ing arbitrary network traffic, we specify and implement a
full, FTE-powered record layer. By this we mean that we
build, around the FTE core, logic to manage buffering and
fragmentation of incoming plaintext streams on the sender’s
side, and ciphertext stream buffering, parsing and fragment
reassembly on the receiver’s side.

We use this FTE proxy system to explore the resistance
of six state-of-the-art DPI systems to protocol misclassifi-
cation attacks. We show that even expensive, proprietary
systems can be forced to mistakenly identify FTE-protected
traffic as any of a number of target protocols chosen by
the user, including HTTP, SMB, and SSH. We stress that
our approach works no matter what the underlying FTE-
encapsulated application-layer protocol actually is. To the
best of our knowledge, this is the first comprehensive anal-
ysis exposing how ineffectual modern DPI systems can be
rendered.

One immediate implication is that our proxy system pro-
vides a ready-made mechanism for circumventing actual, de-
ployed DPI tools. When used to surf the web, FTE imposes
as little as 16% bandwidth overhead and no latency overhead
compared to conventional encryption of traffic. By compar-
ison, FTE is both more flexible and efficient than existing
circumvention tools that also attempt to prevent proper pro-
tocol identification [20, 30, 52] As a practical matter, our
FTE system works as a drop-in pluggable transport [42] for
Tor, and we are working to include FTE in the official Tor
Browser Bundle. Furthermore, the FTE library source code
has been released under the GNU General Public License,
and is available on GitHub1. Initial tests from servers within
the Great Firewall of China (GFC) using an FTE-powered
Tor Browser Bundle have been successful, and enabled us to
browse a variety of censored websites.

2. MODERN DPI SYSTEMS
In our evaluation, we focus on port-independent protocol

identification as used by six modern DPI systems. These
systems span a wide range of complexity, cost, and expected

1https://github.com/redjack/FTE

DPI Multi-stage Classifier Complexity
System Type Pipeline HTTP SSH SMB

DFA States
appid regex-only 7 15 8 104
l7-filter regex-only 7 55 8 6
YAF regex-only 3 29 10 5

Lines of C/C++ Code
bro hybrid 3 1593 30 1188
nProbe hybrid 3 807 89 24

DPI-X ? ? ? ? ?

Figure 1: Summary of evaluated DPI systems. Type
indicates the kind of DPI engine used. Multi-stage
pipelines chain together several passes over packet
contents. Classifier complexity is the number of DFA
states used for regular expressions or total lines non-
whitespace/non-comment C/C++ code.

deployment environments. Here, we discuss details of the
systems we evaluate, and present a summary in Figure 1.
Unless otherwise mentioned, our discussion and later evalu-
ations will use default configurations.

appid. The appid [3] library uses port-based pre-filtering
to determine a set of protocol-identifying regexes, against
which each TCP stream should be evaluated. It applies
each regular expression in the set against the stream, and
returns the first match as the protocol label. A match is
attempted for bi-directional (i.e., client-server and server-
client) streams. In our evaluation we used the latest avail-
able version of appid (as of April 2013), and instantiated it
via its included Python module.

L7-filter. The l7-filter [10] software also performs regex-
only matching. However, it differs from appid in that it does
not pre-filter based on port numbers. Moreover, l7-filter spec-
ifies only regexes to identify uni-directional server-to-client
streams. In our evaluation we used version 2009-05-28 of the
l7-filter userspace classification engine, and invoked it with its
included test suite.

Yet Another Flowmeter. YAF [24] is a network moni-
tor that performs application labeling. The YAF protocol-
classification engine is predominantly regex-only, although
in a few cases (e.g., the classification of TLS) it employs
C-based logic. We classify YAF as regex-only because the
majority of protocols are classified using a regex-only strat-
egy. Additionally, for some protocols, YAF performs its regex
analysis in two stages; HTTP is one example. A first-pass
match for HTTP (caused, say, by matching the string HTTP/)
triggers a second-pass to extract message contents, such as
the User-Agent field of the HTTP request. In our evalua-
tion we used the latest stable version of YAF (2.3.3, January
2013) compiled with application identification support.

Bro Network Security Monitor. bro’s [35] Dynamic
Protocol Detection (DPD) is implemented as a set of regexes
and associated C/C++ based parsers, where a parser is trig-
gered in the event that its partnering regular expression(s)
match the input stream. The parser is used to extract ad-
ditional information from the stream, when possible, and to
determine when the regular expression match was actually
a false positive. In its default configuration, bro parses in-
dividual messages and extracts per-message attributes, such



as the URI of an HTTP request, or the version number of
the SSH protocol being used. In our evaluation, we used
the latest, stable version (2.1, Aug. 2012) of bro, and ex-
tracted the assigned stream label from the service field of
the conn.log file.

For classification of SMB streams, which is not supported
in version 2.1, we used an alpha-release SMB parser available
in the bro git repository. We bootstrapped this parser into an
SMB-classifier by labeling a flow as SMB only if the parser
did not encounter parse errors, which is consistent with the
strategy of other classifiers present in bro.

nProbe Pro. nProbe [12] is an open-source network moni-
toring utility that costs e299.95 for commercial use. nProbe

includes the ability to identify the encapsulated data within
a protocol. As an example, it can identify a web request
to YouTube or FaceBook. This means that nProbe can re-
assemble TCP streams, identify the contents of a flow, and
then parse individual message within a flow. nProbe uses
hard-coded C-based logic, for the sake of efficiency, to iden-
tify attributes that could be captured by a regular expres-
sion. As an example, for HTTP it searches for a finite list of
values (i.e. GET, POST, HTTP, etc.), in order to identify
an HTTP stream. When such a match occurs, a C-based
second-pass parser is triggered. In our evaluation we used
version 6.9.5 of nProbe Pro, and the NetFlow output value
%L7_PROTO_NAME to determine nProbe’s stream label.

DPI-X. We obtained access to an enterprise-grade secu-
rity gateway device sold by a well-known network equip-
ment manufacturer. The DPI capabilities of this device,
as advertised, enable classifying over 900 applications and
protocols, including nested and tunneled applications (e.g.,
Facebook over HTTP). We disclosed our results to the equip-
ment manufacturer, but did not receive approval to release
details about the device. Hence, we refer to this system as
DPI-X. This device belongs to a class of commercial systems,
ranging from lower-end systems capable of handling a max-
imum throughput of 90 Mbps ($600), up to carrier-grade
products capable of 100 Gbps (over $25,000). The system
used in our testing has a maximum throughput of 1.5 Gbps
and a cost of $8,000. We believe DPI-X is representative of
the DPI products employed in many enterprise and carrier
networks. In fact, the maker of this product has been iden-
tified as one of the suppliers of censorship equipment for
Iran [36].

Threat model. A primary goal in this work is to experi-
mentally ascertain the extent to which these representative
DPI systems are vulnerable to protocol-misidentification at-
tacks. (We will use misidentification and misclassification
interchangeably.) To define this term, consider a setting
in which a DPI system monitors all connections travers-
ing a network. Two parties want to communicate via an
application-layer protocol that uses connection(s) travers-
ing the DPI-protected network. We will refer to these two
parties as the “attacker” to emphasize that the DPI faces
adversarially generated traffic. In a white-box DPI attack,
the attacker knows the DPI classification algorithms that are
used, while in a black-box DPI setting the attacker does not.
The latter may be because the particular DPI being used is
not known (even if the set of possible DPIs is known), or
simply because the algorithms are proprietary.

We call the application-layer protocol used for communi-
cating data the source protocol. In a misidentification at-

tack, the attacker’s goal is to have its connections, which
use the source protocol, be (mis)identified by the DPI as
a target protocol of the attacker’s choosing. An example
would be to have SSH as the source protocol, and HTTP
as the target protocol. In a successful attack, the DPI will
incorrectly label the actual (encrypted) SSH connections as
(unencrypted) HTTP connections. To declare a practical
success, we also require that the attack does not significantly
degrade performance of the source protocol.

Despite the clear importance of protocol misidentification
attacks, we are unaware of any prior work that evaluate
the DPI systems in our test set (or other similar systems).
See Section 7 for discussion of related settings and other
potential approaches for forcing protocol misidentification
that are different from ours.

3. FORMAT-TRANSFORMING
ENCRYPTION

All of the open-source DPI systems in our evaluation set
use membership in a regular language — either explicitly
with regexes or implicitly by logic coded in languages such
as C/C++ — to inform application-layer protocol classifi-
cation. We therefore target mechanisms which enable an
attacker to force protocol misidentification against any DPI
that relies on regex checks. Note that this goal is more ag-
gressive than merely defeating the systems in our corpus
(but we will do that as well!), and we expect our approach
will work against any currently deployed regex-based DPI
system.

Our main idea is to build DPI resistance into encryption
schemes. The key technological enabler, which we explain
in the remainder of this section, is augmenting the normal
encryption interface to take a regex as an input. The pur-
pose of this regex is to specify the format of ciphertexts:
this means that ciphertexts, when taken as a string over
the appropriate alphabet, are guaranteed to match against
the specified regex. We call the resulting primitive format-
transforming encryption (FTE). In turn, we show how to
use FTE as a component within a record layer that han-
dles streams of messages from an arbitrary source proto-
col. Through proper choice of regex, ciphertexts produced
by this record layer –which are actually carrying the source
protocol– will be classified as messages from another proto-
col (of our choosing) by the DPI.

Our FTE record layer will be used for two purposes. First,
we will build an FTE (single-hop) proxy system by combin-
ing the FTE record layer with SOCKS in a straightforward
way. We will then use it to support our hypothesis that the
regex-based DPI used in practice is fundamentally vulnera-
ble to misclassifcation attacks. We do this by showing how
to use the FTE proxy to force protocol misidentification by
the entire set of DPI systems and with respect to a variety of
target protocols. We also show that doing so has essentially
negligible overhead for most relevant regular languages. We
believe these results suggest that DPI systems must move
to more advanced mechanisms (discussed in Section 7) in
settings with adversarial users.

Our second purpose, empowered by the ease with which it
forces protocol misidentification and the high performance
it obtains, will be to incorporate the FTE record layer into
Tor for use in circumventing censorship. We discuss this
more in Section 6.
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Figure 2: Sender-side (left) and receiver-side (right) record-layer flow. We discuss the various modules in the text.

3.1 FTE via Encrypt-then-Unrank
An FTE scheme is a triple of algorithms: key genera-

tion, encryption and decryption. Key generation works as
in conventional encryption, outputting a randomly chosen
symmetric key K. Encryption Enc takes inputs of a key K,
a format F , and a message M . It can be randomized, state-
ful, or deterministic, and always outputs a ciphertext C or a
distinguished error symbol ⊥. Decryption Dec takes inputs
of a key K, a format F , and a ciphertext C. It outputs a
message or ⊥. The format F specifies a set L(F) called the
language of F . The requirement is that any C output by
Enc must be a member of L(F).

FTE is a related to format-preserving encryption (FPE),
first formalized by Bellare, Ristenpart, Rogaway, and Ste-
gers (BRRS) [5]. FPE is used in the context of in-place
encryption of credit-card numbers (or other records) within
databases. It likewise uses formats, but requires that both
plaintext messages and ciphertexts be members of the same
format-specified language.

We desire FTE schemes that support formats described
by regexes. This will allow easy “programming” of formats
and endows FTE with the same expressive power as regex-
based DPI. To do so, we start by following an approach
similar to one used by BRRS. Loosely speaking, to imple-
ment Enc(K,F ,M) for a regular expression F we: (1) en-
crypt M using a standard authenticated encryption scheme
to obtain an intermediate ciphertext Y ; (2) treat Y as an in-
teger in Z|L(F)| (the set of integers from 0 to the size of the
language minus one); and (3) apply an encoding function
unrank : Z|L(F)| → L(F). To be able to decrypt, we require
that unrank is in fact a bijection with efficiently computable
inverse rank : L(F)→ Z|L(F)|.

The key algorithmic challenge is implementing rank and
unrank efficiently. These associate to each string in the lan-
guage its rank, i.e., its position in a total ordering of the
language. The notion of ranking was first explored by Gold-
berg and Sipser [17] in the context of language compres-
sion. Goldberg and Sipser also gave an efficient way to rank
a regular language when that language is represented by
a deterministic finite automaton (DFA). BRRS used this
for an (unimplemented) FPE scheme for arbitrary regular
languages encoded as DFAs, but they also emphasize that,
asymptotically speaking, there is provably no way to give ef-
ficient rank and unrank functions starting just from a regex.

Standard tools exist for converting from a regex to an non-
deterministic finite automaton (NFA) and from there to a
DFA (see Section 5), but the second step potentially incurs
an exponential blow-up in state size. We observe that this
worst-case behavior is not an issue for FTE, in part because
the kinds of regexes used by DPIs are themselves designed
explicitly to avoid the worst-case blowup.

Our implementation uses the time-space tradeoff of Gold-
berg and Sipser to support more efficient runtime perfor-
mance by precomputing tables that allow (un)ranking of all
strings x ∈ L with |x| ≤ n. (Appendix A details the al-
gorithms.) The complexity of this precomputation is O(n ·
|Σ| · |Q|), where Σ is the underlying alphabet and Q is the
state set for the DFA implementing the FTE regular ex-
pression. Given these tables, the complexity of rankL and
unrankL are Ω(n) and O(n·|Σ|), where n is the length of the
output of rankL or input of unrankL, respectively. We can
also formalize all of the above and prove that the Encrypt-
then-Unrank approach preserves the message confidentiality
and authenticity security of the underlying authenticated
encryption scheme. Due to space constraints, we omit de-
tails of the optimizations and formal treatment, and instead
move on to discuss how we build a full FTE record layer.

3.2 FTE Record Layer
In order to transform arbitrary TCP streams, we need ad-

ditional “record layer” machinery to buffer, encode, unam-
biguously parse, and decode streams of FTE messages. In
Figure 2 we give an overview of the processes by which plain-
texts are transformed into FTE ciphertexts, and vice versa.
We assume that sender and receiver share a pre-established
set of keys, possibly derived from a single shared master
key. Our record layer also assumes an underlying, reliable
network transport protocol, e.g. TCP.

Implementing FTE formats. We will find it useful to
specify in our formats more than just a regular expression.
Thus a format F for the record layer is as a tuple (R, k,m):
a regular expression R, a number k > 0 that specifies the
length of strings to use from the language L(R), and an
integer m ≥ 0 that controls the number of unformatted ci-
phertext bits to append to the end of the FTE-encoded mes-
sage. The reason to use a specific length k is that it is an
expedient way of rendering easy-to-parse FTE ciphertexts,
while the value m is used to cheaply enable more capacity in



cases where the desired language is, in fact, any string with
a prefix in L(R). All told, for F = (R, k,m) the language
becomes L(F) = (L(R)∩Σk)‖Σ≤m where Σ is the alphabet
underlying R. For simplicity we assume Σ = {0, 1} in what
follows, but in implementations one will typically use larger
alphabets. In our implementation we use values m = 218

and k = 210, unless otherwise specified.

FTE Sender. See the left diagram in Figure 2 and consider
a format F = (R, k,M). Let Lk(R) = L(R) ∩ {0, 1}k be
the k-bit slice of L(R) we will use and t = blog2(|Lk(R)|)c
be that slice’s capacity (the number of bits one can encode
using the slice). The first action on the sender’s side is to
prepare an encrypted record using a secret key K. From
a plaintext message buffer, grab a plaintext message M of
length at most |M | < m. Then form a plaintext record,
containing an encoding of |M | followed by M . The record
is then encrypted using a standard, stateful authenticated-
encryption (AE) scheme with K to produce a ciphertext C.
We assume that |C| is defined solely by |M |, which is true for
AE schemes used in practice. We also pad M , if required, to
ensure that |C| ≥ t. Our implementation uses CTR mode
over AES and then authenticates the resulting ciphertext
with HMAC-SHA256.

The encrypted record C is passed to the split module, and
appended to an internal buffer maintained by split. The
job of split is to produce two strings: one to be passed to
unrank for formatting, and one that will be passed along
as-is. In particular, split takes up to t + m bits (and at
least t bits) from the front of the buffer, which we refer to
as C′. Note that C′ may be a full AE ciphertext, part of
one, or include bits from multiple ciphertexts. Then split
partitions C′ into C′1 and C′2 with |C′1| = t and |C′2| ≤ m.
The first portion C′1 is forwarded to unrank, which produces
a formatted string X ∈ Lk(R). Finally, the concatenation
X ‖C′2 becomes the sender’s FTE ciphertext which can then
be transmitted.

FTE Receiver. Referring to the right-hand diagram in
Figure 2, the receiver buffer logic is responsible for man-
aging the stream of incoming FTE ciphertexts. One issue
here, is that there are no explicit markers to demarcate FTE-
encoded ciphertext boundaries. We therefore must take care
to ensure that the receiver can correctly decrypt given that
its buffer may contain multiple contiguous ciphertexts. To
do so, the receiver takes advantage of the fact that the sender
used a fixed2 slice Lk(R). As soon as it has the first k
FTE ciphertext bits in its buffer, it treats these as a string
X ∈ Lk(R) and applies rank(X) to recover C′1. (Should
X /∈ Lk(R) decryption should abort.) It then feeds C′1 to
the AE decryption algorithm in order to retrieve ` = |M |
and possibly some initial bits of a message M . (Those latter
message bits should not yet be released to higher layers.)
Note that this means that the AE scheme must be able to
perform incremental decryption and that it should not be
vulnerable to attacks (c.f., [1]) that abuse use of the length
field before ensuring integrity. CTR mode plus HMAC pro-
vides these properties.

Given ` the receiver now knows how many more bits of AE
ciphertext are expected. From here it can remove the next
up to m bits of ciphertext from the input buffer, and then
go back into a state where it treats the subsequent k bits

2One could instead rely on L(R) being prefix-free, but we
found using fixed slices simpler and sufficient.

in the buffer as a string in Lk(R), applying rank as above,
and so on. When it retrieves a full AE ciphertext, it finishes
decryption, verifies integrity of the ciphertext, and only now
releases the buffered message bits up to the application.

Regex negotiation. One unique feature of FTE is the
ability to quickly change regexes on the fly. We would like
to be able to provide in-band negotiation of formats, but
since all data sent on the wire must be formatted to pass DPI
checks, it is not possible to negotiate regexes in the clear. We
address this limitation by allowing the client/server to agree
upon regexes for the duration of a TCP connection assuming
they support some initial large set of possible regexes.

In more detail, we assume the client and server have a
shared, ordered list of FTE formats (F1, . . . ,Fn), and still
assume the client and server have negotiated cryptographic
keys out-of-band. For each TCP connection, the client de-
termines the FTE format Fi it wishes to use for client-to-
server messages, and the Fj it wishes to use for server-to-
client message. Then, the client constructs the message
M ← 〈i〉 ‖ 〈j〉, encrypts M as a distinguished negotiate

message-type, designated by the value of a first (reserved)
byte of the plaintext, encodes it with Fi, then sends it to
the server.

When the server receives an initial message from the client
it iterates through its list of formats, attempting to decode
the message with each of the FTE formats. Once it encoun-
ters a successful decryption, it evaluates the message and
then uses for the session Fi for client-server messages and
Fj for server-client messages. The server finalizes the ne-
gotiation by responding to the client with a distinguished
negotiate_acknowledge message.

We can improve on the näıve receiver-side implementa-
tion of this procedure by having an implementation of rank
that contains special checks that short-circuit evaluation to
terminate early in cases when the string being ranked is not
accepted by the DFA. This enables the server to quickly ex-
clude certain formats, thereby making it possible to support
dozens of formats.

4. PROTOCOL MISCLASSIFICATION
In this section, we experiment with three strategies for

providing regexes used with our FTE record layer: regexes
extracted from open-source DPI systems (4.1); regexes pro-
grammed manually (4.2); and regexes automatically learned
from samples of target protocol traffic (4.3). We will always
use a pair of formats: one for upstream (client-to-server)
and one for downstream (server-to-client) communications.
We will then use our FTE record layer to assess the vul-
nerability of the DPI systems in our evaluation to protocol-
misidentification attacks.

Recall that a source protocol is the application-layer pro-
tocol whose connections the attacker wants to have misclas-
sified. We explored HTTP [16], HTTPS [13], secure copy
(SCP) [54], and Tor [14] as source protocols, and found that
the choice of source protocol does not influence our results.
We therefore focus our discussion primarily on HTTP(S).

For each regex generation strategy we explore three target
protocols: HTTP [16], SSH [54], and SMB [29]. The latter
is a proprietary protocol designed by Microsoft to support
sharing of resources, such as files and printers, over networks.
We also explored other target protocols, including SIP [37]
and RTSP [38], but limit our discussion here to the prior



three as the results for the others were the same. Indeed,
we suspect FTE can be successfully used for almost any
target protocol.

Experimental testbed. We implemented our FTE record
layer as a library that can be used to relay arbitrary data
streams. More implementation details appear in Section 5.
In our evaluation we use it in the following configuration.
The FTE client listens for incoming TCP connections on a
local client-side port. Upon receipt of an incoming connec-
tion the FTE record layer encrypts the messages using the
upstream format and relays them to a remote FTE server.
The FTE server receives these FTE ciphertexts, decrypts
them, and then relays the recovered plaintexts to a pre-
configured destination TCP port. Downstream, the process
is reversed, with the FTE server encrypting returned mes-
sages using the downstream format.

We use Mozilla Firefox version 17.0.3, controlled by ver-
sion 2.28.0 of the Selenium browser automation framework
to request the Alexa Top 50 (US) websites over the FTE
record layer; this is repeated five times for each upstream-
downstream format pair tested. The testing framework gen-
erates a mixture of HTTP, HTTPS and DNS source traffic
and a total of roughly 12,000 TCP connections. On the
server-side we relayed all HTTP(S) messages via a SOCKS
proxy. We used the default Firefox configuration, with the
following exceptions: we tunneled all DNS requests through
the SOCKS connection, specified our start page as blank,
and disabled caching to disk.

4.1 DPI-Extracted Regular Expressions
As our first method of programming the FTE record layer,

we build FTE formats by extracting them directly from the
source code of open-source regex-based DPI systems. This
models a white-box DPI attack setting for the DPI systems
from which we extract regexes, and a black-box DPI attack
for others (e.g., DPI-X).

Extracting regular expressions. Using regexes from
DPI systems within our FTE record layer is straightforward.
Given a regular expression R from the DPI, we specify a for-
mat F = (R′, k,m) where R′ is exactly R except without
a “.∗” (match any) prefix, should there be one. This makes
L(R′) ⊆ L(R), while ensuring that FTE ciphertexts will
include the formatting information found in R after the pre-
fix. We set k = 128 and m = 215 for good performance (the
misclassification results do not change with other reasonable
settings).

We use the naming convention of 〈DPI system〉-〈target
protocol〉 to reference a pair of upstream-downstream regexes
extracted from the given DPI system. (Some systems only
have a regex for a single direction, in which case we use “.∗”
for the other direction.) YAF contains at least two regexes
for each target protocol, and we indicate that using a 1 or 2
in the format name. The result is 12 different formats.

Misclassification evaluation. The misclassification rates
for all 12 formats against the 6 classifiers appears in Figure 3.
Here (and throughout this section) the rate is calculated as
the number of TCP connections labeled as the target pro-
tocol by the classifier, divided by the total number of TCP
connections generated when using that FTE format. Thus a
rate of 1.0 means complete misclassification success, and 0.0
is complete failure. Throughout our evaluations, a connec-
tion that failed to be misclassified as the target protocol by

Format Misclassification Rate
appid l7-filter YAF bro nProbe DPI-X

appid-http 1.0 0.0 1.0 0.0 0.0 1.0
l7-http 0.0 1.0 0.16 0.0 0.0 1.0
yaf-http1 0.0 0.0 1.0 0.0 0.0 1.0
yaf-http2 0.0 0.0 1.0 0.57 0.0 1.0
appid-ssh 1.0 0.32 1.0 1.0 0.0 1.0
l7-ssh 0.16 1.0 0.16 0.13 0.0 1.0
yaf-ssh1 1.0 0.31 1.0 1.0 0.0 1.0
yaf-ssh2 1.0 0.21 1.0 1.0 0.0 1.0
appid-smb 1.0 1.0 1.0 0.08 0.0 1.0
l7-smb 0.0 1.0 0.38 0.0 0.0 1.0
yaf-smb1 0.0 0.04 1.0 0.0 0.0 1.0
yaf-smb2 0.0 0.04 1.0 0.0 0.0 1.0

Figure 3: Misclassification rates for the twelve DPI-
Extracted FTE formats against the six classifiers in
our evaluation testbed.

a DPI system was always marked as an unknown protocol,
regardless of the DPI system.

What Figure 3 reveals is that DPI-extracted regexes al-
ways succeed against the DPI system from which they were
extracted, and can even force misclassification by different
DPI systems. As an example of the latter, we need only look
at DPI-X, which is by far the easiest system to force misclas-
sification against despite having no information about its
operation. We confirmed the proper operation of the device
by running a variety of control traffic, such as Facebook,
Gmail, and SSH, through the device, and found that our
results were indeed correct. While we still do not know the
exact DPI strategy used, our best guess is that DPI-X per-
forms minimalistic analyses, favoring performance and opti-
mistic labeling of protocols. These regexes were not effective
against nProbe, and had varied success against bro. This can
be attributed to the latter DPI systems requiring slightly
more stringent protocol conformance.

Intersection formats. We also consider formats whose
regex R is the explicit intersection of multiple DPI regexes.
FTE based on such an intersection format will produce ci-
phertexts matching all of the individual regexes used to
form R. Using the intersection of the four DPI-extracted
formats for each target protocol resulted in formats with
perfect 1.0 misclassification rates for appid, l7-filter, YAF, and
DPI-X. The rates against bro and nProbe are comparable to
those for the individual regexes.

4.2 Manually-Generated Regular Expressions
As our next strategy for producing regexes, we will code

them manually. Our FTE record layer makes this easy since
most developers are already familiar with regexes due to
their use in other programming contexts. Moreover, it turns
out to be very simple to build fast, simple regexes that
achieve perfect misclassification for all classifier/target pro-
tocol combinations in our evaluation set.

Coding regexes for FTE. We started by inspecting the
open-source DPI systems, in particular for cases from the
last section where the extracted regexes failed, in order to
educate regex design. For HTTP regular expressions, we
observed the following requirements. l7-filter requires that
responses have an HTTP version of 0.9, 1.0, or 1.1; an
HTTP status code in the range of 100-599; and Connection,
Content-Type, Content-Length, or Date fields. appid re-



quires that responses have a string of length greater than
zero following the status code, and that the status line is ter-
minated with \r\n. YAF requires that we have a valid HTTP
method verb for requests (i.e. GET, POST, etc.). nProbe re-
quires that we terminate HTTP messages with \r\n\r\n.
Finally, bro require that we have no payload for HTTP re-
quests, or a payload and a valid Content-Length field — we
accommodate this requirement by not allowing a payload for
requests and specifying an FTE format parameter of m = 0.
(Section 3.1)

For SSH all classifiers require that the first downstream,
and in some cases upstream, messages start with SSH-. Next,
l7-filter demands that the first two messages in a stream start
with SSH-1.x or SSH-1.y. nProbe requires the first messages
in an SSH stream to be less than or equal to 99 bytes long,
and we achieve this by setting our FTE format parameter
to k = 99 for both directions of traffic, which constricts
message lengths.

All classifiers in our evaluation require that SMB messages
have a valid SMB fingerprint, which is the byte \xFF, fol-
lowed by SMB encoded in ASCII. In addition, nProbe requires
that message have a valid length that matches the length of
the message payload, that the length field is located as the
first 32-bit word in the message, and that SMB is encoded
as ASCII in the second 32-bit word. Here we encounter a
check that is not easily encoded as a regular language (or
avoided as above for nProbe’s checking of HTTP Content-
Length fields), at least if one wants to support all 232 possi-
ble lengths. However, we can simply use a specific value for
the length field and provide an equivalently sized payload.
For the regexes in our experiments, we set the FTE format
parameter m to zero, meaning that we do not append any
raw AE ciphertext bytes.

Misclassification evaluation. We specified regexes that
met the above requirements for each of the target proto-
cols. It took less than 30 minutes for one of the authors to
specify each regex and debug it by testing it against known
DPI engines. The resulting regexes achieved perfect mis-
classification for all classifier/target protocol combinations,
as shown in Figure 4. Every TCP connection was tagged as
the target protocol of our choosing.

4.3 Automatically-Generated
Regular Expressions

When we know the DPI systems and their classification
methods, the DPI-extracted and manually-generated regexes
provide guaranteed evasion and optimal capacity. Unfortu-
nately, there are many cases where it is not possible to know
this information, like when the DPI classification strategy
abruptly changes or when proprietary systems are used. In
these situations, we can use a simple but effective process
to automatically generate regexes from network traffic sam-
ples using widely-available protocol parsers. This allows us
to implicitly learn FTE formats from data that is assumed
(or known) to pass DPI scrutiny without raising alerts. Al-
though other, more complex, methods of format discovery
are available [7, 8, 41, 50], we focus on well-known network
message formats to avoid unnecessary complexity while still
providing robust regex generation capabilities. The regex
generation process proceeds as follows.

1. Collect packet trace data for target protocol message.
2. Apply a parser to label message fields.

Format Misclassification Rate
appid l7-filter YAF bro nProbe DPI-X

manual-http 1.0 1.0 1.0 1.0 1.0 1.0
manual-ssh 1.0 1.0 1.0 1.0 1.0 1.0
manual-smb 1.0 1.0 1.0 1.0 1.0 1.0

auto-http 1.0 1.0 1.0 1.0 1.0 1.0
auto-ssh 1.0 1.0 1.0 1.0 0.0 1.0
auto-smb 1.0 1.0 1.0 1.0 1.0 1.0

Figure 4: Misclassification rates for the manually-
generated and automatically-generated FTE for-
mats against all six classifiers.

3. Create a set containing observed values for each field,
called a dictionary.

4. Create a template for each message type by replacing the
values with placeholders for the associated dictionaries.

5. Convert each dictionary into a regex by concatenating
the values with an “or” operator between them.

6. For each template, replace the placeholders with the as-
sociated dictionary regexes.

7. Choose one or more of the resultant template regexes as
the language(s) used by the FTE system.

There are a number of ways this method can be tuned to
adjust the quality and capacity of the resultant language(s).
First, we can control the properties of the messages that
are collected in the packet trace data, such as their mes-
sage types or payload lengths. Data containing a single,
consistent message type will produce more coherent regexes
at the cost of smaller dictionaries, while a mix of message
types will produce much larger dictionaries with more ca-
pacity but with potentially inconsistent, low-quality regexes.
We can also control the regexes through the granularity of
the parsers used to break the data into fields. Fine-grained
parsing produces a greater number of dictionaries within
each template and, consequently, an increase in the number
of possible combinations among their values. Conversely,
coarse parsers will create templates that are more likely to
produce valid outputs, but with less overall capacity.

Regex generation. The packet trace data used to eval-
uate the security of the generated regexes was produced by
agents that randomly logged into and crawled HTTP, SMB,
and SSH servers. For HTTP, we used the wget utility to
download the front page of a random selection of web sites
on the Alexa Top 1000. SMB and SSH data was generated
by scripts that logged into local Linux and Windows servers,
randomly crawled the directory structure, accessed files, and
logged out several times over the course of a one-hour period.
We partitioned the captured data into groups based on their
message types and payload lengths. From these partitions,
we extracted client headers for HTTP POST requests, SMB
transaction requests, and SSH handshake banner messages.
The server messages that we use include HTTP 200 OK
responses, SMB transaction responses, and SSH handshake
banner messages. Each of these message types was parsed
using their respective Wireshark dissectors, and the highest-
capacity template regular expression was chosen for the FTE
format. Any remaining payload bytes not included in the
parsed message header were automatically replaced with a
regular expression that produced the appropriate number of
random bytes.

Misclassification evaluation. Figure 4 presents the re-



avg. avg.
FTE DFA unrank rank
format states (ms) (ms)

intersection-http-downstream 70 0.52 0.48
intersection-smb-downstream 104 0.55 0.54
intersection-ssh-downstream 11 0.55 0.52

manual-http-downstream 38 0.43 0.43
manual-smb-downstream 130 0.53 0.5
manual-ssh-downstream 9 0.42 0.42

auto-http-downstream 13,815 1.6 1.5
auto-smb-downstream 222 0.82 0.79
auto-ssh-downstream 237 0.52 0.49

Figure 5: Average rank and unrank performance for
our downstream FTE formats.

sults of our evaluation, and illustrates that the generated
regexes achieved perfect misclassification rates except for
the nProbe SSH classifier, which had a misclassification rate
of zero. The nProbe SSH classifier requires that the first mes-
sage in each direction be an appropriately formatted banner
message with an arbitrary length limitation of 100 bytes.
Since our regex generation method is limited to only us-
ing what it observes (in this case a single client banner and
less than five server banners), the generated regex would
have only two bits of capacity. To enhance the capacity, we
artificially generated RFC-compliant banner messages with
the optional comment field used to carry random bytes up
to the specified maximum length of 255 bytes, which pro-
vided sufficient capacity and the ability to evade all classi-
fiers but nProbe. This highlights a natural limitation of the
simple generation process, though avenues for improvement
are possible through more advanced generalization proce-
dures or the use of multiple FTE formats within a single
connection (e.g., zero-capacity banner messages followed by
high-capacity key exchange messages).

5. PERFORMANCE
Our FTE prototype was developed in C/C++ and Python.

Performance-critical algorithms such as rank, unrank, and
BuildTable are implemented in C/C++. We use a customized
version of the re2 library for regular expression to DFA
conversion, and OpenFST for DFA minimization. Crypto-
graphic algorithms are implemented using PyCrypto. Mul-
tiple precision arithmetic is performed using GMP. Logic
for the record layer and networking is multi-threaded and
implemented in Python.

For performance benchmarks our client machine was an
AMD Opteron 8220 SE @ 2.80GHz running CentOS 6.4 and
server was an Intel Core i5-2400 @ 3.4GHz running Ubuntu
12.04. Each machine was connected to the Internet at an
academic institution.

Rank/Unrank. Recall that for FTE we must perform
unranking starting from regexes, which can require expo-
nential time in the worst case (see Section 3.1). In practice,
however, the regexes we require for misidentification attacks
admit fast (un)ranking. In Figure 5, we present the DFA
size and average time to perform ranking and unranking
for our intersection, manual, and automated formats over
100k trials using random integers as input. We present per-
formance results for downstream formats only. In all cases
the upstream formats perform better than their downstream

counterpart in (un)ranking benchmarks and have smaller
DFA state-spaces. The FTE format parameters used in
these benchmarks are described in Section 3.2. The DPI-
extracted intersection formats and manual formats resulted
in very compact DFAs, with no more than 130 states. We
note that the automatically generated regexes resulted in
the largest DFAs, but were still very fast even for >10, 000
state DFAs. This all evidences that the worst-case blow-up
in state sizes when converting from an NFA to DFA does
not greatly impede performance.

Web-browsing performance. We setup our FTE record
layer to proxy HTTP(S) traffic as described in Section 4. As
a baseline for comparison, we use a conventional encrypted
tunnel. Using OpenSSH’s integrated functionality we estab-
lished a SOCKS proxy which listened client-side, such that
all connections were routed through the SSH connection to
the remote server, and then ultimately on to the destination
IP address. We call this our socks-over-ssh configuration.

We download the Alexa Top 50 websites five times each
using the socks-over-ssh setup. We do the same with the
FTE proxy for each of the intersection, manual, and auto-
matically generated regexes. Each of the four separate runs
(inclusive of socks-over-ssh) therefore resulted in 250 data
points. In our socks-over-ssh configuration, websites in the
Alexa Top 50 took an average of 5.5 seconds to render the
webpage and all dependencies, and required an average of
1,164KB of data transfer including all TCP/IP overhead.
In Figure 6, we show the cumulative distribution of the la-
tency and bandwidth data points for the four different runs.

The lowest average download time of the FTE formats was
the intersection-ssh format, which incurred no increase (5.5s
avg.) in latency compared to socks-over-ssh, and 1,348KB
(16%) increase in data transfer overhead. The highest aver-
age download time of all the formats was the automatic-http
format, with an average page-render time of 7.1s (29%) and
an average of 3,279KB (181%) transferred per website. The
increase in data transferred is due to (1) ciphertext expan-
sion and (2) Firefox generating persistent TCP connections
that cause FTE/SOCKS negotiation, but do not result in
data transfer. These latter empty connections do not use
much bandwidth in the socks-over-ssh case.

In our testing we note that engineering issues often over-
shadow the overheads of FTE. For example, the socks-over-
ssh system performed better on sites with low bandwidth
requirements and a small number of TCP connections, while
our FTE prototype actually performs better than socks-over-
ssh for websites that use a large number of TCP connec-
tions. This is because our FTE implementation uses multi-
threading more aggressively than OpenSSH, and this is bet-
ter aligned with the Firefox’s use of multiple TCP connec-
tions in parallel.

Goodput. As a goodput baseline, we performed a direct
copy of a 100MB file with SCP from our server to our client
and achieved 58Mbps on average over 100 trials. Average
round-trip latency between the client and server was 70ms.
When using SCP with the FTE record layer, our best per-
forming format was intersection-ssh and it achieved 42Mbps.
All other FTE formats with m > 0 exhibited similar perfor-
mance. For our worst performing format, automated-http,
we achieved 1.9Mbps and other formats with m = 0 had
similar goodput. The slower performance for the latter for-
mats stems from their not allowing raw AE ciphertext bytes
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Figure 6: Distribution of webpage (Alexa top fifty) download times (top row) and data transferred (bottom
row) for our intersection, manually-generated and automatically-generated FTE formats, compared to using
our socks-over-ssh configuration.

to follow unrank output.
In our goodput tests, the FTE implementation was never

CPU bound. Hence, the performance of our (un)ranking
algorithms was not the bottleneck. Profiling of our FTE
prototype indicates that future performance gains could be
had by optimizing the buffer management and networking
logic.

Memory utilization. To determine the memory utiliza-
tion of our FTE prototype, we first measured the mem-
ory requirements of the BuildTable algorithm, which is the
largest consumer of memory in our prototype. For all for-
mats, except auto-http, the BuildTable algorithm required at
most 2 MB of memory. The auto-http upstream format re-
quires 15 MB and the auto-http downstream format requires
184 MB. As expected, memory utilization increases linearly
with respect to DFA state space.

As an additional test we profiled the maximum heap us-
age, inclusive of the Python interpreter and all dependent
libraries, when browsing the web with our FTE prototype.
For all formats, except auto-http, peak heap usage never
exceed 13 MB, while auto-http used roughly 383 MB at its
peak. We can attribute this nearly two-fold increase in mem-
ory usage, compared to its BuildTable requirement, to an in-
efficient copy of BuildTable’s output — this will be resolved
in the next release of our prototype.

6. CENSORSHIP CIRCUMVENTION
In the previous sections, we focused on using FTE to eval-

uate the efficacy of modern enterprise-grade DPI. We showed
that not only can our FTE record layer easily force DPI mis-
classification, but it can do so while incurring negligible per-
formance impact. This suggests that FTE can be a useful
tool for settings where one wants to circumvent DPI-enabled
censorship. Here, we experimentally investigate integrating
our FTE record layer into the Tor anonymity network as a
as a pluggable transport [2].

Integration. A pluggable transport is a record-layer mech-

anism that processes Tor messages before being transmitted
on the wire. The only currently deployed transport is obf-
sproxy [42], which applies a stream cipher to every bit out-
put by Tor using a shared key. Originally, this shared key
was a hard-coded, but a newer version (not yet deployed) re-
places this with an in-band, anonymous Diffie-Hellman key
exchange [43]. The result of this latter approach is a cryp-
tographic guarantee that all the bitstrings seen by a (pas-
sive) DPI are indistinguishable from random strings, so that
the obfuscated Tor messages will not have fixed fingerprints.
This does not, however, force protocol misclassification, and
therefore would fail to bypass DPI that use a whitelist of
allowed protocols.

We can do better using our FTE record layer as the plug-
gable transport. Integrating it into Tor with a hard-coded
key is immediate, and it is straightforward to add key ex-
change to our record layer. Specifically, one could just initi-
ate sessions using the existing obfs3 [43] Diffie-Hellman key
exchange, but running the key-exchange messages through
our unranking mechanisms before being sent on the wire,
since the messages in this exchange are indistinguishable
from uniformly random bit strings, they behave like the AE
ciphertext bits in our record layer. Together with our ex-
isting library of regex formats, we arrive at a version of Tor
that can easily force misclassification for the DPI systems
currently used in practice. Indeed we verified that misclassi-
fication rates for all the six systems in our corpus are as seen
in Section 4, but now using Tor with FTE as the pluggable
transport. We believe that FTE is an attractive pluggable
transport option for several reasons:

• Flexibility : The FTE record layer already supports a
variety of target protocols, and adding new ones re-
quires only specifying new regexes. Extending prior
steganographic systems to support many targets (see
Section 7), on the other hand, would be very labor in-
tensive.

• Sufficiency : The FTE record layer forces misclassifi-
cation by all evaluated DPIs, even DPI-X whose pro-



prietary classification strategy is unknown to us and is
similar to systems used in censorship settings [36].

• Speed : The FTE record layer has essentially negligible
overhead and, when used with Tor, its overhead is lost
in the noise of the Tor network’s performance variabil-
ity.

FTE through the GFC. We set up an FTE client on
a Virtual Private Server (VPS) located within China and
an FTE server in the United States. The server was con-
figured to accept incoming connections on port 80. To set
a censorship baseline, we first attempted to browse several
websites that are known to be censored, including YouTube
and Facebook, without using FTE to tunnel the traffic, and
found that these sites were blocked. We then attempted to
browse the same websites through the FTE tunnel, using
our intersection, manual, and automatic HTTP formats. In
every case, the FTE tunneled traffic successfully traversed
the GFC, and we were able to browse the censored websites.

Next, we considered using FTE to tunnel Tor traffic. Again,
to set a baseline, we attempted to connect to a private Tor
bridge listening on port 443 of our server, using the default
Tor distribution. We observed behavior consistent with the
recent analysis of the Great Firewall of China (GFC) by
Winter et al. [49]: initial Tor connections to our private
bridge were successful, and they were followed by an active
probe from a Chinese IP address after roughly 15 minutes.
The probe performed a handshake with the bridge, then
blacklisted the (IP,port)-combination used by the bridge.
We validated the blacklisting by observing that subsequent
attempts to connect to our Tor bridge (IP,port)-combinations
resulted in a successful SYN packet from the VPS to our
bridge, followed by spoofed TCP RSTs transmitted to the
client and bridge to terminate the TCP connection.

Having established that Tor was indeed being censored,
we then attempted the same tasks through our FTE tunnel,
again using each of our intersection, manual, and automatic
HTTP formats. Despite port 443 being blacklisted from our
previous Tor tests, using FTE on port 80 was successful, and
we were able to circumvent the GFC with this FTE-tunneled
Tor circuit. After these initial tests we established a persis-
tent FTE tunnel between our FTE client and server. Every
five minutes we selected a censored URL and downloaded
it through our FTE-powered tunnel. This tunnel remained
active for one month, and successfully subverted the GFC
until the termination of our VPS account.

On detecting FTE. Censors have been aggressive at rolling
out new DPI-based mechanisms for detecting and blocking
circumvention tools. How will FTE fare in this kind of arms
race? The first idea would be for DPI systems to obtain the
FTE regex formats and then use them to mark any traffic
exactly matching the regex as FTE. For most of the regexes
we consider, this would lead to prohibitively high false posi-
tive rates (e.g., 100% of HTTP traffic). The one exception is
the automatically generated regexes, which may not match
against other traffic, because of (for example) time stamps
or unique hash values that were learned from collected traffic
traces.

A second approach might be for DPI to perform more non-
regular checks, such as verifying correctness of length fields
for protocols that include them, e.g., the Content-Length
field of HTTP responses. Note that actually this exam-

ple would not work for DPI in practice, as one-third of the
response messages generated when downloading the Alexa
Top 50 did not include a valid Content-Length field despite
it being strongly recommended in the HTTP RFC. Else-
where this kind of check can be addressed by, for example,
developing formats that encode a large number of lengths
that are frequently observed in legitimate traffic, and for
each length ensuring appropriate length of ciphertexts. In
theory, one could also use FTE for more powerful language
classes (i.e., an algorithm for ranking unambiguous CFGs
appears in [17]).

More generally, DPI is faced with finding checks for pro-
tocol semantics or formatting with fidelity beyond what is
captured by the FTE record layer. Since the latter takes a
minimalist approach, there are innumerable ways in which
FTE communications differ from real target protocol runs.
The recent work of Houmansadr et al. [19], for example,
shows how to exploit discrepancies in other circumvention
systems that do much more than FTE in terms of attempt-
ing to mimic a target protocol [30,45,46]. However, finding
such discrepancies is easy, and the hard open question (not
addressed in [19]) is how to make such checks effective—fast,
scalable, and with negligible errors—in the messy deploy-
ment environments faced by DPI and for all of the essentially
arbitrary target protocols FTE supports.

The GFC, as discussed above, also engages in active prob-
ing. For example, attempting to connect to destination sys-
tems suspected of undesirable behavior. Determining how to
resist such active attacks in practice is an ongoing research
topic (c.f., [39]). Use of FTE, however, can hope to force ac-
tive probing for all legitimate connections using the target
protocol, vastly increasing the complexity of such censorship
techniques.

7. RELATED WORK
Steganography/censorship circumvention. Stegano-
graphic systems seek to hide the existence of messages from
all observers by way of embedding the message in real cover
traffic such as TCP/IP connections [32], HTTP [15], email
[45], VoIP [21], or social media [9,25]. FTE does not embed
data in real cover traffic, but instead ensures that cipher-
texts are formatted to include the telltale protocol finger-
prints that DPI systems look for.

Other recent work targets censorship circumvention via
so-called protocol mimicking [20, 30, 31, 45, 46, 52]. In these
systems, data is embedded within specific application-layer
headers and content so that it appears to be a specific un-
blocked target protocol. These systems target DPI misclas-
sification, but (to the best of our knowledge) their efficacy
against production DPI systems has not been systematically
measured. FTE, when used as a circumvention mechanism,
can be thought of as new lightweight protocol mimicking
tool that targets a certain class of adversary, those being
the regex-based (or similarly powerful) DPI used in prac-
tice. We note that FTE is more efficient than prior pro-
tocol mimicing systems, yet already forces misclassification
against enterprise-grade DPI.

Tunneling traffic over another protocol (e.g., SSH) does
not usually lead to protocol misclassification because the
protocol used for the tunnel will be correctly identified by
the DPI. Tunneling may suffice for DPI circumvention in
some settings, but is more expensive and less flexible than



using an FTE record layer. For instance, tunneling can have
high overheads for certain source protocol/tunnel protocol
pairs (e.g., HTTP over DNS [27]) and FTE can easily switch
between target protocols in a fine-grained manner.

The Dust [48] protocol and Tor’s recent obfsproxy [42]
systems strive to ensure that no application-layer bits are left
unencrypted in order to remove any identifiable fingerprint.
FTE also encrypt all bits sent, but additionally allows one to
selectively add back into ciphertexts the formatting needed
to force protocol misclassification.

DPI. Performance and scalability of regex-based traffic
classification has been extensively studied [4, 18, 44]. Al-
ternative protocol identification strategies that have been
explored include using packet sizes and timings [6, 51], the
types and number connections initiated by a host (its “so-
cial behavior”) [23, 26], and various machine learning tech-
niques [33,34,55]. However, the feasibility of deploying more
sophisticated classification strategies for DPI at scale re-
mains unclear [11,33,40].

Recent work uses fast small-sample hypothesis tests to
identify and discard compressed or encrypted packets [47].
Such tests might flag FTE packets from our simpler formats
as compressed/encrypted due to their use of unformatted
AE ciphertext bits, thereby preventing protocol misclassifi-
cation. However, these tests are easy to defeat by simply
changing the format so that the hypothesis test fails on the
first few packets in a flow.
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APPENDIX
A. ALGORITHMS FOR RANKING AND UN-

RANKING A REGULAR LANGUAGE
In Figure 7 we have the core algorithms BuildTable, rank,

and unrank, used in our FTE record layer. The ordinality of
symbol α ∈ Σ, written ord(α), is its position (starting from
1) in the lexicographical ordering of the elements of Σ. T [q, i]
is the number of strings of length i that end in an accepting
state when starting from state q; thus T [q0, i] is the number
of X ∈ L such that |X| = i. S[i] is the number of strings
in L of length at most i−1. Unspecified algorithm FindSlice
finds the largest ` such that S[`] < c, and returns n = `+ 1
and c′ = c−S[`]. This can be done in O(log2(|S|)) time via
binary search.

alg. BuildTable(N):

for q ∈ Q do
if q ∈ F then T [q, 0]← 1

for i = 1 to N do
for q ∈ Q do
for a ∈ Σ do

T [q, i]
+← T [δ(q, a), i− 1]

S[0]← 0
for i = 1 to N do
S[i]← S[i− 1] + T [q0, i− 1]

alg. rank(X):

n← |X|; c← S[n]
q ← q0
for i = 1 to n do

for j = 1 to ord(X[i])− 1 do

c
+← T [δ(q, aj), n− i]

q ← δ(q,X[i])
ret c

alg. unrank(c):

(n, c′)← FindSlice(c)
X ← ε; q ← q0; j ← 1
for i = 1 to n do

while c′ ≥ T [δ(q, aj), n− i] do

c′
−← T [δ(q, aj), n− i]; j

+← 1
X[i]← aj ; q ← δ(q,X[i]); j ← 1

ret X

Figure 7: Algorithms for ranking and unranking
strings in the regular language L of a DFA M =
(Q,Σ, δ, q0, F ).


