
Rebound: Decoy Routing on Asymmetric Routes
Via Error Messages

Daniel Ellard, Christine Jones, Victoria Manfredi,
W. Timothy Strayer, Bishal Thapa, and Megan Van Welie

Raytheon BBN Technologies
10 Moulton Street

Cambridge, MA 02138
Email: {dellard,cej,vmanfred,strayer,bthapa,mvanweli}@bbn.com

Alden Jackson
Brookline, MA 02445

Email: awjacks@gmail.com

Abstract—Decoy routing is a powerful circumvention mecha-
nism intended to provide secure communications that cannot be
monitored, detected, or disrupted by a third party who controls
the user’s network infrastructure. Current decoy routing proto-
cols have weaknesses, however: they either make the unrealistic
assumption that routes through the network are symmetric (i.e.,
the router implementing the decoy routing protocol must see all
of the traffic, in both directions, from each connection it modifies),
or their protocol requires modifying the route taken by packets
in connections that use the protocol, and these route changes are
detectable by a third party. We present Rebound, a decoy routing
protocol that tolerates asymmetric routes without modifying the
route taken by any packet that passes through the decoy router,
making it more difficult to detect or disrupt than previous decoy
routing protocols.

Index Terms—Decoy Routing, Circumvention, Privacy

I. INTRODUCTION

Decoy routing [15], [18], [20], [21] is motivated by the
desire to mitigate developments in network infrastructure that
enable network operators or other third parties to filter or
monitor access to portions of the Internet.

As shown in Figure 1, users of decoy routing establish
ordinary connections to decoy hosts that the third party does
not block or tamper with. These decoy hosts are ordinary
destinations on the Internet, such as popular web sites, that
are oblivious to decoy routing. The decoy routing client
encodes a signal within each connection to the decoy hosts.
If a connection transits a decoy router, the router decodes
the signal and then uses a handshake protocol embedded
in the ordinary traffic of the connection to validate that the
connection was initiated by an authorized user. Once validated,
the connection is redirected to a proxy service used by the
decoy router. This proxy service can be used to reach any
service, using any protocol desired, regardless of the protocol
used for the original connection. Meanwhile, a third party

This material is based upon work supported by the Defense Advanced
Research Project Agency (DARPA) and Space and Naval Warfare Systems
Center Pacific under Contract No. N66001-11-C-4017. The views, opinions,
and/or findings contained in this article/presentation are those of the au-
thor(s)/presenter(s) and should not be interpreted as representing the official
views or policies of the Department of Defense or the U.S. Government.
Distribution Statement ”A” (Approved for Public Release, Distribution Un-
limited)

Disallowed
Host

Decoy
Host

Decoy
RouterClient

Filtered
Network

Unfiltered
Network

Fig. 1. A high-level illustration of decoy routing. The client accesses the
Internet via a filtered network, which is controlled by a third party who
may monitor, eavesdrop, or block the client communication with specific
web sites. That third party can only control or monitor a section of the
network; the rest of the Internet is unfiltered. Decoy routing provides secure
communications that appear to be ordinary Internet connections to ordinary,
public web sites (decoy hosts) in the unfiltered Internet. These connections
contain hidden signals that are detected and processed by Curveball routers
within the network, enabling communications with other hosts.

anywhere on the network between the user and the decoy
router only sees what appears to be ordinary traffic to and
from the decoy host.

The essential difference between decoy routing and conven-
tional proxy services [2], [3], [4], [5], [6], [10], covert channels
[1], [7], [8], [12], or anonymization tools such as Tor [11], is
that decoy routing uses real connections to allowed (or decoy)
hosts and services outside of the filtered area as a conduit for
clients within the filtered area to exchange information with
disallowed hosts and services outside of it. A third party who
wishes to block use of a conventional proxy service only needs
to block the addresses of each proxy, but a third party who
wishes to block use of decoy routing must block the addresses
of all possible decoy hosts – every host that might be reached

40th Annual IEEE Conference on Local Computer Networks LCN 2015, Clearwater Beach, Florida, USA

978-1-4673-6770-7/15/$31.00 ©2015 IEEE 91

by the client via a route that includes a decoy router.
Some of the early decoy routing protocols made the sim-

plifying assumption that routes between two hosts on the
Internet are symmetric—that is, traffic takes the same route
in both directions. There is significant evidence, however, that
the converse is usually true for routes across the Internet. He
et al. observed that 65% of sampled routes between public
traceroute servers have some degree of asymmetry at the
AS level [13]. John et al. found that asymmetry increases
dramatically as the routes use networks closer to the core of
the Internet: on two Tier1 ISP backbone links, as many as 96%
of the routes were asymmetric because of hot-potato routing
[17].

Other earlier decoy routing protocols required that the decoy
router forge messages, addressed to the client, that appear to
be from the decoy host [21], [18], [20]. This requirement
introduces critical vulnerabilities, as we discuss in Section
VIII-A.

We present Rebound, a novel decoy routing protocol that
only needs to observe packets from the client to the decoy
host, and does not forge packets from the decoy host. Rebound
conveys all messages to the client, securely and privately, via
the decoy host; the decoy router never sends messages directly
to the client.

The rest of this paper is organized as follows. In Section II,
we describe our threat model for decoy routing. In Section III,
we give an overview of Rebound, and in Section IV, we give
an overview of related work on decoy routing. In Section V,
we introduce the fully asymmetric decoy routing protocol that
we propose in this paper. In Section VI, we describe how we
implement our proposed solution. In Section VII, we present
results. In Section VIII, we assess the vulnerabilities to our
protocol. Section IX concludes this paper.

II. DECOY ROUTING THREAT MODEL

Our threat model for decoy routing is that there is a third
party that can monitor and control the network to which the
client is attached. The goals of this third party may include
blocking access to specific web sites, actively modifying
the contents returned by these sites, or passively monitoring
whether users access these sites. The third party can observe
all the packets to and from the client, and can delay, reorder,
modify, drop, or inject packets within this network. There
are parts of the network (shown as the unfiltered network
in Figure 1) that this third party cannot monitor and does
not control: the decoy routers, decoy proxies, decoy hosts,
and disallowed hosts are within the unfiltered network. For
Rebound, we assume that the third party permits the use
of encrypted connections (i.e., TLS), between the client and
sites in the unfiltered network, and cannot break common
ciphersuites or undetectably forge host certificates for the
decoy hosts. We assume that the third party cannot access
the logs of the decoy hosts or disallowed hosts, and that the
internal state of the client computer cannot be controlled or
monitored by the third party. We also assume that there is
a way for the Rebound software and keys to be installed

on the client computer without the knowledge of the third
party. Finally, we assume that the user can trust the Rebound
software and the decoy router; compromise of the decoy router
would compromise its users as well.

III. AN OVERVIEW OF REBOUND

In Rebound, the client in the filtered network first connects
to a decoy host, which may be any allowed host located within
the unfiltered Internet. This is shown in Figure 1 as the solid
and then dotted line between the client and the decoy host.
During the connection between the client and the decoy host,
a decoy router along the path observes a sentinel hidden within
the payload of the packets. The sentinel is a specific string of
bits that the client puts into the packet stream. The decoy
router looks for these bits in the packet stream and, upon
finding them, recognizes that the connection might be from
a client wishing to use Rebound.

Note that exactly how the sentinel is encoded within the
packets is protocol-dependent. In this paper, we focus on the
HTTPS protocol (HTTP over TLS), although Rebound has
been implemented over HTTP as well. In the TLS implemen-
tations of the Rebound protocol, the sentinel is inserted into
the Random field of the TLS ClientHello message packet.

When the decoy router detects the sentinel in the client
connection, it begins the process of determining whether the
connection represents a valid decoy routing connection (rather
than a spurious match or an attempt by a malicious third
party to replay an old connection). This process is called
the handshake. The handshake establishes that the client is
communicating with a valid decoy router and that the decoy
router is communicating with a valid client.

Rebound is based on the Curveball protocol [18]. In the
original Curveball protocol, once the handshake was complete,
the decoy router terminated the client’s connection with the
decoy host with a TCP RST, and established a bidirectional
tunnel between the client and the decoy router. The client
still appears to be communicating with the decoy host, but
the Curveball router is actually tunneling the conversation to
the disallowed host in the unfiltered Internet—shown as the
solid line in Figure 1. The Curveball router acts on behalf
of the client to extract information ostensibly headed to the
decoy host (but in reality destined to disallowed hosts). The
Curveball router also acts on behalf of the disallowed host for
information headed back to the client. The decoy host is never
aware of this tunnel to the disallowed host, and the packets
that may be observed by a third party appear to be part of
a normal connection to the decoy host. In this way, the true
destination and content of the client communication is hidden
from anyone filtering or monitoring the client’s network.

While the Curveball approach works on asymmetric routes,
the Curveball protocol is not truly asymmetric because once
the handshake is complete, the connection to the decoy host
is closed, and the decoy router handles both the traffic to
and from the client. The fact that the decoy router forges
packets addressed from the decoy host creates opportunities
for a third party to detect that the connection has been altered,

92

if the resulting packets from the decoy host to the client take
a different route than expected, or are created with different
characteristics than packets created by the decoy.

To address this weakness, we present Rebound, a novel
way to handle asymmetric routes where the packets from
the client to the decoy host go through the decoy router,
but the packets from the decoy host to the client are not
required to. While there are other decoy routing protocols
that also accommodate asymmetric routing, they do so by
either terminating the client to decoy host connection, or
primarily using only the forward direction of the connection
and having the decoy router communicate directly back to
the client by spoofing packets from the decoy host. In the
Rebound approach, all information to be conveyed to the client
is securely and privately conveyed by the decoy host to the
client; the decoy router never sends information directly to the
client.

IV. RELATED WORK

Telex [21] is a decoy routing approach that requires sym-
metric routes, works over TLS, and uses a public key system.
Public-key systems do not require key distribution and man-
agement (although some care must be taken to ensure that the
public key is real, and not a false key planted by a malicious
third party). Telex appears to the user as an HTTP proxy, so
it can only be used for HTTP/HTTPS traffic.

The Curveball protocol, described in Karlin et al. [18], is
an approach that tolerates asymmetric routes, works over TLS,
and uses a private key system. Curveball provides a general
SOCKS proxy, which enables it to handle other traffic types,
as well as a VPN, which can handle virtually any traffic type
from the client. It is an example of a system that terminates the
connection between the client and the decoy host at the decoy
router and has the decoy router spoof packets that appear to
be from the decoy host. Private-key systems such as Curveball
require key distribution and management, but have the benefit
that keys can be revoked. Rebound is based on Curveball and
inherits its SOCKS and VPN proxies.

Cirripede [15] requires symmetric routes, works over TLS,
and uses a public key system. Cirripede provides a general
SOCKS proxy, which enables it to handle other traffic types.
The Cirripede handshake uses a fundamentally different ap-
proach than Telex or Curveball: the client “registers” with the
Cirripede service by encoding a message in a connection. This
connection is not redirected or terminated, but instead serves
to tell the Cirripede servers that a later connection will be
running the Cirripede protocol. The later connection is then
redirected entirely, so that it is never connected to the decoy.
The Telex and Curveball protocols, on the other hand, encode
the signaling within the same connection that is later redirected
or terminated.

TapDance [20] is a more recent approach. TapDance toler-
ates asymmetric routes, works over TLS, and uses a public key
system. In order to cope with asymmetric routes, TapDance
takes advantage of the fact that an incomplete HTTP request
will cause the decoy host to wait some period of time (without

Decoy
Host

Client

ClientRandom=Sentinel
Ciphersuites

ServerRandom
Ciphersuite

RSA certificate

E(RSA,Premaster=SentinelLabel)

Finished

DR

E(ClientSession, Stencil)

DR

DR

(Remainder of TLS handshake)

E(ClientSession, AreYouReady)
DR

E(ClientSession, Ready)

E(ServerSession, ERR(Ready))

E(ServerSession, ERR(Stencil))

Fig. 2. An overview of Rebound’s handshake and tunnel protocols. The
decoy router observes all of the messages from the client to the decoy host,
but does not observe messages from the decoy host to the client.

responding) for the request to be completed. The TapDance
client encodes its hidden messages within incomplete HTTP
requests, and the TapDance router spoofs responses from the
decoy host to send information to the client.

While the TapDance protocol is able to effectively handle
asymmetric routes, it does so by forging packets from the
decoy host. Once the TapDance connection is established, most
of the traffic flows between the client and the TapDance router,
and only occasionally through the decoy host.

V. FULLY ASYMMETRIC DECOY ROUTING

We next describe Rebound’s approach to perform fully
asymmetric decoy routing without forging packets, using the
TLS protocol.

Any decoy routing protocol requires both a handshake
protocol, to securely determine whether a user wishes to
use decoy routing, and a tunnel protocol, to securely tunnel
information between the user and disallowed hosts. We first
describe the Rebound handshake protocol that operates over an
asymmetrically-routed HTTPS connection, and then describe
the Rebound tunnel protocol, which operates over the same
connection.

A. The Rebound Handshake

The Rebound handshake, illustrated in Figure 2, is the
protocol that a Rebound router uses to verify that a connection
flagged by the presence of a sentinel is a legitimate Rebound
connection. The Rebound handshake must ensure not only that
the connection is a well-formed Rebound connection, but that
it also originates from a machine with a legitimate Rebound
sentinel-key. This is complicated by the fact that since the
decoy router cannot observe the reverse traffic from the decoy
host, it does not have an obvious way to send information
back to the client.

93

To authenticate the client and decoy router (and provide
confidentiality and data integrity), we use TLS, with some
slight modifications. We do not describe the details of the TLS
protocol here, but only how Rebound uses the protocol. The
modifications to the initial messages in the TLS handshake
are illustrated in Figure 3. The underlined fields are TLS
fields whose values are determined by the Rebound protocol.
In general, the TLS handshake is unmodified, except that
the Random field of the ClientHello message and the
PremasterSecret field of the ClientKeyExchange
message are generated from the client’s Rebound key, rather
than chosen at random. The sentinel is indistinguishable from
an ordinary ClientRandom, unless the key is known. The client
can generate many sentinels from the same key, and the client
never uses the same sentinel twice.

Our Rebound implementation uses a private-key cipher to
generate each sentinel, which requires that the user possess a
secret key that is known to the decoy router. Rebound could
be extended to permit use of a public-key mechanism (similar
to how Telex [21] and TapDance [20] generate their sentinels)
if desired. In different contexts, both private- and public-key
systems have advantages: public-key systems simplify key
distribution, but are susceptible to flooding attacks (a malicious
third party can use the public key to create huge numbers
of connections and overwhelm the decoy router). Private-key
systems require key distribution and management mechanisms,
but if a key is compromised and used to flood the system it can
be revoked without impacting the other users of the system.

To describe the handshake and tunnel protocols, we use the
following notation:

• C refers to the Rebound client, DH to the decoy host,
and DR to the decoy router.

• S(m)→ R denotes that message m is sent by the sender
S to receiver R.

• S(m)
observer−−−−−→ R denotes that message m is sent by the

sender S to receiver R, and the message is observed by
the specified observer.

• S(m)
MITM−−−−−→ R(m̄) denotes that message m is sent by

the sender S to receiver R, is observed by the specified
man-in-the-middle MITM, and changed by the man-in-
the-middle, so that R receives m̄ instead of m.

• E(k,m) denotes message m encrypted with key k.
• Err(m) denotes the error response that would be re-

turned in response to message m. In Rebound, m is
typically an HTTP GET request whose URL encodes a
message to the decoy router or the client. In order for the
Rebound protocol to work, Err(m) must contain m as a
substring.

1) Sentinel Location: We modify the TLS protocol to hide
the sentinel by replacing the TLS Random with the Rebound
Sentinel in the first step of the TLS protocol, and then allow
the next few steps of the TLS protocol to proceed unmodified.

The sentinel must be hidden in a location in a message
within the TLS handshake where it can be easily detected
by the decoy router, yet cannot be modified by an adversary

1) TLS ClientHello:
C(Sentinel)

DR−−→ DH
2) TLS ServerHello:

DH(ServerRandom)→ C
3) TLS ServerCertificate:

DH(PublicKeyDH)→ C
4) TLS ServerHelloDone:

DH(ServerHelloDone)→ C

Fig. 3. The initial messages of the TLS and Rebound protocol. The TLS
protocol is unmodified, except that part of the ClientRandom field is replaced
with the Rebound sentinel.

1) TLS ClientKeyExchange:
C(E(PublicKeyDH ,SentinelLabel))

DR−−→ DH
2) TLS ClientChangeCipherSpec:

C(E(ClientSession, F inished))
DR−−→ DH

3) TLS ServerChangeCipherSpec:
DH(E(DecoySession, F inished)→ C

Fig. 4. The Premaster secret is replaced with a value computed based on the
sentinel and the client’s secret key. The decoy router, which already knows
the value of the sentinel and the client’s secret key, can compute the same
Premaster secret.

without being detected and causing the TLS protocol to fail.
Rebound hides the sentinel in the Random field of the TLS

ClientHello message. This field is always at a fixed offset and
so can be easily located by the decoy router. Because this field
is protected by integrity checks in the TLS protocol, and is
used to generate the session keys, this field cannot be modified
without making it impossible for the client to establish a TLS
connection with a decoy host.

2) Obtaining the TLS Premaster Secret: The TLS protocol
generates its session keys from the ClientRandom, the Server-
Random, the Premaster secret generated by the client, and the
selected Ciphersuite. In order for Rebound to infer the session
keys, Rebound must be able to determine the values of all of
these fields.

Even if routes are symmetric, the decoy router is unable to
observe the Premaster secret, because it is encrypted (typically
by the public key of the decoy). To address this, the Rebound
protocol specifies which Premaster the client should choose,
based on the Sentinel and the key used to create that Sentinel.
Thus, when the decoy router sees the sentinel for a flow,
the decoy router can compute the value of the Premaster
(if it knows the client’s key) for the flow if the flow is
following the Rebound protocol and the client has a valid
key. When the decoy router receives the message containing
the encrypted form of the Premaster, it confirms that the
Premaster is consistent with the protocol. The modification
to the ClientKeyExchange message is described in Figure 4.

When routes are asymmetric, the decoy router is unable to
observe any of the messages from the decoy host to the client.
The client conveys the ServerRandom and Ciphersuite to the
decoy router using stencil coding, which is described next.

94

3) Stencil Coding: Stencil coding permits a sender to
secretly communicate a value to an observer via an encrypted
channel to a third party, without requiring that the observer be
able to decrypt the channel. Stencil coding does require that
the sender and the observer either share a private key, or that
the sender possess the public key of the observer, in order to
ensure the privacy and integrity of the communicated value.

For Rebound, the client uses stencil coding to share, with
the decoy router, the values of ServerRandom and Ciphersuite
it received from the decoy host during the TLS handshake.
Once the decoy router has these values, it can reconstruct the
TLS session keys, and then read and write messages in the
TLS connection.

The basic idea of stencil coding is straightforward: the client
chooses a plaintext message to send to the decoy host such that
the ciphertext for the message (as created by the TLS session
between the client and the decoy host) encodes the encrypted
value of the secret that the client wishes to share with the
decoy router. The message must be chosen with some care
because it will also be received and interpreted by the decoy
host: it must, in our case, decrypt to one or more properly
formed HTTP requests.

The stencil is a specification of which bits of the encrypted
TLS message correspond to the encrypted message from the
sender to the observer. The optimal stencil depends on the
ciphersuite chosen, but since neither the client nor the decoy
router know the ciphersuite ahead of time (and, in fact, the
client uses stencil coding to tell the decoy router which
ciphersuite was chosen) we must use a stencil that can work
regardless of the ciphersuite.

For Rebound, we use a stencil which uses the low-order bit
of the last eight bytes of each 16-byte block in a TLS data
record, omitting the final checksum and padding. This stencil
has the advantage of working with all popular ciphersuites.

Stencil coding is similar to a more efficient scheme that
was developed for a similar purpose as part of the TapDance
protocol [20]. The advantage of stencil coding is that it works
with TLS 1.0, which is still used by a large percentage of
web servers, while the advantages of the encoding used by
TapDance are higher efficiency and simplicity of implemen-
tation for TLS 1.1 and 1.2. The essential difference (with
respect to stencil coding) between TLS 1.0 and later versions
of TLS is that later versions permit the creator of each
TLS data record to choose the initialization vector associated
with that record, and the TapDance protocol chooses the
initialization vector in a way that makes finding a plaintext
with the necessary properties more efficient. In TLS 1.0, the
initialization vector of each TLS record is defined implicitly,
and therefore Rebound cannot use the initialization vector as
a free variable in its search.

4) Obtaining the TLS ServerRandom and Ciphersuite: In
our case, once the TLS handshake has finished, the client
uses stencil coding to communicate to the decoy router the
Random and Ciphersuite fields of the ServerHello of the
TLS handshake. The Random field is 32 bytes long, and the
Ciphersuite field is two bytes long. Rebound uses a stencil

1) TLS ApplicationRecord
C(E(ClientSession,StencilMessage))

DR−−→ DH
2) TLS ApplicationRecord

DH(E(ServerSession,ERR(StencilMessage)))
→ C

Fig. 5. Send StencilMessage, an HTTP GET request constructed from the
Stencil encoding of ServerRandom and the Ciphersuite identifier, to the decoy
host via TLS. The Rebound router can extract the value of the ServerRandom
and Ciphersuite identifier, even though the message is encrypted by TLS.

1) TLS ApplicationRecord
C(E(ClientSession,AreYouReady))

DR−−→ DH(E(ClientSession,Ready))
2) TLS ApplicationRecord

DH(E(DecoySession,ERR(Ready))
→ C

Fig. 6. To finish the handshake, the client sends an AreYouReady GET
request to the decoy host. If there is a Rebound router along the path from
the client to the decoy host, the Rebound router detects the AreYouReady
message and replaces it with a Ready GET request. If the client receives a
response matching the Ready request, then it knows that there is a Rebound
router along the path.

that encodes eight bits in 16 bytes of plaintext, so this requires
finding a 544-byte plaintext whose ciphertext (when encrypted
by the TLS session key) encodes these 34 bytes. Once the
client chooses the plaintext, it is sent to the decoy host over the
TLS connection, and the decoy router observes the ciphertext.
This process is illustrated in Figure 5.

At this point the decoy router extracts the ServerRandom
and CipherSuite from the stencil-encoded message. The decoy
router is now able to compute the session keys.

5) Completing the Handshake: Once the decoy router has
the keys for the TLS session, it can begin to monitor the
data sent from the client to the decoy host, and even rewrite
this data. To announce its presence to the client, the Rebound
router waits until it sees a GET request containing an URL
encoding the AreYouReady message from the client. The
Rebound router then rewrites the URL so that encodes the
Ready message, and sends the resulting request to the decoy
host. The decoy router replaces the AreYouReady message with
a Ready message by rewriting the packets as it routes them to
the decoy host, as shown in Figure 6.

When the client decrypts the response from the decoy
host, it will either receive an error message containing the
AreYouReady message, if there is no decoy router along the
path, or the Ready message, if it has successfully completed
the handshake with a Rebound router.

This handshake relies on several features to ensure that the
decoy router is talking with a valid Rebound client and vice
versa. First, the PremasterSecret is set by the client in such a
way that the decoy router can infer it from previously shared
information. Second, the client conveys the ServerRandom and
Ciphersuite, encrypted using previously shared information
known only to the client and decoy router. Third, using this
information in a normal TLS handshake gives the connection

95

Disallowed
Web Site

Decoy HostClient	 	

DR

(1) Client!Decoy Host
 GET E(Website:GET Req1)

(2) DR!Web Site
GET Req1

(3) Web Site !DR
Resp1

(4) Client !Decoy Host
GET E(Resp1)

(5) Decoy Host !Client
Err(E(Resp1))

Queue of
encoded
responses

Fig. 7. The Mole Protocol

the authentication and security attributes of TLS.

B. The Rebound Tunnel

For the Rebound tunnel to function effectively, the client and
decoy router must be able to exchange non-trivial amounts of
information bidirectionally over what is effectively a unidi-
rectional connection. Since there is no path from the decoy
host back through the decoy router, the information from the
decoy router must be conveyed to the decoy host in such a
way that this information eventually reaches the client. This is
the purpose of the Rebound mole protocol, which is illustrated
in Figure 7.

The key rules for the mole protocol are that packets must
always be forwarded immediately from the client to the decoy
host (in order to avoid susceptibility to timing analysis) and
that the data that is delivered to the decoy host must be a valid
TLS stream containing well-formed HTTP requests.

As with the handshake, the mole protocol addresses this
problem by taking advantage of the fact that the error message
many web servers return in response to a failed GET request
contains the URL that triggered the error. By rewriting client
requests to contain HTTP GET requests that contain URLs
that are extremely likely to cause errors and that encode the
desired messages, the decoy router is able to send information
back to the client via the decoy host.

When the mole protocol was conceived, we planned to use
TRACE requests instead of GET requests. Using TRACE
requests is more efficient than using intentionally erroneous
GET requests, but TRACE requests are a vector for several
attacks against the privacy and credentials of web browsers,
and therefore most web servers no longer accept TRACE re-
quests. We find that many sites still support TRACE requests,
however, and many sites close connections that have multiple
erroneous GET requests, so an ideal implementation of the
mole protocol would be able to use both types of requests,
depending on what the decoy host supports.

Communication between the client and the decoy router is
done via a protocol for multiplexing SOCKS or VPN con-
nections over a single virtual connection. We do not describe
the multiplexing protocol in this paper, but only describe how
messages are exchanged over this virtual connection.

1) The client creates an HTTP GET request whose URL
encodes a message to the Rebound decoy router. In our
example, this is a request to open a connection to a given
web site and then send message Req1 to that site. The
GET request with the URL encoding this message is
sent to the decoy host via the TLS connection.
Note that this encoding includes encryption; a third party
who observes the URL cannot decipher the message and
discover either the name of the web site or Req1. This
encryption is in addition to the ordinary encryption done
as part of the TLS protocol, so that knowledge of the
TLS session keys is not sufficient to decrypt the message
and discover Req1.

2) The decoy router intercepts and decrypts the request,
opens a connection to the web site, and sends the Req1
message to the web site.
At the same time, the decoy router immediately forwards
the packets containing the request to the decoy host.
If the decoy router has pending data for the client, it
will replace the URL of the original request with a new
URL that encodes as much data as will fit. If there
is no pending data, then the decoy router may rewrite
the packets with chaff (as discussed in Section V-B1)
or forward them as-is, depending on its heuristics for
maintaining an active connection to the decoy host. In
any case, the packets that are received by the decoy
router are immediately forwarded–possibly with altered
contents. The need to forward these packets immediately
is discussed in Section VIII-A3.

3) At some later point in time, the web site responds to
Req1 by sending Resp1 back to the decoy router. The
decoy router adds Resp1 to the queue of information to
send to the client in the future.

4) When Resp1 reaches the head of the queue, and another
request is received from the client on the Rebound
connection, the decoy router rewrites the URL of the
request with a new URL that encodes Resp1 (and any
other pending data for the client that will fit in the
request), and then forwards the packets immediately to
the decoy host. This URL is constructed in a way that
makes it extremely unlikely to match any resource on
the decoy host.
This encoding also includes encryption (using the same
mechanism as the client used to encrypt Req1), so that
a third party (or the decoy host) cannot decipher the
message and learn Resp1.
If the decoy router has no information to send, it simply
rewrites the request using a chaff URL, as described in
Section V-B1.

5) Because the URL created by the decoy router in the

96

previous step does not request a real web page that the
decoy host can serve, it will cause an error, such as a
404 “page not found” error. Such error responses often
contain the offending URL, which encodes the desired
message Resp1. The client then extracts Resp1 from the
error response and delivers it.

1) Chaff Generation: Observe that the responses from the
disallowed host in Step 2 of the mole protocol are queued up
at the decoy router (in the mole queue), awaiting subsequent
requests from the client into which they can be packed and
conveyed back to the client, via error responses from the decoy
host. This means that the client must generate a steady stream
of GET requests that the Rebound router can fill in with the
contents of this queue, because the only way that the decoy
router can send information to the client is by encoding it
in messages from the client to the decoy host. We call such
requests in this stream chaff requests, because they encode no
application data, but exist only to be filled in by the decoy
router.

The client must generate chaff with sufficient frequency to
ensure that the mole queue is emptied in a timely manner,
yet not so frequently as to overwhelm the network, the decoy
router, or the decoy host. To rate-limit the chaff, we use a
multi-level throttling approach with several layers of chaff.
The first layer comprises background chaff that is sent at a
regular fixed rate of 1 chaff message every 0.5 seconds. The
second layer comprises additional chaff that is sent depending
on whether the responses received by the client contain data,
or are simply responses to the chaff. The intuition here is that
if the client is seeing data in responses, then there is probably
more data pending in the mole queue at the decoy router,
and the client should increase its rate of chaff until it begins
to receive chaff responses. Once the client begins to receive
chaff responses, it should then reduce the rate at which it sends
chaff until either it reaches a minimum rate or the percentage
of chaff responses falls below a threshold.

To use the mole protocol within TLS, we must ensure that
the rewritten requests can be decrypted by the decoy host. The
decoy router cannot rewrite client requests with unencrypted
requests taken from the mole queue (containing URLs that
encode either data or chaff). Instead, the decoy router must
rewrite properly encrypted TLS requests. Thus, the mole queue
must store requests encrypted using the TLS keys; the requests
themselves, however, are as described earlier. Thus, the flow of
information from the client to the decoy host via the Rebound
tunnel is as described in Figure 8.

VI. IMPLEMENTATION

Rebound is written in C, C++, and Python. The Rebound
decoy router runs on Linux, and the client software runs on
Windows, MacOS X, Linux, and Android. Our implementa-
tion of Rebound is available as open source, as part of the
Curveball software release, at https://curveball.nct.bbn.com.

1) TLS ApplicationRecord
C(E(ClientSession,MsgToDR))

DR−−→ DH(E(ClientSession,MsgToClient)
2) TLS ApplicationRecord

DH(E(DecoySession,Err(MsgToClient)))→ C

Fig. 8. The mole tunnel. The client sends messages to Rebound by encoding
them in the URLs of GET requests that it sends to the decoy host. The
Rebound router replaces those URLs with URLs that encode the messages it
wishes to send to the client. The decoy host responds to the GET requests
with error messages containing those URLs, and the client observes these
error messages and decodes them to receive the messages from the Rebound
router.

TABLE I
BANDWIDTH OF HTTP, CURVEBALL, AND REBOUND

Protocol Bytes/s stdev
HTTP 1,174,240 83,812
Curveball 354,676 24,238
Rebound 129,398 9,655

VII. PERFORMANCE RESULTS

We measure our implementation of Rebound across the In-
ternet in order to characterize its performance in a realistic set-
ting. Our client is a laptop running MacOSX 10.10, connected
to the Internet via wifi through a residential Verizon FiOS
connection. The client is 12 hops away from the Rebound
router, with a typical round-trip latency between the client and
Rebound router of 26 milliseconds. The decoy host is adjacent
to the Rebound router.

Recall from Section V-B1 that the rate at which Rebound
downloads data to the client is a function of the rate at which
the client sends messages to the decoy, because the only way
that the Rebound router can send information to the client is
by encoding it in a packet sent from the client to the decoy.
For the benchmarks we describe in this paper, the client is
configured to send messages (either containing real data or
chaff) at a rate that fits within the characteristics of the route.
We can send data more quickly in short bursts, and we can
also send data more slowly (or at random intervals) to make
it more difficult to detect the Rebound traffic.

Table I shows typical transfer rates for 1 megabyte transfers
from the disallowed host to the client. Over this route, ordinary
HTTP achieves 1147 KB/s; Curveball achieves 346 KB/s.
Rebound achieves 126 KB/s for 1 megabyte transfers. which
is fast enough to stream 360p video or a standard-quality two-

TABLE II
LATENCY TO LOAD WEB PAGES USING HTTP/HTTPS OR REBOUND

Page load time in seconds (stdev)
Site Rebound Ordinary Web Connections
www.cnn.com 38.7 (4.24) 7.68 (6.28)
www.nytimes.com 17.5 (8.55) 3.31 (0.85)
en.wikipedia.org 2.1 (0.89) 0.38 (0.05)
slashdot.org 23.9 (6.04) 4.32 (0.66)
twitter search 9.44 (1.39) 0.91 (0.09)
google search 4.96 (1.30) 0.27 (0.09)

97

way video conference.
In a test environment, where the client, decoy host, and

disallowed hosts are all adjacent to the Rebound router and
there is no other traffic on the network, HTTP and Curveball
are at least an order of magnitude faster. Rebound is not
fast, even in ideal circumstances, but its performance degrades
substantially less in a shared, busy network.

For sustained transfers at 126 KB/s, our unoptimized Python
implementation of the Rebound router uses less than half of
the processing bandwidth of a single core of an Intel Xeon
E5620 2.4 GHz processor. For ordinary web browsing (rather
than sustained transfers at full speed) our implementation can
support multiple concurrent users, and we believe that an
optimized, multicore implementation will be able to support
many concurrent users.

Table II illustrates the impact of using Rebound on the user
experience for browsing the web. We use the ”Page load time”
plugin to the Google Chrome web browser to measure the time
to load web pages from several popular web sites. Although
browsing the web via Rebound is substantially slower than
browsing the web in the normal manner, it is still acceptable.
Most of the page load time for graphics- or ad-intensive sites
(such as www.cnn.com, www.nytimes.com, or slashdot.org) is
used to load advertisement graphics and trackers, and this does
not impact the user experience; the text the users are waiting
to read is rendered before the ads.

VIII. VULNERABILITY ASSESSMENT

Rebound’s approach to asymmetric decoy routing over TLS
eliminates a number of vulnerabilities present in other decoy
routing protocols, but also introduces some vulnerabilities.

We note that route flapping (or intentional manipulation of
routes by a third party [19]) is a concern for every decoy
routing protocol, including Rebound. Recent analyses have
shown that proper placement of decoy routers can reduce this
problem [9] and that decoy routing is reasonably robust against
route-based attacks [16].

In the rest of this section we describe vulnerabilities that
Rebound mitigates, and then the new vulnerabilities to address
in our future work.

A. Vulnerabilities Mitigated

1) Stack Fingerprinting: IP and TCP implementations (of-
ten referred to as “network stacks”) differ in the way that
they implement aspects of protocols that are not completely
specified, and in practice each implementation has a distinct
fingerprint. For example, different network stacks use different
TCP options, order the TCP options differently, use different
TCP clock rates, or use different TCP window size initial-
ization and update mechanisms, etc. If the decoy router is
running a different network stack than the decoy host, then
the difference between the stacks can be detected by a third
party unless the decoy router implementation actively imitates
the stack of the decoy host.

If the decoy router creates packets addressed to the client,
spoofing the address of the decoy host, then it must do

so in such a way that the spoofed packets are identical to
the packets that would have been created by the decoy in
the same circumstances. The Cirripede, Curveball, Telex, and
TapDance protocols are all susceptible to detection via stack
fingerprinting, to some extent, because they all forge packets
from the decoy host. Rebound does not need to mimic the
network stack of the decoy host, and therefore is immune to
stack fingerprint analysis. All information sent from Rebound
to the client goes through the decoy host. The Rebound
protocol never creates packets addressed to the client; only
the decoy host creates such packets.

2) Connection State Probes: An active third party can
probe the decoy host to see whether it is still connected to
the client, and whether that connection reflects the same state
that is observed at the client. The simplest probe is sending
TCP in-window data, and seeing how the decoy host responds.
If the connection has been terminated, the decoy host will
respond with an error.

There are several variations on this probe. If the decoy router
observes all of the traffic from the decoy host to the client,
then it can detect simple probes and either drop the probes,
or forge a response from the decoy host.

A more difficult type of probe to defeat uses the same
mechanism as 0trace [22], but for a different purpose. To create
this probe, the third party clones data packets from the client
to the decoy host and sends them via a different route (so
that the decoy router cannot observe them) to the decoy host.
Before sending the packets, however, the third party replaces
the packet TTL with a value calculated to expire at a router
very close to the decoy host. If the connection has been closed,
and if the decoy host is protected by a stateful firewall that
drops all packets for dead or malformed flows, then the packets
will never reach the router in front of the decoy host because
they will be discarded by the firewall. If the connection is
open, however, the firewall will admit the packets, and then
the packets will expire at the router and the third party will
observe the resulting ICMP packet generated by the router.
This probe is impossible to detect if it is successful.

There are also several ICMP message types and IP options
(such as IP option 7, “Record Route”) that can be used to probe
connection state. Although in some cases these messages are
archaic or deprecated, they are still supported by many routers,
and therefore must be handled correctly by a decoy router.

Protocols such as Telex and Curveball, which terminate the
original connection between the client and the decoy host and
replace it with a spoofed connection that appears to be between
the client and the decoy host but is actually between the client
and the decoy router, are susceptible to connection probes.
The Rebound solution to connection probes is to not terminate
and spoof, but instead use the original connection to the decoy
host as the conduit for its communication with the client. This
means that the connection to the decoy host is, by definition,
always in exactly the same state as observed by the client or a
third party. Connection probes will not reveal any discrepancy
between the client and decoy host states, because there is no
discrepancy to reveal.

98

3) Timing Analysis: Earlier decoy routing protocols were
susceptible to detection via timing and/or analysis; if the
latency between requests and responses from the decoy does
not match the typical latency of other connections to the decoy,
a third party may infer that the responses are coming from
another host. Some analyses are even able to deduce what
hosts generated the responses, by looking at a combination of
the timing and the length of the responses [14].

Rebound defeats timing analysis. Packets from the client to
the decoy host are always forwarded immediately to the decoy,
so the latency of the responses from the decoy is decoupled
from the latency of the responses from the disallowed host.
The same requests sent to the decoy host by an ordinary client
will result in responses with the same latency.

Recall from Section V-B that if a packet arrives at the
Rebound router, but it doesn’t yet have any “real” data from
the disallowed host to send to the client, it must still forward
the packet immediately, so it forwards chaff. It cannot simply
drop or delay the packet, because then there would be a
detectable difference in timing, or between the acknowledged
and expected sequence numbers.

Traffic analysis is also complicated by Rebound, since the
length of each message is obscured. The messages from the
client to the decoy host (or the disallowed host) are encoded
at a constant effective rate. The same number of messages, of
the same length, will be sent regardless of whether the client
has any data to send to the disallowed host, or whether the
disallowed host has any data to send to the client.

B. Vulnerabilities Introduced

Although Rebound masks the identity of the disallowed
host and the data it sends and receives, Rebound may be
detectable via traffic analysis because the traffic it generates
(a sequence of long GET requests and error responses) has
a characteristic pattern that may be identified even when
the channel is encrypted. Although these error responses are
encrypted by TLS, they will often differ, to an extent that is
observable, from ordinary traffic. To reduce the observability
of this signature, it is possible to intermingle the Rebound
requests with ordinary requests, but this further diminishes
the effective throughput of the hidden connection.

IX. CONCLUSIONS

In this paper, we presented Rebound, a novel decoy routing
handshake and tunnel protocol that handles asymmetric routes
and continues to actively use both directions of the connection
between the client and the decoy. In Rebound, all information
to be conveyed to the client is securely and privately conveyed
to the client via the decoy host; the decoy router never sends
information directly to the client. This approach eliminates
several vulnerabilities present in previous approaches to decoy
routing over asymmetric routes.

ACKNOWLEDGMENT

David Mankins and Josh Karlin made substantial contribu-
tions to the design and implementation of Rebound.

We thank the reviewers for their comments and suggestions
for improving this paper.

REFERENCES

[1] “Analogbit: Tcp-over-dns tunnel software howto,” http://analogbit.com/
tcp-over-dns howto.

[2] “Freegate,” http://www.dit-inc.us/freegate.
[3] “Global pass,” http://gpass1.com/gpass/.
[4] “Guardster,” http://www.guardster.com.
[5] “Proxify web proxy,” https://proxify.com.
[6] “Ultrasurf,” http://www.ultrareach.com.
[7] A. Baliga, J. Kilian, and L. Iftode, “A web based covert file system,”

Proceedings of the 11th USENIX workshop on Hot topics in operating
systems HOTOS, 2007.

[8] S. Burnett, N. Feamster, and S. Vempala, “Chipping away at censorship
with user-generated content,” USENIX Security Symposium, 2010.

[9] J. Cesareo, J. Karlin, M. Schapira, and J. Rexford, “Optimizing
the placement of implicit proxies,” http://www.cs.princeton.edu/∼jrex/
papers/decoy-routing.pdf, June 2012. [Online]. Available: http://www.
cs.princeton.edu/∼jrex/papers/decoy-routing.pdf

[10] R. Deibert, “Psiphon,” http://psiphon.civisec.org/.
[11] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-

generation onion router,” 13th USENIX Security Symposium, 2004.
[12] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger,

“Infranet: Circumventing Web Censorship and Surveillance,” in 11th
USENIX Security Symposium, San Francisco, CA, August 2002.
[Online]. Available: http://wind.lcs.mit.edu/papers/

[13] Y. He, M. Faloutsos, S. Krishnamurthy, and B. Huffaker, “On Routing
Asymmetry in the Internet,” in IEEE GLOBECOM 2005, November
28–December 2, 2005.

[14] A. Hintz, “Fingerprinting websites using traffic analysis,” in Privacy
Enhancing Technologies, ser. Lecture Notes in Computer Science,
R. Dingledine and P. Syverson, Eds. Springer Berlin Heidelberg,
2003, vol. 2482, pp. 171–178. [Online]. Available: http://dx.doi.org/10.
1007/3-540-36467-6 13

[15] A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov, “Cirri-
pede: circumvention infrastructure using router redirection with plausible
deniability,” in Proceedings of the 2011 ACM Conference on Computer
and Communications Security (CCS), October 2011, pp. 187–200.

[16] A. Houmansadr, E. L. Wong, and V. Shmatikov, “No direction home:
The true cost of routing around decoys,” in Proceedings of the 2014
Network and Distributed System Security Symposium (NDSS), ser. NDSS
’14, February 2014.

[17] W. John, M. Dusi, and k. claffy, “Estimating Routing Symmetry on
Single Links by Passive Flow Measurements,” in The 6th International
Wireless Communications and Mobile Computing Conference (IWCMC
2010), June 28–July 2, 2010.

[18] J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P.
Mankins, and W. T. Strayer, “Decoy routing: Toward unblockable
internet communication,” in Proceedings of the 2011 USENIX Workshop
on Free and Open Communications on the Internet (FOCI), August
2011.

[19] M. Schuchard, J. Geddes, C. Thompson, and N. Hopper, “Routing
around decoys,” in Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS), ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 85–96. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382209

[20] E. Wustrow, C. M. Swanson, and J. A. Halderman, “Tapdance: End-to-
middle anticensorship without flow blocking,” in 23rd USENIX Security
Symposium, 2014.

[21] E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman, “Telex:
Anticensorship in the network infrastructure,” in Proceedings of the 20th
USENIX Security Symposium, August 2011.

[22] M. Zalewski, “0trace - traceroute on established connections,”
http://lwn.net/Articles/217023, January 2007.

99

