
Comments on certain past cryptographic flaws affecting
fully encrypted censorship circumvention protocols

David Fifield
david@bamsoftware.com

September 12, 2023

Abstract
This article presents three retrospective case studies of cryptography-
related flaws in censorship circumvention protocols: a decryption oracle in
Shadowsocks “stream cipher” methods, non-uniform Elligator public key
representatives in obfs4, and a replay-based active distinguishing attack
exploiting malleability in VMess. These three protocols come from the
family of “fully encrypted” circumvention protocols: their traffic in both
directions is indistinguishable from a uniformly random stream of bytes
(or at least, is supposed to be). Some of the flaws are fixable implemen-
tation errors; others are rooted in more fundamental design errors. Their
consequences range from enabling passive probabilistic detection to com-
plete loss of confidentiality. All have been fixed, mitigated, or superseded
since their discovery.

My primary purpose is to provide an introduction of circumvention
threat models to specialists in cryptography, and to make the point that
while cryptography is a necessary tool in circumvention, it is not the sole
or even most important consideration. Secondarily, I want to furnish a few
instructive examples of cryptographic design and implementation errors
in uncontrived, deployed protocols. While the flaws I discuss affected sys-
tems of significant social importance with millions of collective users, they
are not well-known outside a small circle of specialists in circumvention.

1 Censorship circumvention
Censorship circumvention studies how to achieve communication between two
network endpoints despite the interference of a censor. In a typical scenario,
there is a client that wants to reach some destination (a web site, for example).
The client’s network access is mediated by a censor that tries to prevent the
client from communicating with the destination in question. The censor is pre-
sumed, at a minimum, to block all network traffic that is addressed directly to
or from the prohibited destination, and may also inspect and block other traffic
with the aim of preventing any indirect access. The censor may, for exam-
ple, check packet contents for transparent references to the blocked destination,
or look for byte patterns that are characteristic of proxy protocols.

1

mailto:david@bamsoftware.com


A system for circumvention, then, must satisfy at least two requirements.
It must access the destination only indirectly (because direct access is blocked),
and it must disguise the content of the communications stream (in particular,
it must not expose the true destination address). Put simply: avoid address
blocking, avoid content blocking.

The abstract solution to the circumvention problem is some sort of obfus-
cated proxy. “Proxy” means indirect access via an intermediary; “obfuscated”
means using protocols and access patterns that hide the fact that a proxy is in
use. Many circumvention systems have been invented, instantiating the general
idea in many ways. Here I focus on a particular family of circumvention proto-
cols: the fully encrypted protocols, or FEPs for short.1 Protocols in this family
use cryptography in an attempt to make every part of their communications
stream (computationally) indistinguishable from a uniformly random sequence
of bytes. In contrast to TLS, for example, with its partially plaintext handshake
and recognizable record format, these protocols are designed to offer a censor
no fixed byte patterns that might serve as features for classification. Fully en-
crypted protocols have a long history of use in censorship circumvention, going
back at least to 2012 with the obfs2 protocol [3]. Why protocols of this type
should be effective in circumvention is a separate question. I will return to
this point later, but for now, let it suffice to know that they are, empirically,
effective, and that distinguishability from random is considered a security bug.

Of course, a network protocol is more than a sequence of bytes, and real
censors are not limited to passive distinguishability attacks. To place a circum-
vention protocol in the family of fully encrypted protocols is not to claim that
it actually satisfies all the security properties you might want such a protocol to
have [5], nor does it imply there are no ways to attack it (including, potentially,
the very fact of its own high apparent randomness [14]). Taking packet bound-
aries and timing into account, performing replay attacks, port scanning—all
these techniques and more are fair game for the censor. In this article I discuss
only vulnerabilities and attacks of a cryptographic nature.

Given its focus, an article like this runs the risk of giving an exaggerated
impression of the importance of content obfuscation in circumvention. It is a
necessary element, to be sure, but circumvention is not, as one might think at
first, purely a matter of encryption or steganography. In practice, obscuring
the content of communication is comparatively easy—what’s harder is stopping
the censor from discovering and blocking endpoint addresses, particularly the
addresses of proxy servers. This latter challenge demands separate consideration
and dealing with it requires an almost orthogonal set of techniques. Even within
the scope of content obfuscation, fully encrypted protocols represent just one
approach among many. What I will present is a significant facet of a much larger
field. It is good to remember, too, that while there are still advancements to be
made, censorship circumvention is not an intractable or unsolved problem: it is
used with success by millions daily.

1The “fully encrypted” terminology was introduced by Fenske and Johnson [5], who are
formalizing this class of protocols and looking at applications beyond circumvention. These
protocols have also been known as “looks-like-nothing” or “randomized” protocols.

2



2 Shadowsocks stream ciphers decryption oracle
Shadowsocks is an encrypted proxy protocol. It is particularly commonly used
in China, but its simplicity and effectiveness have made it popular in many other
places as well. There are many independent but compatible implementations
of Shadowsocks, which, like the protocol itself, are under ongoing development.
The vulnerability I will describe is in an older variant of the protocol, now
deprecated but still widely supported, known as “stream ciphers” methods.
(The newer and currently recommended “AEAD ciphers” methods, while not
perfect, do not have this particular problem.) In the worst case, the vulnerability
leads to loss of confidentiality in past sessions, to an attacker who is able to guess
a short prefix of their plaintext. It works by tricking a Shadowsocks server into
sending it the decryption of a recorded ciphertext to an attacker-controlled host.
The vulnerability was discovered in 2020 by Zhiniang Peng [11].

Shadowsocks stream ciphers methods [13] are easy to describe and imple-
ment. Only symmetric-key cryptography is used. Client and server share a key,
derived from a password, which is used to encrypt all communications between
them. The same key is used in both directions and across all sessions; only
the initialization vector changes in each new session. The client connects to
the server and sends it one continuous stream of ciphertext, which represents a
target specification followed by upstream data to be sent through to the target.
The server decrypts the target specification, makes a TCP connection to the
target, then begins decrypting data from the client and sending it to the target,
and encrypting data from the target and sending it to the client.

client→server IV encrypted target encrypted data…
server→client IV encrypted data…

The target specification is 7 bytes long and encodes an IPv4 address and port:2

type IPv4 port
1 A.B.C.D XX

These protocol details are enough to imply the attack, though finding it takes a
little creativity. The crucial observation is that there is no integrity protection
on ciphertexts: even without knowledge of the shared secret key, an attacker can
send data to a Shadowsocks server and the server will try to act on it. If you send
random bytes to a Shadowsocks server, with probability 1/256 the first byte will
decrypt to a 1, which will cause the server to interpret the decryption of the next
6 bytes as an IPv4 address and port. The server will connect to that address
and send it the decryption (under its key) of whatever follows. A Shadowsocks
server knows a secret key and has proxy functionality: abstractly, it is a machine
for decrypting a ciphertext stream and sending it somewhere (the “somewhere”
itself being part of the ciphertext). In other words, a Shadowsocks server can
be seen as a kind of decryption oracle.

2Target specifications formats are taken from SOCKS [9, §4]. Besides type 1, IPv4, there
are two other possibilities: type 3 is a hostname and type 4 is an IPv6 address. The attack is
easiest with the IPv4 type, because addresses are short and of fixed length.

3



Not knowing the server’s secret key, an attacker cannot produce ciphertexts
of its own that will decrypt to anything meaningful. But what it can do is replay
a past legitimate ciphertext. The full attack is to send the server a previously
recorded encrypted Shadowsocks session, tweaking the first 7 bytes so that they
decrypt to a specification of an address controlled by the attacker. Properly
adjusting the first 7 bytes requires the attacker to know or guess the plaintext
of those bytes. If the attacker can tolerate the data being sent to any TCP port,
then 5 bytes are enough; if the attacker controls a /24 network, only 4 bytes are
needed. Because the same key is used in both directions, both client→server
and server→client streams can be attacked. It is often easier to guess the initial
bytes in the server→client direction; for example, all HTTP/1.1 responses begin
with the 7 bytes ‘HTTP/1.’. This is the beginning of a recorded server→client
Shadowsocks session (minus the initialization vector):

7c20f534e986dbce37f555c6760ea24faa928f760db22438c8963c57e83b36fe

Sending this recorded ciphertext back to the server that produced it results in
the server closing the connection. If we could peek at the server’s logs, we would
see a warning:

unsupported addrtype 72, maybe wrong password or encryption method

The server decrypted the first byte and got the value 72, which is the ASCII
code for ‘H’—the first byte of ‘HTTP/1.’. Because 72 is not one of the known
target specification types 1, 3, or 4, the server closes the connection.

Suppose an attacker is able to guess the plaintext prefix ‘HTTP/1.’ (which is
485454502f312e in hexadecimal) and controls a host at 203.0.113.5:8000 (whose
target specification is 01cb0071051f40). The attacker XORs out the known
plaintext and XORs in their own target specification, changing the first 7 bytes
to 7c20f534e986db⊕ 485454502f312e⊕ 01cb0071051f40 = 35bfa115c3a8b5:

35bfa115c3a8b5ce37f555c6760ea24faa928f760db22438c8963c57e83b36fe

On receiving this modified ciphertext, the Shadowsocks server connects to the
attacker’s host and sends it the decryption of the remainder of the stream.

Minor details depend on what stream cipher the server is configured to use.
With a block cipher in CTR mode, every plaintext byte after the modified prefix
is decrypted accurately. In CFB mode, the second block will be garbage, because
of the attacker’s modification of the first block, but every block after that will
be decrypted correctly. The attacker has a special advantage when the server
uses CFB mode. Because of the self-synchronizing property, the attacker can
concatenate (fragments of) multiple past sessions and have them all decrypted
in sequence: one guessed plaintext serves to decrypt all past and future sessions.

Some Shadowsocks server implementations have (for other reasons) a replay
filter that prevents the use of previously seen initialization vectors.3 The attack
can be modified to work even in the presence of such a filter [6].

3https://github.com/shadowsocks/shadowsocks-org/issues/44

4

https://github.com/shadowsocks/shadowsocks-org/issues/44


Shadowsocks was designed with the goal of access, not confidentiality, in-
tegrity, or any other security property. But here, a lack of integrity protection
led to a loss of confidentiality. Technically, a loss of user privacy does not,
in itself, count as failure in a strictly access-oriented threat model—but the fact
that it provides an efficient test to identify Shadowsocks servers certainly does.
(Having identified a server, a censor can block its IP address, making it useless
for circumvention.) The problems with Shadowsocks stream ciphers methods
ran too deep to be fixed. They have been deprecated, and users encouraged to
transition to newer “AEAD ciphers” methods (which fortunately had already
been designed and deployed, in response to other, less severe vulnerabilities4).

3 obfs4 non-uniform public key representatives
obfs4 is another fully encrypted protocol whose origin is in circumvention. For
many years, it has been the most-used circumvention protocol used to access
Tor. The protocol is more sophisticated than Shadowsocks, featuring client au-
thentication, a Diffie–Hellman exchange (X25519) with ephemeral session keys
and forward secrecy, and options for traffic shaping [15]. Unlike Shadowsocks,
obfs4 is not itself a proxy protocol: it delegates proxying to another layer, such
as Tor. The original implementation of obfs4 is in a program called obfs4proxy.

obfs4’s use of public-key cryptography (in the initial Diffie–Hellman ex-
change) adds a complication, namely that ephemeral public keys (points on
Curve25519 [1]) must be exchanged, and these, like every other part of the pro-
tocol, should be indistinguishable from random. Encoding (x, y) coordinates as
binary strings does not meet the requirement, because an observer can check
whether x and y satisfy the curve equation y2 = x3+486662x2+x. Neither does
it suffice to compress the point to just its x-coordinate, since an observer can
check whether the quantity x3+486662x2+x is a square in GF(2255−19), which
is true of every x on the curve, but only half of random strings. obfs4 solves
the problem using Elligator [2], a mapping between elliptic curve points and
bit string “representatives” that are indistinguishable from random. obfs4proxy
originally used the Elligator implementation from the agl/25519 package [8],
one of the few implementations available in 2014, when obfs4proxy was created.

There turned out to be minor oversights in agl/25519, and the way it was
integrated into obfs4proxy, that caused public key representatives to be distin-
guishable from random in three different ways, some rather subtle. In what
follows, recall that Curve25519 is defined over GF(q), with q = 2255 − 19. I will
number bits starting from 0, in order from least to most significant. The ways
public key representatives differed from random were:

1. Representatives were not always canonical.

2. Bit 255 (the most significant bit) was always zero.

3. Only points from the large prime-order subgroup were represented.
4https://github.com/shadowsocks/shadowsocks-org/issues/30

5

https://github.com/shadowsocks/shadowsocks-org/issues/30


The distinguishing attacks enabled by these features are passive and proba-
bilistic. A binary classifier built on them will have 100% sensitivity (obfs4 never
falsely marked as random), but less than 100% specificity (random sometimes
falsely marked as obfs4). Taking advantage of them does not require a censor to
send its own traffic, but because a single observation is not conclusive, it would
need to correlate multiple observations before marking an endpoint as obfs4
with high confidence.

Non-canonical representatives. The final step of the Elligator inverse map
(which takes an elliptic curve point to its bit string representative) involves
taking a square root in the finite field [2, §5.3]. An instantiation of Elligator is
parameterized by what might be called a “canonical” square root function, one
with the property that

√
a2 =

√
(−a)2 for all field elements a [2, §5.1]. That is,

we designate just over half the field elements as “non-negative,” and the image
of the square root function consists of exactly those elements. A convenient
definition of “non-negative” for Curve25519, suggested by its authors, is the
lower half of the field, the elements {0, 1, . . . , (q − 1)/2}. When there are two
options for a square root, take the smaller of the two [2, §5.5]. Observe that the
smaller option fits into 254 bits; this will be relevant for the next distinguisher.

The agl/ed25519 Elligator implementation did not do this canonicalization of
the final square root; instead it mapped a given input systematically to either its
negative or non-negative root.5 This fact made possible a passive distinguisher:
observe a representative, interpret it as a field element, square it, then take
the square root using the same non-canonical square root algorithm.6 With
representatives produced by an affected version of obfs4proxy, the output of
the square-then-root operation would always match the input. With random
strings, the output would match only half the time.

An error of this kind is hard to detect, because it does not cause interop-
erability problems. The Elligator forward map takes every representative and
its negative to the same elliptic curve point, so key exchanges continue to work
even when an implementation systematically produces only one of two possi-
ble preimages. The problem was fixed in obfs4proxy-0.0.12 in December 2021,7
which replaced the agl/ed25519 package with a new implementation.

Because the order of the finite field of Curve25519 is close to a power of 2,
bit 254 of the binary representation of field elements is very nearly a sign bit:
virtually all “negative” elements (using the convention above) have bit 254 equal
to 1. Another way to understand the non-canonical square root issue is as a
correlation: bit 254, by itself, had a nearly uniform 0–1 distribution, but it
was not independent of the lower-order bits. This interpretation leads us to
the next distinguishing feature, which has to do with what data type an Elliga-
tor inverse map function should output, and who is responsible for performing
certain operations.

5https://github.com/agl/ed25519/pull/12, https://github.com/agl/ed25519/issues/27
6Suggested by Biryuzovye Kleshni: https://github.com/Yawning/libelligator/issues/1.
7https://gitlab.com/yawning/obfs4/-/merge_requests/3

6

https://github.com/agl/ed25519/pull/12
https://github.com/agl/ed25519/issues/27
https://github.com/Yawning/libelligator/issues/1
https://gitlab.com/yawning/obfs4/-/merge_requests/3


Most significant bit always zero. Elligator representatives are formally de-
fined as bit strings [2, §5.4]—in the case of Curve25519, bit strings of length 254.
But in programming interfaces and network protocols, it is often more practical
to work with byte arrays than bit strings. An elliptic curve point representative
therefore needs to be encoded as an array of 32 bytes (256 bits). The question,
then, is what to do with the two extra bits (bits 254 and 255), and there’s an
easy answer: randomize them when encoding and ignore them when decoding.
Whether this auxiliary randomization is done in the caller or the callee is an
implementation detail—but it must be done somewhere.

Neither obfs4proxy (the caller) nor agl/ed25519 (the callee) randomized the
high-order bits of the byte array. Above, I have described how bit 254 was
sometimes set and sometimes not, in a systematic way that was distinguishable
from random. Besides that, nothing ever touched bit 255, with the result that
the most significant bit of public key representatives was always unset.8

This error may be attributed to an unclear API boundary, combined with the
fact that the most natural representation of a bit string in many programming
languages is a byte array. Conceptually, an implementation of Elligator over
Curve25519 needs a second pair of encoding and decoding functions (however
trivial) that convert between 254-bit bit strings and 32-byte byte arrays. This
need is not obvious from a formal description of the map.

The always-zero distinguisher was fixed, along with the one already dis-
cussed, in obfs4proxy-0.0.12. The revised Elligator implementation takes an
additional “tweak” parameter, which is used to randomize the high-order bits.

Only points from the large prime-order subgroup. The elliptic curve
Curve25519 has order 8p, where p is a large prime number. In other words,
the cofactor of the curve is 8. To avoid small-subgroup attacks, the base point
of the X25519 key exchange algorithm is chosen to generate the subgroup of
order p. In addition, secret key scalars are “clamped”—forced to be a multiple
of 8—such that multiplying any point by a secret key results in a point on the
order-p subgroup. In another easy-to-overlook subtlety, it is important that
Elligator representatives not be constrained to representing only points on the
large prime-order subgroup, for the simple reason that random strings do not
always map to that subgroup. Older versions of obfs4proxy applied the Elligator
inverse map to points on the large prime-order subgroup, so its representatives
were distinguishable.9 A test for this behavior was to multiply a set of observed
points by p, and check for the result always being the identity element.

One fix is to add a random point on the order-8 subgroup to each public
key point before encoding. Thanks to the clamping of X25519 private keys, the
low-order component disappears during key exchange. This fix was adopted in
obfs4proxy-0.0.12, but an implementation error prevented it from working until
a further correction was made in obfs4proxy-0.0.14 in September 2022.10

8https://bugs.torproject.org/tpo/anti-censorship/team/91
9https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007

10https://gitlab.com/yawning/obfs4/-/merge_requests/9

7

https://bugs.torproject.org/tpo/anti-censorship/team/91
https://bugs.torproject.org/tpo/anti-censorship/pluggable-transports/lyrebird/40007
https://gitlab.com/yawning/obfs4/-/merge_requests/9


There is no evidence that censors used any of these distinguishers to identify
and block obfs4 connections. We may speculate as to why not. It could be that
censors were simply ignorant—the distinguishers do take some skill to detect,
after all. Or perhaps censors did, in fact, use them, but were never caught in the
act by someone in a position to document it. (We can be sure, at least, that it
is not because obfs4 is too small a target to be worth a censor’s attention, since
censors do try to discover and block obfs4 servers in other ways—by attacking
address distribution mechanisms, for example.) I will suggest another possibil-
ity: censors, for whatever reason, find it unappealing to do the kind of stateful
processing over multiple flows that is needed to take advantage of distinguishers
like these. I will return to this idea in the final section.

4 VMess header malleability
VMess is a fully encrypted proxy protocol, one of the native protocols of the
V2Ray proxy framework [12]. Like Shadowsocks, it is based on symmetric cryp-
tography and a shared secret (a 16-byte UUID). Unlike Shadowsocks and obfs4,
VMess is not always exposed on the wire: it may be used only as an inner proxy
protocol inside some other transport protocol, like WebSocket or QUIC.

The VMess implementation in V2Ray was vulnerable to an active probing
attack to identify VMess servers, caused by the way data structures are repre-
sented in the encrypted protocol header, and interactions between the protocol
parser and the network. The vulnerability was reported in 2020 by GitHub
users p4gefau1t and studentmain [10]. For my understanding, I am grateful for
the English summary by GFW Report [7]. I will present a simplified version
(omitting details of overcoming replay protection).

A VMess client request consists of a 16-byte authentication header, a com-
mand block (which contains the target specification among other things), and a
data stream. The authentication header is a MAC, keyed by the user’s random
UUID, of a recent timestamp, which must be within 2 minutes of the current
time. The command block is encrypted with AES in CFB mode and a key
derived from the UUID and the timestamp. The data stream is encrypted with
a key and initialization vector stored in the command block. The tolerance
interval on timestamps permits an attacker to replay authenticated requests for
a short time, which is the first part of the attack.

16 bytes variable variable
auth info encrypted command block encrypted data…

The command block contains many fields. I will highlight just the ones needed
to understand the attack, particularly the variable-length padding and address
fields and the final hash. The address length N depends on the address type.

39.5 bytes 4 bits 1 byte N bytes P bytes 4 bytes
other fields P address type address padding hash

The encrypted command block has a limited form of integrity protection. There
is a field at the end with a hash of the preceding bytes, working something like a

8



MAC-then-encrypt construction (except that the hash is not keyed by a secret).
The problem is that the overall length of the command block is variable, because
of the variable-length padding and address fields it contains. The receiver of a
command block cannot locate the hash field to verify it, without parsing the
very data the hash is meant to protect.

The idea of the active probing attack is to repeatedly replay an authentic
client request, taking advantage of the lack of integrity in the command block to
modify the field P that indicates how much padding there is. Record a legitimate
encrypted command block, and set the 4 ciphertext bits that correspond to the
P field to 0000. Send the modified command block to the suspected VMess
server, but stop just before the variable-length fields. Then resume sending,
one byte at a time (the values are not important), with a delay after each byte,
until the server closes the connection. The hash verification will almost certainly
eventually fail, because of the changes to the ciphertext, but a vulnerable VMess
server will not disconnect until it has read the full N bytes of address, P bytes
of padding, and 4 bytes of hash. Repeat the attack another 15 times, setting
the bits that correspond to P to 0001, 0010, . . . , 1111 in turn. Record how many
bytes the server receives, in each attempt, before closing the connection. The
sign of a VMess server is that the maximum and minimum byte counts differ
by 15, with every value in between represented.

V2Ray developers mitigated the vulnerability within a few days. In v4.23.4,
the server disconnects after a timeout even if it has not yet received the full hash,
and does not close a connection immediately when hash verification fails.11

5 The bigger picture
I intend for this article to help calibrate a practical mental model of censorship
and circumvention. For that, we need to step back from close examination of
cryptographic flaws and take a wider view of how cryptography fits into cir-
cumvention. The core criterion by which a circumvention system is judged is
blocking resistance. It is by this criterion that we decide what counts as a
vulnerability (what might get the system blocked), and model how difficult or
expensive a vulnerability might be to exploit. The notion of blocking resistance
is hard to characterize fully—depending as it does partially on the unknown
resources and preferences of sometimes volatile censors—but one thing we may
say is that it is not solely cryptographic. Usually, other factors matter more,
such that minor errors in the cryptography or its implementation do not much
diminish overall blocking resistance. This is not to excuse shoddy crypto: de-
velopers should take seriously their responsibility to minimize risk of harm to
users. It is only to say that when when the goal is not getting blocked, fo-
cusing too narrowly on cryptography can leave one open to more elementary
vulnerabilities.

Intuitions about what is easy or hard for a censor to do can be misleading.
An illuminating question is: why should fully encrypted protocols be useful for

11https://github.com/v2ray/v2ray-core/releases/tag/v4.23.4

9

https://github.com/v2ray/v2ray-core/releases/tag/v4.23.4


circumvention at all? These protocols originated in circumvention, and persist
in that use because they continue to work. But isn’t the fact that they have no
identifiable plaintext features, and overall high randomness, itself a fingerprint?
To be sure, it is—but experience shows it not as easy to exploit for blocking as
one might initially think. The first evidence of the detection of fully encrypted
protocols purely by passive measurement of randomness appeared only in 2021,
in China [14], around a decade after the debut of that family of protocols. And
even that showed signs of being somewhat tentative, being limited to certain
foreign IP address ranges and a subsampled fraction of traffic [14, §6]. It is
not that censors haven’t wanted or tried to block fully encrypted protocols: the
censorship system in China had been discovering proxies of obfs4’s predecessor
protocols obfs2 and obfs3 by active probing as early as 2013 [4, §5.4].12 And since
before that, censors have attacked circumvention proxies (fully encrypted or oth-
erwise) by attacking the systems used to distribute proxy addresses, which has
the advantage of being more general: a proxy, once discovered, can be blocked
once and for all by its IP address, with no need for online protocol classification.
We should not assume that censors always act rationally, but to judge by their
behavior, censors find other means of attacking fully encrypted protocols more
attractive (simpler, more reliable, less expensive) than what might seem to be
the more obvious way of detecting their unusually high randomness.

It would seem that, in deploying a simple strategy for content obfuscation
(fully encrypted protocols), circumvention developers hit on a weak spot of
censors. As to the question of why censors might have difficulty blocking fully
encrypted protocols, I cannot give a definite answer, but I can suggest a way
of thinking about it. Network censorship devices are often modeled as binary
classifiers: for each unit of traffic (packet, connection), they decide whether it
should be blocked or allowed to pass. But censorship is not only a game of
indistinguishability, it is also a game of costs. Put another way, circumvention
is more than a matter of blending in with “normal” traffic (however that may be
defined). If a circumvention protocol blends in perfectly with traffic the censor
regards as unimportant, its blocking resistance is low, because the censor can
block all traffic of that type without regret. Conversely, even an imperfect
imitation of traffic the censor values highly may have high blocking resistance,
because the censor has to be careful not to block the normal traffic in the course
of trying to blocking circumvention traffic. Think of a censor not as trying
to classify traffic correctly per se, but to maximize utility when classification
decisions are coupled to costs. It may be that it hard to build a classifier that
correctly detects a large fraction of fully encrypted proxy traffic without also
falsely detecting too much other traffic. The task is made more difficult by the
unequal base rates of non-circumvention and circumvention traffic.

There are costs to misclassification in both directions. False negatives (failing
to block what should be blocked) obviously work against the censor’s purpose,
but false positives (blocking what should have been allowed) have costs too.

12Because of this, obfs4 was designed not only to be fully encrypted but also to resist active
probing attacks [15, §2].

10



The costs of false positives are hard to quantify, but may take the form of, for
example, generally higher levels of discontent, and people being unable to get
work done because the resources they need are blocked. Censors differ in their
preference for overblocking versus overblocking. The same censor may even have
different preferences at different times; for example, it may choose to exchange
more false positives for fewer false negatives around sensitive political events.

Besides the costs of misclassification, there are “overhead” costs associated
with running a censorship system. These include the costs of buying hardware,
training personnel, and researching detection rules. To these we may add the
costs of actually performing classification, which are measured in CPU cycles
and megabytes of memory. Not all classifiers are equally efficient: ones that
only need to look at single packets in isolation, or just the first few packets of a
connection, are cheaper to run than ones that require computing statistics over
long packet sequences or correlating measurements across many connections.
This may help explain why probabilistic classifiers, like those in the section on
obfs4, have not found much purchase among censors (even apart from the risk
of incorrect classification).

6 Thanks
The vulnerabilities I discovered myself are the second and third in the obfs4
section. Credit for the others goes to Zhiniang Peng, Biryuzovye Kleshni,
p4gefau1t, and studentmain.

Special thanks go to Loup Vaillant, whose efforts in documenting and ex-
plaining Elligator, and encouraging better and safer implementations, have been
heroic. The detailed information at elligator.org was essential to my understand-
ing of Elligator and how it is used in obfs4. I am grateful to GFW Report for
an English summary of the VMess header malleability vulnerability [7]. I thank
Adam Langley, Zhiniang Peng, studentmain, Loup Vaillant, Xiaokang Wang,
and Yawning Angel for comments on a draft of this article.

References
[1] Daniel J. Bernstein. Curve25519: new Diffie-Hellman speed records. In

Public Key Cryptography. Springer, 2006.
https://cr.yp.to/ecdh.html#curve25519-paper.

[2] Daniel J. Bernstein, Mike Hamburg, Anna Krasnova, and Tanja Lange.
Elligator: Elliptic-curve points indistinguishable from uniform random
strings. In Computer and Communications Security. ACM, 2013.
https://elligator.cr.yp.to/papers.html.

[3] Roger Dingledine. Obfsproxy: the next step in the censorship arms race,
February 2012.
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race/.

11

https://elligator.org/
https://cr.yp.to/ecdh.html#curve25519-paper
https://elligator.cr.yp.to/papers.html
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race/


[4] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas
Weaver, and Vern Paxson. Examining how the Great Firewall discovers
hidden circumvention servers. In Internet Measurement Conference.
ACM, 2015. https://ensa.fi/active-probing/.

[5] Ellis Fenske and Aaron Johnson. Security notions for fully encrypted
protocols. In Free and Open Communications on the Internet, 2023.
https://www.petsymposium.org/foci/2023/foci-2023-0004.php.

[6] David Fifield. Decryption vulnerability in Shadowsocks stream ciphers,
February 2020. https://github.com/net4people/bbs/issues/24.

[7] GFW Report. Summary on recently discovered V2Ray weaknesses, June
2020. https://gfw.report/blog/v2ray_weaknesses/en/.

[8] Adam Langley. Implementing Elligator for Curve25519, December 2013.
https://www.imperialviolet.org/2013/12/25/elligator.html.

[9] Marcus D. Leech, David Koblas, Ying-Da Lee, LaMont Jones, Ron Kuris,
and Matt Ganis. SOCKS protocol version 5. RFC 1928, March 1996.
https://www.rfc-editor.org/info/rfc1928.

[10] p4gefau1t and studentmain. vmess协议设计和实现缺陷可导致服务器遭
到主动探测特征识别(附PoC) vmess protocol design and implementation
flaws can lead to servers being identified by active probing (with PoC),
May 2020. https://github.com/v2ray/v2ray-core/issues/2523.

[11] Zhiniang Peng. Redirect attack on Shadowsocks stream ciphers, February
2020. https://github.com/edwardz246003/shadowsocks/tree/
ba5df18abf6792d0599c36a9e6c3398e7d0c1fd8.

[12] Project V. VMess, February 2021. https://github.com/v2fly/
v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/
en_US/developer/protocols/vmess.md.

[13] Shadowsocks. Stream ciphers, May 2023.
https://github.com/shadowsocks/shadowsocks-org/blob/
8c44e881ec382037b113c0945c90e49d1801c6ae/docs/doc/stream.md.

[14] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter
Anderson, Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin,
and Eric Wustrow. How the Great Firewall of China detects and blocks
fully encrypted traffic. In USENIX Security Symposium. USENIX, 2023.
https://gfw.report/publications/usenixsecurity23/en/.

[15] Yawning Angel. obfs4 (the obfourscator), January 2019. https://gitlab.
com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt.

12

https://ensa.fi/active-probing/
https://www.petsymposium.org/foci/2023/foci-2023-0004.php
https://github.com/net4people/bbs/issues/24
https://gfw.report/blog/v2ray_weaknesses/en/
https://www.imperialviolet.org/2013/12/25/elligator.html
https://www.rfc-editor.org/info/rfc1928
https://github.com/v2ray/v2ray-core/issues/2523
https://github.com/edwardz246003/shadowsocks/tree/ba5df18abf6792d0599c36a9e6c3398e7d0c1fd8
https://github.com/edwardz246003/shadowsocks/tree/ba5df18abf6792d0599c36a9e6c3398e7d0c1fd8
https://github.com/v2fly/v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/en_US/developer/protocols/vmess.md
https://github.com/v2fly/v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/en_US/developer/protocols/vmess.md
https://github.com/v2fly/v2fly-github-io/blob/90cfaec7ee5e62fae5cc8351be7da7da82b3ed4e/docs/en_US/developer/protocols/vmess.md
https://github.com/shadowsocks/shadowsocks-org/blob/8c44e881ec382037b113c0945c90e49d1801c6ae/docs/doc/stream.md
https://github.com/shadowsocks/shadowsocks-org/blob/8c44e881ec382037b113c0945c90e49d1801c6ae/docs/doc/stream.md
https://gfw.report/publications/usenixsecurity23/en/
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/-/blob/obfs4proxy-0.0.14/doc/obfs4-spec.txt

	Censorship circumvention
	Shadowsocks stream ciphers decryption oracle
	obfs4 non-uniform public key representatives
	VMess header malleability
	The bigger picture
	Thanks

