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ABSTRACT
Several totalitarian states around the world deploy sophisticated

censorship apparatuses to prevent citizens from freely accessing the

Internet. To counter these restrictions, some censorship-circumven-

tion tools establish covert channels through the media streams of

popular conferencing applications. A recent tool named Protozoa

allows for establishing high-performing, peer-to-peer covert chan-

nels over WebRTC media streams. However, Protozoa is vulnerable

to potential man-in-the-middle attacks. This may occur in cases

where WebRTC applications rely on WebRTC gateways to mediate

users’ connections. In such cases, an adversary that controls the

WebRTC gateway can inspect the content of the media streams and

trivially detect the transmission of covert payload.

This work proposes Stegozoa, a new censorship-circumvention

tool that aims to foil the ability of adversaries in control of WebRTC

gateways to detect covert data transmissions. Specifically, Stegozoa

steganographically embeds covert data into the WebRTC video

signal, preventing the detection of the covert payload through

direct video content inspection. To this end, Stegozoa leverages

state-of-the-art steganography techniques, applying them deep

within WebRTC’s video coding pipeline and fine-tuning them to

efficiently use the available covert channel capacity while ensuring

undetectability. We have fully implemented Stegozoa based on an

instrumented Chromium codebase. Our evaluation reveals that

Stegozoa can create secure WebRTC covert channels that are highly

resistant to steganalysis and traffic analysis attacks. Despite the

expected reduction in performance that was traded for stronger

security, Stegozoa can deliver a reasonable throughput, allowing

its users to run low-bandwidth message exchanging tasks.

CCS CONCEPTS
• Security and privacy→ Network security; • Social and pro-
fessional topics → Technology and censorship.
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1 INTRODUCTION
As of today, totalitarian states are known to deploy large-scale

surveillance and censorship mechanisms in order to deter citizens

from accessing or publishing selected kinds of information on the

Internet [16]. As an example, countries like China [34], Turkey [1],

or Russia [48], are known to deploy a sophisticated censorship

apparatus with the ability to block the access to certain Internet

destinations [45] and protocols [19], throttle the access to given

websites [54], or to monitor social media platforms [35].

During the last few years, important efforts have been devoted to

tackling the tight Internet control exerted by repressive state-level

adversaries [33]. One of the latest advances in this space takes ad-

vantage of the unwillingness of censors to ban video conferencing

applications to devise covert channels using as carrier signal the

media streams generated by such applications [8, 10, 37]. Notably,

Protozoa [10] is a new censorship-resistant tool that leverages Web-

RTC video calls to create high-speed covert channels between call

endpoints. To this end, each Protozoa’s endpoint instruments the

WebRTC video pipeline of open-source browsers to fully replace

the contents of compressed video frames by covert data payload.

The resulting frames are then encrypted and transmitted over the

network to the remote videocall peer. Following this process, the

video streams generated by Protozoa preserve the traffic character-

istics (statistical indicators like packet sizes and inter-arrival time

distributions) of legitimate WebRTC streams. This severely under-

mines the effectiveness of modern traffic analysis techniques [9] to

detect covert channels established over multimedia flows.

However, Protozoa operates under the strong assumption that

the participants in a videocall exchangemedia data in a peer-to-peer

fashion. Given that the peer-to-peer connections carrying the video

streams are encrypted end-to-end, not even a state-level adversary

with unrestricted access to the network infrastructure will be able

to observe the raw video content of the WebRTC streams. Unfortu-

nately, a myriad of WebRTC applications challenge this assumption

by relying onWebRTC gateways: specialized servers that mediate

the transmission of media streams between the participants en-

gaged in a videocall for scalability and performance purposes [51].

The point in fact is that, other than blindly relaying media packets
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between participants (as in the case of TURN servers [39]), Web-

RTC gateways have the ability to decrypt, validate, and perform

arbitrary operations on incoming media streams [3]. Evidence sug-

gests that popular WebRTC services, like Discord, do make use of

WebRTC gateways to inspect audio data exchanged by users [50].

Unfortunately, this means that Protozoa users can be trivially

detected if theymake use of web conferencing services that leverage

WebRTC gateways controlled by an adversary, e.g., when using a

domestic video-conferencing infrastructure under the control of

a censor. This risk exists because Protozoa encoded video frames

can be clearly identified as they carry arbitrary covert data payload

that fails to adhere to the specification of media codecs. While this

threat has been previously identified in the literature [7], devising a

tool that is able to achieve reasonable network performance while

resisting both traffic analysis and the inspection of media content

over WebRTC streams has remained an elusive goal.

This paper presents Stegozoa, a novel tool for circumventing

Internet censorship that provides a messaging exchange service

offering reasonable throughput for the surreptitious transmission

of covert data over WebRTC video calls. It can withstand traffic

analysis and media steganalysis attacks launched by state-level

adversaries in control of WebRTC gateways. To meet this goal,

Stegozoa creates covert channels by augmenting the WebRTC en-

coding pipeline with the ability to steganographically embed covert

data into the compressed representation of WebRTC video frames.

Specifically, Stegozoa leverages the combination of syndrome-trellis

coding [24], a state-of-the art adaptive steganographic technique,

with covert data encoding in the least significant bits of the quan-

tized discrete cosine transform (QDCT) coefficients of residual video

frames [53], i.e., a frame’s representation in the frequency domain.

When building Stegozoa, we tackled two main technical chal-

lenges. The first challenge relates to finding a proper configuration

for the chosen syndrome-trellis code, such that Stegozoa can achieve

a reasonable throughput and strong resistance against steganaly-

sis. The main difficulty of fine-tuning these parameters is that this

task is tightly dependent on several implementation artifacts (e.g.,

the browser’s VP8 encoding pipeline) and thus requires extensive

empirical testing under different experimental settings.

The second challenge is to implement the above steganographic

operations in real-time communication settings. While image/video

steganography techniques do not typically operate under stringent

time restrictions, steganographically embedding covert data within

real-time constraints is fundamental in Stegozoa to prevent packet

transmission delays that could cause deviations in traffic patterns

and, consequently, make Stegozoa vulnerable to traffic analysis

attacks. To tackle this challenge, we introduce several low-level

optimizations in the WebRTC video encoder pipeline.

We evaluated Stegozoa’s performance and resistance against

detection under different network conditions and using different

WebRTC carrier applications (Jitsi andWhereby). The results of our

experimental evaluation revealed that a careful parameterization of

Stegozoa’s steganographic embedding mechanisms allows Stegozoa

to resist traffic analysis and steganalysis attacks, while achieving

enough throughput for performing realistic use case scenarios like

consuming Twitter-style feeds and Wikipedia articles.

Censored Region Free Region
Alice Bob 

Traffic eavesdrop and
active manipulation

Censor

WebRTC  
media stream

WebRTC  
Gateway

Inspection of 
media contents

WebRTC  
media stream

Covert channelCovert channel

Figure 1: Systemmodel showing a multimedia covert stream-
ing channel established over a WebRTC gateway.

2 THREAT MODEL
The threat model of Stegozoa is depicted in Figure 1. It represents

two users, Alice and Bob, that intend to communicate some sensitive

information away from the prying eyes of a state-level adversary,

e.g., a censor. In this scenario, we assume the adversary to be in-

terested in pinpointing and blocking WebRTC streams that may

be used for establishing a covert channel between Alice, located

within a censored region, and Bob, located in a free Internet region.

To detect a covert channel established over WebRTC media

streams, the adversary can make use of a combination of network-

level and application-level inspection techniques. First, the adver-

sary can perform ML-based statistical traffic analysis on the traffic

patterns generated by encrypted WebRTC media streams in an

attempt to distinguish between legitimate WebRTC streams and

streams that carry a covert channel [9]. To this end, the adver-

sary can observe, store, actively manipulate, and analyze all the

network flows exchanged between the parties that are engaged in

communication. Second, the adversary can visually inspect the me-

dia payload exchanged between the call’s participants, validate the

composition of media data structures, and conduct video steganaly-

sis. For enabling such capabilities, the adversary is assumed to have

access to the unencrypted WebRTC media stream exchanged by

Alice and Bob, which is made possible by controlling the WebRTC

gateway that mediates the call participants’ connection. Access to

the WebRTC gateway can be granted through a variety of means.

Specifically, the censor can a) run the WebRTC application and

manage the WebRTC gateway, b) collude with a given WebRTC

service that provides unencrypted media data to the censor, or c)

exploit software vulnerabilities onWebRTC services to compromise

WebRTC gateways controlled by third-party WebRTC services [43].

Note that, in the functional sense, controlling a WebRTC gateway

also enables the adversary to perform deep packet inspection.

We assume that the adversary is unable to control the software

installed on end-user computers and does not have the power to

deploy rogue monitoring software on users’ machines. Thus, the

communication endpoints where Stegozoa is executed are deemed

as trusted. In addition, we assume that the censor is not willing

to block or downgrade the quality of WebRTC video calls unless

there is strong evidence those are being used to convey some covert

channel. Doing so indiscriminately may lead to collateral damage

stemming from the disruption of important services to the social

and economical tissue of the censored region [22].
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Figure 2: Architecture of Stegozoa: The components of our system are highlighted in blue.

3 STEGOZOA
This section presents Stegozoa, a novel censorship circumvention

system that tunnels covert data over steganographically-marked

WebRTC video streams. During our exposition, we describe Ste-

gozoa’s architecture, illustrate the covert channel establishment

process, and detail how Stegozoa overcomes three main technical

challenges tied to the i) creation of an efficient covert channel over

real-time video streams, ii) efficient utilization of the covert chan-

nel’s bandwidth, and iii) preservation of traffic analysis resistance.

3.1 Architecture
Figure 2 depicts the architecture of Stegozoa. The system itself

consists of a gateway service composed of three main elements: an

API, the libstegozoa library, and a set of media interception hooks

located inside a modified Web browser. The coordinated interac-

tion of these elements, acting at different abstraction layers, allows

Stegozoa to establish a covert channel between two users – Alice

and Bob – and stealthily exchange messages through this chan-

nel. A client application running executed at each communication

endpoint offers a user-friendly interface for sending and receiving

messages through the API exposed by the Stegozoa gateway.

For establishing covert channels, Stegozoa instruments themedia

pipeline of WebRTC video conferencing applications. These appli-

cations, for instance Jitsi Meet, rely on JavaScript code that executes

in users’ browsers as part of the WebRTC framework for perform-

ing peer discovery, signalling, and calling establishment operations.

Users’ browsers are also responsible for encoding, transmitting,

and decoding media data relying on WebRTC’s native C++ imple-

mentation, enabling call participants to exchange media streams. In

the context of Stegozoa, these media streams (video streams in par-

ticular) will be forwarded between call participants via a WebRTC

gateway while acting as a carrier for steganographically-marked

covert data. Next, we describe the components of the Stegozoa

gateway, detailing their operation in a top-down approach.

1. Stegozoa API: The API exposed by Stegozoa embodies Stego-

zoa’s high-level layer. Stegozoa makes multiple API calls available

so that external applications can leverage Stegozoa as a covert

communication library, effectively using its covert channels as a

surreptitious transport layer. Hence, we refer to such applications,

e.g., a software that allows for covert access to sensitive Wikipedia

pages, as Stegozoa clients. Stegozoa exposes the following API calls:

• initialize(): This function initializes libstegozoa and Ste-

gozoa’s media interception hooks’ data structures, including

a message queue. The local Stegozoa endpoint can then re-

ceive messages from another endpoint. It launches a periodic

participant discovery operation that tracks the presence of

other participants in a video call (see Section 3.2). Each end-

point is attributed a randomly-generated ID.

• getPeers(): Returns to the caller a list of IDs of known peers

in the video call. The output of this function depends on the

periodic discovery operation triggered by initialize.

• send(byte[]:message, int:recipientID) This function re-

ceives a message of arbitrary size and a recipient participant

ID. The message is sent to the intended destination, while

possibly being fragmented into several packets of fixed size.

• receive(): Returns the first message on top of the message

queue that is addressed to the local Stegozoa endpoint. The lo-

cal endpoint drops messages addressed to other participants

if a message’s recipient ID fails to match the local participant

ID. The operation is blocked if the message queue is empty.

• shutdown() This function tears down the Stegozoa transmis-

sion and removes associated data structures.

2. Stegozoa library (libstegozoa): The Stegozoa library can be con-
sidered as Stegozoa’s intermediate-level layer, bridging Stegozoa’s

data encoding mechanisms within users’ browsers WebRTC stack

with the rich functionality offered by Stegozoa’s API. libstegozoa’s

main responsibility is that of managing packets, Stegozoa’s funda-
mental communication unit, to ensure the efficient usage of the

covert communication channel. Specifically, libstegozoa is respon-

sible for creating packets and for managing the fragmentation and

reassembly of covert messages that can potentially span across

multiple packets. In addition, by interacting with Stegozoa’s me-

dia interception hooks, libstegozoa implements the low-level logic

that will assess which participants in a given video call are using

Stegozoa, and for establishing sessions between them.

3. Media interception hooks: The media interception hooks com-

pose Stegozoa’s low-level layer. These hooks, located deep within

WebRTC’s native codebase (e.g., in a modified WebRTC-enabled

browser like Chromium), enable Stegozoa to perform several func-

tions that require interaction with different WebRTC resources. In

particular, media interception hooks are responsible for i) access-

ing WebRTC call metadata and forward such data to libstegozoa
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for additional processing, and ii) manipulating one of WebRTC’s

default video codec (VP8) encoding/decoding pipeline to perform

the steganographic embedding/extraction of Stegozoa packets from

upstream/downstream WebRTC video streams using an efficient

and high-bandwidth video steganography technique. Communica-

tion between Stegozoa’s low-level and intermediate-level layers is

performed through named pipes.

Implementation: We developed a prototype [23] of Stegozoa by

writing approximately 600 lines of Python3 code for implement-

ing libstegozoa, and 1 600 lines of C code for instrumenting the

native WebRTC and libvpx (VP8’s implementation) codebase of

Chromium v89.0.4389.82, a stable release from March 2021. We

chose to implement our prototype for the VP8 codec since this

codec was the default choice for popular WebRTC applications

we experimented with. However, we note that the close similarity

between the internal behaviour of VP8 and H.264 [20] does not

preclude our covert data encoding scheme from being applied to

this alternative codec. For scaling up our experiments during the

evaluation of our prototype, we make use of the v4l2loopback
camera emulator and ffmpeg video utilities for establishing video

calls using pre-recorded video feeds.

3.2 Establishing Stegozoa Covert Channels
Figure 3 illustrates how two users, Alice and Bob, can establish a

covert communication channel using Stegozoa to exchange some

sensitive content, e.g., news articles. First, Alice accesses a given

WebRTC video-conferencing service, like meet.jit.si, creates a
chatroom (A1), and shares the chatroom’s URL (A2) with Bob (B1),

using some out-of-band channel, e.g., e-mail or steganographically

marked cryptocurrency transactions [41]. Likewise, Alice and Bob

should also exchange a shared secret – this secret will be used

to bootstrap Stegozoa’s steganographic encoder (see Section 3.3).

Then, both Alice and Bob join the chatroom (A3 and B2) and start

transmitting video content. Note that while access to the chatroom

may also be protected by a password, the adversary described in

Section 2 is already assumed to possess the ability to visually and

programmatically inspect the media exchanged by Alice and Bob.

Once the media session is in place, Alice and Bob invoke Ste-

gozoa’s initialize API call (A4 and B3) to bootstrap their local

Stegozoa endpoints. As part of Stegozoa’s bootstrapping process,

libstegozoa will generate and broadcast discovery packets, special
control packets that will be steganographically marked in video

frames and which will act as a participant’s presence beacon. Other

Stegozoa participants who listen to this beacon will then reply with

their participant ID in a response packet. Then, the sender of the

discovery packet will collect the observed replies and register the

current Stegozoa peers’ IDs. In our example, after peer discovery is

finished, Bob can list his current peers’ IDs by issuing the getPeers

API call (B4). Armed with the information that Alice’s ID is equal

to 1, Bob can now send a message to Alice by invoking the send

API call (B5). Finally, Alice will be able to receive Bob’s message

after automatically invoking Stegozoa’s receive API call (A5).

Thus far, we have described Stegozoa’s architecture and general

operational workflow. In the next sections, we shed light on Stego-

zoa’s steganographic embedding mechanism, detail how Stegozoa

can make an efficient use of the steganographic covert channel,
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Figure 3: Stegozoa’s covert channel establishment.

and describe a set of critical optimizations required for hardening

Stegozoa against traffic analysis attacks.

3.3 Steganographic Channel on WebRTC Video
Finding an adequate steganography primitive that can be used for

embedding covert information in real-time video streams is a critical

piece required for the construction of Stegozoa. Next, we describe

how WebRTC performs real-time video encoding and detail the

rationale behind our choice of Stegozoa’s steganography technique.

Real-time video encoding in WebRTC: For efficiently achieving

high image quality, real-time video codecs attempt to reduce the

need for exchanging data over the network. To this end, codecs

like VP8 and H.264 (the default video codecs on WebRTC) provide

sophisticated image coding operations that aim at removing redun-

dant information between frames (inter-prediction), and within

frames themselves (intra-prediction). For instance, motion compen-

sation is an inter-prediction technique where the encoder attempts

to record the translation of moving objects between adjacent frames,

only needing to communicate the direction of translation and a few

additional data pertaining to new elements on the frame.

Figure 4 shows the operations performed to encode a video

frame. For a given frame, the encoder first divides a raw frame into

macroblocks, squares of pixels containing three components: lumi-

nance (Y), and chroma (Cr and Cb). Macroblocks have a dimension

of 16x16 pixels for the Y component while having a dimension of

8x8 pixels for the chroma components [5]. Then, the encoder per-

forms the intra- and inter-prediction phases (boxes in light shade).

It then transforms the residual frame (the frame obtained from

the difference between the original frame and the predicted one).

Typically, the transformation applied to this residual frame involves
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a scaled approximate discrete cosine transform (DCT) [6] over 4x4

pixel blocks obtained from a subdivision of the frame’s macroblocks.

The result of this transformation is a set of DCT coefficients (also

laid out in a 4x4 block) which encode the representation of the block

in the frequency domain. Each DCT block includes a DC coefficient

(the one with the lowest frequency, placed in the top-left corner),

while the remaining coefficients are called the AC coefficients. Then,

the resulting coefficients are quantized in the quantization phase by

a scalar value. The final step is the entropy encoding phase, where

the quantized discrete cosine transform (QDCT) coefficients are

losslessly compressed into a binary series of boolean values.

Stegozoa’s steganographic scheme:We intend to create a covert

channel by embedding covert data into WebRTC video streams

using steganography. The video stream is a sequence of frames,

with each frame having a potential embedding capacity. To avoid

detection by an adversary that has access to the video payload, we

need to devise a data embedding scheme that avoids the distor-

tion of the video frames’ contents and prevents video decoding

corruptions to occur. At the same time, our embedding scheme

should increase the number of covert bits that can be embedded per

frame to increase the bandwidth of the covert channel. To achieve

these goals, we employ least significant bit (LSB) substitution on

the QDCT coefficients in combination with two additional steps:

(1) QDCT coefficient filtering:Changes on the DC coefficients

are more impactful than changes on the AC coefficients; ad-

ditionally, there are fewer blue chroma and red chroma coef-

ficients than luminance coefficients (there are 2 luminance

coefficients for each chroma coefficient), making changes to

chroma coefficients more visible. Therefore, to reduce video

distortion, we select a subset of QDCT coefficients for em-

bedding the message payload, namely: non-DC, luminance

coefficients [44]. We also exclude coefficients equal to 0 or 1.

(2) Syndrome-trellis coding (STC): From the pre-filtered sub-

set of QDCT coefficients, we further apply syndrome-trellis

coding (STC) [24] on top of LSB substitution for minimiz-

ing the video distortion. The objective of STC is to generate

a stego vector 𝑦 that minimizes the cost of changing the

original cover vector (i.e., the pre-selected coefficients) to 𝑦.

To measure the impact of changing a given bit, the STC al-

gorithm uses a configurable distortion function. For instance,

Quantization

Filter Valid
QDCT Extract LSB

Syndrome-Trellis
Coding Secret Message 

QDCT coefficients

Valid coefficients LSBs

Bitstream
Embedding

New LSBs

Valid coefficients

Position of valid coefficients

Stegozoa Encoder

VP8 Encoder

VP8 Encoder

Figure 5: Stegozoa’ covert data encoding phases.

a function that returns a constant value indicates that ev-

ery bit change has the same impact on the resulting stego

vector (which, in our case, translates to the perceived image

quality of the steganographically-marked frame). The STC

algorithm is controlled by a parameter 𝛼 , which determines

the fraction of the embedding capacity used for embedding

the message, and a parameter ℎ. ℎ and 𝑤 (where 𝑤 = 1/𝛼)
represent the height and width of a sliding matrix �̂� , used to

compose an embedding matrix 𝐻1
. The algorithm then seeks

to find 𝑦 such that 𝐻𝑦 = 𝑥 , where 𝑥 is the message (in bits, 0

or 1) to be embedded of size𝑚, and 𝑦 is a vector where the

message is embedded, of size𝑚 ×𝑤 . The 𝑦 is the resulting

stego vector to be sent to the receiver, who will then extract

m using the shared 𝐻 . In Stegozoa, we set ℎ = 7 according to

the syndrome-trellis code proposed by Filler et al. [24], and

select the value of 𝛼 experimentally (see Section 5.1).

Stegozoa’s encoding stages: Putting it all together, Figure 5 shows
the steps performed by the Stegozoa encoder for applying LSB sub-

stitutionwith coefficient filtering and STC. The inputs are the QDCT

coefficients generated by the built-in quantization phase of the VP8

codec (see Figure 4). In the coefficient filtering stage, the encoder

computes the number of available valid coefficients to discover a

frame’s embedding capacity. It then extracts the LSBs of the valid

coefficients which are given as input (along with the payload mes-

sage) to the STC algorithm. In turn, the STC algorithm returns the

final LSB vector reflecting the payload message to be embedded into

the video frame in the last phase. With the embedding operation

concluded, the VP8 encoding pipeline can then proceed and finish

encoding the frame using the newly changed QDCT coefficients.

3.4 Efficient Bandwidth Utilization
The steganographic scheme described above will make it very diffi-

cult for an adversary to detect the presence of covert messages in

the resulting video stream. However, this enhanced security comes

at the price of a dramatic reduction of the covert channel band-

width, i.e., the number of bits that can safely be used for sending

payload data per video frame. Some of these bits must be further

1𝐻 works as a shared secret between sender and receiver preventing a third party

from trivially extracting the embedded message from the video frames. Matrices �̂�

with greater height and width can enhance the cryptographic secrecy of the covert

communication at the expense of a computationally heavier steganographic embedding

process [18]. We defer the evaluation of different �̂� to future work.

Session 9B: Web Security ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

1158



Packet Size Packet
Type Frag (Unused)

Header CRCPayload

6 bytes 4 bytes

Constant

4 bytes

16 bits 4 bits3 bits 1 bit

SynReceiver IdSender Id

4 bits 16 bits4 bits

Figure 6: Format of Stegozoa packets. The packet type field
identifies five types of packets: discovery packet (0), discov-
ery response packet (1), regular packet (2), retransmission
request packet (3), and retransmitted packet (4).

reserved for the transmission of meta-data and control messages,

e.g., to deal with message fragmentation, error recovery, and ses-

sion management. Thus, it is fundamental to efficiently use the

available bandwidth to increase the performance of the channel.

Next, we present the most interesting design aspects of the Stegozoa

protocols affecting the bandwidth utilization of covert channels.

Message fragmentation and reassembly: To efficiently fit the

content of the client-generated messages into the available covert

bit space of the video streams, Stegozoa endpoints implement a

2-step message fragmentation and reassembly protocol:

(1) Fragmentation of messages into packets: Given that the

API call send(message, receiver) allows a client applica-

tion to send a message of arbitrary size, libstegozoa first

splits the outgoing message into chunks of bounded size.

For processing efficiency reasons, we set the maximum size

of each chunk to 242 bytes (i.e., 256 bytes minus 14 bytes

for additional meta-data fields). The library then encloses

each chunk inside a packet that contains three additional
fields — a 4-byte constant, a 6-byte header, and a 4-byte CRC

value – as shown in Figure 6. Each resulting packet is then

forwarded to the Stegozoa hooks inside the WebRTC stack

to be further fragmented before being transmitted.

(2) Fragmentation of packets into frames: Since the avail-
able space in any given frame is variable, it may be necessary

to further fragment single packets into smaller pieces, fitting

each piece into the full covert bit capacity of the frame. Thus,

to send a given packet, all the sender needs to do is: (1) wait

for the next available frame, (2) determine the amount of

free space in that frame, (3) read the next piece of the packet

to be sent, and (4) encode that piece into the frame.

Since the video frames typically arrive in order, the reassembly

process is relatively simple. First, the receiver’s WebRTC hook col-

lects the fragments embedded in each frame and reassembles them

into individual packets. To determine the packet boundaries, Ste-

gozoa scans the recovered bit stream looking for a constant 4-byte

value (see Figure 6) which signals the beginning of a packet. The

packet size provided in the header field indicates the packet’s end-

ing. In a second step, libstegozoa collects the reassembled packets

inside a packet queue until the last packet arrives. A fragmenta-

tion field in the header identifies the trailer packet composing the

message. The fully recovered message is then placed in a different

queue, waiting to be fetched through the receive() API call.

Recovery from errors: As described above, Stegozoa transmits

covert packets within WebRTC-based video streams. However,

packet loss or corruption may occur as a result of simulcast video
stream switches. Simulcast [26] is a technique that enablesWebRTC

gateways to efficiently adapt the resolution of the video streams

transmitted to the participants of a video call. When simulcast is

used, each participant sends to the gateway multiple video cam-

era feeds encoded in different resolutions. Then, depending on the

downlink bandwidth of each receiver, the gateway automatically

selects the most suitable video stream to each individual receiver’s

network conditions. When simulcast is active, Stegozoa replicates

the same packet in all outgoing video stream resolutions. The re-

ceiver retrieves the packet by recovering it from the video stream

selected by the WebRTC gateway. However, packet fragmentation

boundaries are expected to depend on frames’ resolution, since

these will have different embedding capacities. Thus, if the gateway

decides to switch the video stream sent to the receiver, a received

packet may end up being lost or corrupted. A second reason that

may cause the loss/corruption of Stegozoa packets is the unsyn-

chronized invocation of initialize(ID), where a sender transmits

packets to other participants before these packets are ready to

be received at the destination. To tackle the problems of packet

loss/corruption, we employ different solutions for packets sent in

different stages of the covert data transmission (see Figure 3):

(1) Error recovery with discovery packets: To recover from

the loss or corruption of discovery packets, we rely on the

liveliness property of the system – i.e., eventually, we assume

that a packet will be successfully received. Our solution is

then to broadcast the discovery packet periodically (every

5 seconds). Since the discovery and response packets are

relatively lightweight, the resulting overheads of broadcast-

ing these packets are marginal. This solution also solves the

problem of unsynchronized initialize(ID) calls.

(2) Error recovery with regular packets: To recover from

errors involving the transmission of regular data packets,

Stegozoa relies on a retransmission mechanism. Given that

the available bandwidth of the channel is scarce and its la-

tency is high, we strive to reduce the number of control

messages required for coordinating the packet retransmis-

sion process. Our solution relies on a dedicated field in the

packet header (syn) which numbers all packets transmitted

by the sender during a covert session. The syn field is set

to 0 for the first sent packet, and then it is incremented for

every packet transmitted subsequently. Since video streams

typically arrive in order, the receiver only needs to keep a

local syn counter for tracking the next expected packet, and

request a packet retransmission if some packet was skipped.

To speed up the error recovery process, Stegozoa gives priority

to retransmission requests and retransmitted packets.

3.5 Preserving Traffic Analysis Resistance
To ensure that the video streams modified by Stegozoa are secure

against advanced traffic analysis techniques, it is essential that the

generated network traffic preserves the original features of the

carrier video stream. However, since WebRTC video frames must
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be encoded in real-time, any significant overhead caused by Ste-

gozoa may lead to the generation of abnormal traffic patterns that

would make Stegozoa connections prone to detection. To prevent

this problem and reduce the delay in encoding a frame caused by

Stegozoa’s operations, we developed the following two essential

implementation-dependent optimizations for the Stegozoa encoder.

Section 5.2 demonstrates the positive impact of these optimizations

in making Stegozoa robust against traffic analysis attacks.

1. Trailing null-coefficient optimization: Before embedding

covert data in a given frame, the Stegozoa encoder needs to com-

pute the number of valid QDCT coefficients of the frame. To this

end, the encoder performs a nested loop where it first visits all the

macroblocks of the frame, and then visits the blocks of each mac-

roblock and loops over the coefficients of each block – in total, 240

coefficients per macroblock
2
. Depending on the video resolution,

a frame can have hundreds or even thousands of macroblocks. As

a result, the number of coefficients that need to be scanned can

grow very large potentially introducing detectable video encoding

slowdowns. To speed up this process, we leverage the following

insights. After the transformation and quantization phases of VP8

(see Figure 4), most of the high-frequency coefficients are set to

zero. Given that null coefficients are not suitable for covert bit em-

bedding (see Section 3.3), we can save precious looping time by

skipping the analysis of these coefficients. Luckily, the VP8 video

encoder keeps track of the “end of block", which is a direct pointer

to the last non-zero coefficient of each block (when the block is

processed in raster scan order). Thus, our optimization is to loop

over the macroblock’s blocks first and then check the coefficients

in raster scan order until we find the last non-zero coefficient. This

way, we avoid having to test most of the undesirable coefficients,

thereby reducing the overhead caused by the above operation.

2. Hardware-accelerated memcopy optimization: For the em-

bedding operation to work (see Figure 5), the QDCT coefficients

must be copied to a new buffer so that the STC algorithm can pro-

cess them independently, which requires copying 400 coefficients

in total per macroblock (i.e., 25 blocks with 16 coefficients each). At

first, we performed this operation using the memcpy function from

the libc library. However, just like in the case mentioned above,

we observed that memcpy’s software implementation introduced

noticeably delays in the resulting inter-packet time distributions. To

tackle this problem, we used advanced vector extensions (AVX) [29]

instructions for copying data. The AVX are extensions to the x86 in-

struction set architecture introduced in 2011. We used instructions

that copy 256-bits blocks at a time (e.g., _mm256_stream_si256).
We have also optimized the code to unroll time-consuming loops.

4 EVALUATION METHODOLOGY
This section describes our evaluation methodology. First, we de-

scribe the goals and approach of our evaluation. Then, we detail

the testbed we designed for performing our experiments and the

metrics used to assess the quality of our solution.

2
Each macroblock has 24 blocks – 16 luminance blocks, 4 red chroma blocks, and 4

blue chroma blocks (depending on the type of prediction, a 25th virtual block can exist,

composed of the DC coefficients of the luminance blocks), with each block containing

16 coefficients. Since we only consider the luminance coefficients for embedding, only

the luminance blocks are checked, making the number of checked coefficients 256 – as

we do not consider the DC coefficients for embedding, this number goes down to 240.

4.1 Evaluation Goals and Approach
Our evaluation goals are twofold: (i) assess the network perfor-

mance of our Stegozoa prototype, and (ii) measure its security

against detection by a powerful adversary. Related to the latter, we

wish to evaluate two different dimensions of Stegozoa’s resistance

against detection. Firstly, we investigate whether it is possible for a

network adversary to leverage traffic analysis techniques to distin-

guish between the traffic generated by Stegozoa and the traffic of

unmodified WebRTC media streams. Secondly, we are interested in

understanding whether adversaries in control of WebRTC gateways

can detect the operation of Stegozoa through video steganalysis.
To perform traffic analysis we employ state-of-the-art machine

learning-based classifiers. We use XGBoost [9] in combination with

a comprehensive set of features based on multiple summary statis-

tics computed over the packet length and inter arrival times, such

as burst behaviors and high-order statistics (e.g., kurtosis).

To perform video steganalysis, we leverage the available imple-

mentations of the SUPERB [14] and IDFB [58] video steganalysis

techniques in combination with a XGBoost classifier. Both SUPERB

and IDFB target the steganalysis of embedding methods that rely

on the manipulation of QDCT coefficients. Since these techniques

output a set of features per frame, we compute a set of summary

statistics that represent a whole video stream, based on its indi-

vidual frame features, to classify WebRTC streams on a per-call

basis. Specifically, for each feature, we computed the mean, median,

variance, standard deviation, maximum, minimum, and percentiles

across each of the video frames.We leverage 10-fold cross validation

to evaluate both the traffic analysis and steganalysis classifiers.

We performed a set of experiments where two Stegozoa end-

points uninterruptedly send messages in each direction so as to use

the covert channel at full capacity. We do so to stress Stegozoa’s

covert data encoding mechanisms. Then, based on the collected

data, we are able to (i) assess its performance and (ii) assess its re-

sistance against detection when triggering possible network traffic

and image distortions caused by the operation of our prototype.

4.2 Experimental Testbed
Our laboratory testbed, illustrated in Figure 7, is composed of three

Ubuntu 18.04.5 LTS virtual machines (VMs) with four virtual 2.00

GHz Intel Xeon Gold 6138 cores and 8GB of RAM each. While

VM1 and VM3 both execute an instance of Stegozoa, VM2 acts as a

gateway and router for the Stegozoa endpoints. VM2 also mimics

the behavior of a middlebox controlled by the adversary, allowing

the collection of network traces required for conducting traffic

analysis. Lastly, videoconferencing calls are established resorting to

Jitsi (meet.jit.si), a well-known WebRTC application that makes

use ofWebRTC gateways to mediate the exchange of media streams.

To generate representative packet traces and unencrypted media

recordings of legitimate and Stegozoa media streams, we borrow

492 videos from Protozoa’s “Chat" video library – these videos were

collected from YouTube and represent typical videoconferencing

interactions [10]. In our experiments, we partition the dataset in

two halves and establish 246 legitimate WebRTC media streams

and 246 Stegozoa media streams while transmitting the same video

on each side of the WebRTC stream. The transmission of the same

video in both sides of the stream allows us to avoid contamination
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Figure 7: Laboratory setup.

during training, stemming from the inclusion of the same video

samples when generating Stegozoa and legitimate streams. Packet

traces are collected by VM2 for a duration of 30 seconds, a sufficient

period for enabling the accurate detection of covert channels within

multimedia streams using ML-based traffic analysis techniques [9].

Accordingly, we obtain media recordings from Jitsi’s call recording

feature so as to emulate the access to unencrypted media data by

WebRTC gateway-controlling adversary. Video calls are automati-

cally recorded for a duration of 30 seconds. The resulting video files

are fed to steganalysis feature extractors [14, 58], whose output can

be used to classify video samples as legitimate or Stegozoa.

4.3 Metrics
We employed the following metrics when evaluating Stegozoa’s

performance and resistance against detection:

Performance metrics: We assess our prototype’s performance

with respect to its achievable throughput and latency. In addition,

we measure the necessary resources (CPU and RAM) for executing

Stegozoa at each WebRTC call endpoint.

Detection metrics: We use the same set of metrics for evaluating

Stegozoa’s resistance against traffic analysis and steganalysis. As in

prior work [9, 10], we use the true positive rate (TPR), false positive

rate (FPR), and the area under the Receiver Operating Characteristic

(ROC) curve (AUC) to assess the resistance of our prototype against

detection. The TPR measures the fraction of Stegozoa streams that

are identified correctly, while the FPR measures the fraction of

legitimate streams that are wrongly classified as Stegozoa. The

ROC curve plots a classifier’s TPR against its FPR for different

configurable internal thresholds. This trade-off can be summarized

using the AUC – an AUC of 0.5 is equivalent to random guessing

while a perfect classifier achieves an AUC of 1.

5 EVALUATION RESULTS
This section presents the evaluation of our Stegozoa prototype.

We start by studying Stegozoa’s performance and security while

varying the steganographic embedding capacity. Then, we study

the impacts of changes on network conditions on Stegozoa. Lastly,

we compare Stegozoa with related covert channel-generating tools.

5.1 Covert Channel Performance
We evaluate different dimensions of Stegozoa’s covert channel per-

formance andmotivate the use of our system in two usage scenarios.

During our experiments, the VMs executing Stegozoa consumed

50% of their total CPU and 900MB of RAM. Stegozoa can therefore

run on common, off-the-shelf consumer hardware. In the below

(a) Throughput (b) Latency

Figure 8: Stegozoa’s throughput and messages’ round-trip-
time when establishing a covert channel over Jitsi.

Stegozoa Config. # of Tweets # of Wikipedia articles
10 min 30 min 60min 10 min 30 min 60 min

𝛼=1 54 091 162 273 324 546 472 1 416 2 832

𝛼=0.50 25 909 77 727 155 454 226 678 1 356

𝛼=0.25 18 636 55 908 111 816 163 489 978

Table 1: Average number of downloaded tweet andWikipedia-
sized messages for increasing Stegozoa call times.

experiments, we test Stegozoa’s performance for different configu-

rations of 𝛼 , which acts as Stegozoa’s tuning knob between security

and achievable covert channel throughput (see Section 3.3). While

our traffic analysis (see Section 5.2) and steganalysis (see Section 5.3)

experiments reveal 𝛼=0.25 to be a rather secure configuration, we

also show our results for larger 𝛼 values, enabling Stegozoa users to

select different security/performance trade-offs. We do not show re-

sults for experiments using 𝛼 values under 0.25 since we this value

provides compelling resistance against traffic analysis (Section 5.2)

and video steganalysis (Section 5.3). While smaller 𝛼 values can po-

tentially offer increased resistance traffic analysis and steganalysis,

the expected trade-offs in covert channel performance makes these

a less compelling option for parameterizing our scheme.

Throughput averages 8.2 Kbps: Figure 8 a) depicts a boxplot of
Stegozoa’s throughput for decreasing values of 𝛼 . The box shown

in the plot is drawn from the first quartile to the third quartile of

obtained values. The whiskers represent the variation between the

minimum and maximum achieved throughput, excluding outliers.

The horizontal red line depicts the median of the obtained values,

whereas the grey dot represents the mean. For instance, the most

steganalysis-resistant Stegozoa configuration (𝛼=0.25) averages a

throughput of 8.2 Kbps, while the less steganalysis-resistant con-

figuration (𝛼=1) averages a throughput of 23.8 Kbps. The plot also

shows that the variability of achieved throughput is larger as 𝛼

increases. This may be explained due to the heterogeneity of the

video source used to embed Stegozoa’s secret messages.

RTT of “ping” varies between 261-374 ms: Figure 8 b) depicts a
boxplot of Stegozoa’s latency measured as the time it takes for a

sender to “ping” the receiver, i.e., transmit a small Stegozoa packet in

an outbound video frame and receive an acknowledgement packet

in an inbound video frame. Since these packets are very small (we

send the headers only), they can always be transmitted on a video

frame regardless of the chosen 𝛼 . Stegozoa averages a round-trip-

time of 0.261 seconds, and a maximum of 0.374 seconds. This can

make Stegozoa an attractive and suitable tool for particular kinds

of interactive traffic like censorship-resistant instant messaging.
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Figure 9: ROC AUC obtained by the traffic analysis classifier
when distinguishing Stegozoa from legitimate streams.

Viable use-case scenarios: Despite its reasonable performance,

Stegozoa is not amenable to the transmission of bulk data, nor for

streaming live video through its covert channel. Nevertheless, it

can be used for exchanging commonly censored small-sized con-

tent like Twitter-style feeds [54], or Wikipedia articles [47]. Table 1

depicts the amount of average-sized tweets (33 characters × 1 byte

≈33 bytes [46]) and Wikipedia articles (623 words × 6 characters ×
1 byte ≈3 783 bytes [52]) that can be transferred in Stegozoa calls

ranging from 10 to 60 minutes, for decreasing values of 𝛼 . We can

observe from the table that Stegozoa’s most steganalysis-resistant

configuration (𝛼 = 0.25) can, for instance, download about 18636

tweet-sized messages during a 10 minute videocall or download 978

Wikipedia articles during a 60 minute videocall. While this experi-

ment has focused the transmission of uncompressed text, it is likely

that the number of transmitted tweet or Wikipedia article-sized

messages can be increased by taking advantage of data compression

techniques (e.g., by compressing text into .zip files).

5.2 Resistance Against Traffic Analysis
Keeping our focus on the set of 𝛼 configurations studied above,

we now evaluate Stegozoa’s resistance against state-of-the-art traf-

fic analysis attacks geared at identifying the operation of covert

channels established over media streams.

Figure 9 depicts the ROC curves of the XGBoost [9] classifier

when attempting to identify Stegozoa streams amongst legitimate

WebRTC streams, for different values of 𝛼 , through the analysis of

summary statistics collected from network traces. We see that an

adversary is able to obtain a maximum AUC of only 0.6 for 𝛼 = 1.

Intuitively, our experiments show that Stegozoa is robust against
traffic analysis attacks. As an example, a censor willing to block 50%

of all Stegozoa streams (TPR = 0.5) would erroneously block about

40% of legitimate WebRTC streams (FPR = 0.4). While different

censors may tolerate different TPR/FPR trade-offs, Figure 9 shows

that distinguishing Stegozoa from legitimate WebRTC streams is

rather similar to random guessing as AUC remains close to 0.5.

Since the above summary statistics contain information about

packet timing (recall Section 4.1), these are particularly sensitive to

even slight increases in inter-packet delays. In fact, we observed

that the relatively small overheads imposed by Stegozoa’s vanilla

steganographic encoding scheme, i.e., without optimizations, has a

detrimental effect on the ability of Stegozoa to resist against traffic

analysis. Figure 10 shows the results obtained by the classifier before

and after introducing the optimizations mentioned in Section 3.5.

The figure shows that the ability of an adversary to detect Stegozoa

(a) Before optimizations (b) After optimizations

Figure 10: Results of the traffic analysis classifier using sum-
mary statistics before and after optimizations (𝛼 = 0.25).

(a) IDFB features (b) SUPERB features

Figure 11: ROC AUC obtained by the steganalysis classifiers
when distinguishing Stegozoa from legitimate videos.

(𝛼=0.25) through traffic analysis decreases significantly, with the

AUC dropping from 0.78 to 0.60 (similar to random guessing).

5.3 Resistance Against Video Steganalysis
In addition to Stegozoa’s robustness against traffic analysis, a sec-

ond pillar underpinning the security of our system is its resistance

against video steganalysis. In this section, we evaluate Stegozoa’s

resistance against steganalysis attacks launched by an adversary

with the capability to inspect unencrypted WebRTC media streams

and employ the IDFB and SUPERB algorithms. Our analysis shows

that Stegozoa offers the best steganalysis resistance for 𝛼 = 0.25.

Steganalysis based on IDFB: Figure 11 a) depicts the ROC curves

of the IDFB-based steganalysis classifier when attempting to dis-

tinguish legitimate videos from Stegozoa videos that embed covert

data, for different values of 𝛼 . The plot shows that the classifier is

able to correctly detect a large fraction Stegozoa videos when 𝛼=1,

obtaining an AUC of 0.87. This is unsurprising since, in this con-

figuration, Stegozoa’s steganographic output is expected to exhibit

a high distortion rate. For 𝛼 values of 0.5 and 0.25, the classifier is

only able to obtain an AUC of 0.67 and 0.60, respectively. Indeed,

this provides Stegozoa users to choose a configurable trade-off

between covert channel performance and efficiency, e.g., conserva-

tively choosing 𝛼=0.5 for achieving a reasonable resistance against

detection and an average throughput of 11.4 Kbps (cf. Section 5.1).

Steganalysis based on SUPERB: Figure 11 b) depicts the ROC
curves of the SUPERB-based classifier when attempting to pinpoint

Stegozoa videos that embed covert data, for different values of

𝛼 . The figure shows that this steganalysis classifier has a similar

performance to the IDFB-based classifier, achieving a high AUC

when steganographic output video distortion is higher (𝛼=1), and

an AUC close to random guessing for conservative values of 𝛼 .
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(a) Traffic analysis (b) Steganalysis - SUPERB (c) Throughput

Figure 12: Stegozoa’s (𝛼 = 0.25) performance and resistance against detection when subject to bandwidth impairment.

(a) Traffic analysis (b) Steganalysis - SUPERB (c) Throughput

Figure 13: Stegozoa’s (𝛼 = 0.25) performance and resistance against detection when subject to packet loss.

5.4 Effects of Adverse Network Conditions
In this section, we evaluate our prototype’s performance and re-

sistance against detection when establishing covert channels over

networks that exhibit adverse network conditions. Network con-

ditions can be adverse in two cases. Firstly, the experiments we

describe below mimic realistic scenarios where poor network condi-
tions may be experienced. Secondly, and most importantly, these

experiments also shed light on whether Stegozoa can resist against

powerful adversaries that can launch active attacks by artificially

manipulating the network conditions (e.g., through throttling of the

video streams) making Stegozoa covert channels easier to detect.

Akin to previous work [10], we artificially introduce network

impairments in Stegozoa streams by using the netem network emu-

lation functionality in Linux. We introduce network perturbations

in two different dimensions, namely bandwidth and packet loss,

since these dimensions induce the larger performance fluctuations

in Protozoa [10], the non-steganalysis resistant sibling of Stego-

zoa. Likewise, we bound our perturbations to the typical range

of adverse network conditions that can be sustained by WebRTC

media connections, previously studied by Jansen et al. [30], and

experimentally confirmed by ourselves. The following paragraphs

describe the results of the above experiments.

Analysis of bandwidth restrictions: Figure 12 depicts Stego-

zoa’s resistance to traffic analysis, steganalysis (against SUPERB,

the overall better performing classifier), and achieved throughput

when restricting bandwidth from 1 500 Kbps down to 250 Kbps.

Figure 12 a) shows that Stegozoa’s resistance against traffic analy-

sis is maintained when network bandwidth is impaired, since the

traffic analysis classifier obtains a maximum AUC of 0.58 when

bandwidth is limited to 250 Kbps. In turn, Figure 12 b) shows that

Stegozoa is also able to resist steganalysis when bandwidth restric-

tions are in place. In effect, the steganalysis classifier is only able

to achieve an AUC of 0.62, which remains rather close to random

guessing. Lastly, Figure 12 c) depicts the throughput obtained by

Stegozoa when subjected to bandwidth restrictions. We can observe

that average throughput decreases from 8.2Kbps (in unconstrained

bandwidth conditions) to 4.8 Kbps, 1.6 Kbps, and 0 Kbps when

bandwidth is constrained to 1 500, 750, and 250 Kbps, respectively.

This throughput degradation is expected as bandwidth constric-

tion causes WebRTC’s congestion control mechanisms to reduce

frame rate and downgrade video resolution, leading to inferior

per-frame steganographic capacity. While pronounced bandwidth

impairments significantly hamper Stegozoa’s performance, we posit

that state-level adversaries would avoid to enforce such restrictions

since they would also plummet the quality of legitimate calls [30].

Analysis of packet loss percentage: Figure 13 depicts Stegozoa’s
resistance to traffic analysis, steganalysis, and achieved throughput

when imposing packet loss rates from 2% up to 10% on the network.

Figure 13 a) shows that Stegozoa’s resistance against traffic anal-

ysis is upheld for different packet loss rates. We can see that the

traffic analysis classifier achieves a maximum AUC of 0.59 for a

packet loss rate of 10%, only 0.01 larger than the achieved AUC

when restricting bandwidth to 250 Kbps (Figure 12 a)). Figure 13

b) reveals that Stegozoa resists an adversary’s steganalysis efforts

when packet loss is applied to Stegozoa’s WebRTC streams. As

shown in the plot, the steganalysis classifier achieves a maximum

AUC of 0.60 for a packet loss rate of 10%. Finally, Figure 13 c) shows

that Stegozoa’s throughput is negatively affected by packet loss.

The boxplot shows that the average throughput of the covert chan-

nel decreases from 8.2Kbps (in a network experiencing no packet
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System Traffic analysis Steganalysis Throughputresistance resistance
Protozoa ✓ – 1 400.000 Kbps

SkypeLine ✓ ✓ 0.064 Kbps

Stegozoa (Whereby, 𝛼 = 0.25) ✓ ✓ 2.600 Kbps

Stegozoa (Jitsi, 𝛼 = 0.25) ✓ ✓ 8.200 Kbps

Stegozoa (Jitsi, 𝛼 = 0.50) ✓ ✓ 11.400 Kbps

Table 2: Comparison of Stegozoa and existing systems that
encode covert data over media-conferencing streams.

loss) to 2.6 Kbps and 1.1 Kbps for packet loss rates of 2% and 5%,

respectively. This can be explained by the fact that lost packets will

prevent the reassembly of certain video frames, which will trigger

the retransmission of Stegozoa packets. In addition, and similarly

to bandwidth restrictions, large packet loss rates are also known to

reduce the quality of WebRTC streams. In particular, both WebRTC

streams are torn down for packet loss rates of 10% [30].

5.5 Portability Across WebRTC Applications
To test Stegozoa covert channels over alternative WebRTC applica-

tions, we replicated our experiments using Whereby (whereby.com),

a commercial WebRTC application. For our experiments, we used

the Whereby Large Room which explicitly leverages a WebRTC

gateway to forward traffic between a call’s participants. Akin to the

setup illustrated in Figure 7, we use Stegozoa (𝛼=0.25) to establish

a covert channel between Alice and Bob, collect the traffic flowing

between these endpoints, and resort to Whereby’s call recording

feature to obtain video samples for further steganalysis.

Our results reveal that Stegozoa’s resistance against detection

is also preserved on Whereby. Under normal network conditions,

the traffic analysis classifier obtained an AUC of 0.62 while the

steganalysis classifier obtained an AUC of 0.58 when using the SU-

PERB extractor (which provided the best results). When subjecting

Stegozoa over Whereby streams to the same network perturbations

described in Section 5.4, the traffic analysis classifier obtained a

maximum AUC of 0.61 for a bandwidth restriction of 250 Kbps.

Stegozoa over Whereby streams (in unperturbed network con-

ditions) achieves an average throughput of 2.6 Kbps, which is 5.6

Kbps shorter than covert channels established over Jitsi. A closer

inspection of video metadata revealed that, in steady state, Jitsi ex-

changes videos with higher resolution than Whereby (1280x720 vs.

480x360, resp.). Consequently, Jitsi videos are comprised of a larger

amount of macroblocks and provide a larger embedding capacity

for Stegozoa messages. Interestingly, when bandwidth is restricted

to 750 Kbps, Stegozoa over Whereby achieves a throughput of 2.5

Kbps (only 0.1 Kbps less than without throttling), suggesting that

Whereby video requires only a bitrate of 750 Kbps or lower. Our re-

maining experiments show that the throughput is severely affected

by more significant bandwidth restrictions or packet loss.

5.6 Visual Quality Analysis on Whereby
Since Stegozoa relies on the replacement of DCT coefficients’ LSBs

to encode covert data, one may wonder whether these changes

cause perceptible image artifacts or quality degradation that may

be used by a human analyst (in control of a WebRTC gateway) to

detect Stegozoa streams through visual inspection. To understand

if Stegozoa streams can be detected through such analysis, we con-

ducted an experiment for computing two perceptual quality metrics

(a) SSIM comparison (b) PSNR comparison

Figure 14: Stegozoa’s streams video quality assessment using
SSIM and PSNR over Whereby (for different 𝛼 settings).

– the peak signal-to-noise ratio (PSNR) [28] and the structural simi-

larity index (SSIM) [49] – over the images exchanged in Stegozoa

video streams and those exchanged in legitimate video streams.

We further note that an adversary would be unable to compute

SSIM and PSNR for arbitrary streams crossing the WebRTC gate-

way, and to use the output of such computations to extract features

that would allow it to distinguish between legitimate and Stegozoa

streams. This is due to the fact that the adversary would require

access to both the original video frames (before compression) and

the encoded video frames produced by Stegozoa, since both metrics

measure image quality by comparing the same video frame before

and after a frame is processed by the video encoder. However, as we

will show next, the computation of PSNR and SSIM provides quan-

tifiable evidence that the visual quality of WebRTC video streams

is not significantly degraded for most Stegozoa configurations.

Figure 14 a) shows the results of an experiment where we com-

pute and compare the SSIM of regular WebRTC video streams with

that of Stegozoa video streams. The boxplots show that the aver-

age SSIM of Stegozoa configurations using an 𝛼 of 0.25 and 0.5

are within the range of typical SSIM values found in legitimate

WebRTC streams. In turn, while the use of 𝛼 = 1 places the SSIM

outside the typical values of legitimate streams, it still achieves

an average SSIM of 0.87 and over 0.92 at the 75th percentile. This

suggests that the use of 𝛼 equal to 0.25 or 0.5 will generate covert

data-carrying images that are very similar in quality to the encoded

images generated by the original WebRTC pipeline.

In addition, Figure 14 b) depicts the results of a similar experi-

ment where we compute and compare the PSNR of regularWebRTC

video streams with that of Stegozoa streams. The use of 𝛼 values of

0.25 and 0.5 results in images with a quality within that expected

to be observed in legitimate WebRTC video streams, and which is

within reference PSNR measurements (>30dB) found in WebRTC

video quality assessments conducted with the VP8 codec [27]. In

contrast, images generated with 𝛼 = 1 exhibit poor quality (obtain-

ing an average PSNR of ≈20dB). These results are aligned with our

analysis in Section 5.3, which reveals that 𝛼 = 1 is less resistant to

steganalysis than the remaining 𝛼 configurations under test.

5.7 Comparison to Related Systems
In Table 2, we compare the performance of Stegozoa with that of

Protozoa [10] and SkypeLine [36], two state-of-the-art systems that

build covert channels over multimedia conferencing applications.

Protozoa allows for the creation of high-speed and traffic analysis-

resistant covert channels over peer-to-peer WebRTCmedia streams.
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While Protozoa largely outperforms Stegozoa w.r.t. throughput,

Protozoa is trivially detected by an adversary that can inspect the

media stream. In turn, analogously to Stegozoa, SkypeLine assumes

a stronger threat model where the adversary is able to inspect

unencrypted Skype audio streams, and proposes a steganographic

data embedding mechanism over audio calls. However, Stegozoa

delivers a throughput of two to three orders of magnitude larger

than SkypeLine’s. Such an increase in throughput stems from the

fact that Stegozoa uses a carrier signal for covert data with higher

bandwidth capacity than SkypeLine, i.e., video instead of audio.

While Stegozoa could potentially adapt SkypeLine’s audio-based

steganographymechanism to further increase its covert throughput,

Table 2 also reveals that this procedure would not provide tangible

benefits. Thus, for simplicity, we refrained from implementing this

audio steganography technique in Stegozoa’s prototype.

6 DISCUSSION
Tolerating media transcoding: Stegozoa cannot tolerate live

video transcoding, i.e., re-encoding live media to different codecs,

or dynamic video rescaling performed in Multipoint Conferencing

Unit (MCU)-style WebRTC gateways [51]. However, due to large

server-side computing demands, MCUs are infrequently adopted,

beingmostly used for integration with legacy systems [3]. Steganog-

raphy techniques like TRIST [15] can survive image resizing and

upscaling, but could still be defeated by an MCU-controlling adver-

sary that indiscriminately reduces the quality of media streams. We

will explore transcoding-resistant STC [21] in future work.

Syndrome-Trellis codes’ distortion function:When developing

Stegozoa, we take a simplified approach and use a unitary cost dis-

tortion function that assumes that changes to any QDCT LSB will

imply the same cost, irrespective of the particular cover video frame

being modified. Hence, this may lead to sub-optimal covert data

embedding rates and to the generation of lower quality stegano-

graphic outputs. The exploration of an efficient distortion function

that can measure the impact of data embedding operations under

real-time requirements is an interesting direction for future work.

Insertable streams: Insertable streams [31] are recently proposed

WebRTC extensions to further strengthen the end-to-end security

of WebRTC calls. They allow call participants to encrypt their me-

dia streams with a secret key (possibly exchanged out-of-band),

prior to applying WebRTC’s default DTLS-SRTP-based encryption

at the network layer. Hence, the use of insertable streams could pre-

vent WebRTC gateways from inspecting the media being relayed.

However, at the moment, the use of insertable streams in WebRTC

calls is optional and remains undeployed in the majority of Web-

RTC services. In addition, we expect adversaries to deploy generic

WebRTC gateway implementations like Janus [3], which require

access to the exchanged media streams for additional processing.

7 RELATEDWORK
Internet censorship-circumvention:There aremany approaches

for censorship-resistant communication [33], such as refraction net-

working [12]), censorship-resistant CDNs [59], ephemeral proxy-

based tools [22], traffic randomization tools [17], or packet ma-

nipulators [11]). Our work follows a specific line of proposals for

the creation of covert channels leveraging multimedia streams. For

instance, SkypeMorph [42] shapes covert traffic to mimic legitimate

multimedia streams. In turn, other systems [8, 37, 40] modulate

covert data into artificial media content exchanged bymedia stream-

ing applications. A recent censorship-resistant tool, named Proto-

zoa [10], instruments the WebRTC media coding stack to replace

encoded video content with covert data. Yet, none of the above

systems operate under a threat model that assumes adversaries to

be able to inspect unencrypted media streams. In contrast to the

above systems, and closer to our work, SkypeLine [36] assumes that

an adversary can inspect unencrypted media streams, and leverages

an audio steganography scheme for creating covert channels over

audio calls. However, SkypeLine is restricted to a single application

(Skype) and achieves an inferior covert channel throughput when

compared to Stegozoa (between 2 to 3 orders of magnitude).

Video steganography: Video steganography techniques can be

distinguished in three main categories [38]. First, intra-embedding
techniques embed the secret message in different elements of the

compressed domain, such as motion vectors [56], intra-frame pre-

diction values [13], or QDCT coefficients [53], as in the case of

Stegozoa. Second, pre-embedding techniques embed the secret mes-

sage into the raw domain, i.e., into non-compressed video stream

elements like a frame’s DCT coefficients [2]. Third, post-embedding
techniques embed the secret message into the bitstream that is gen-

erated after a frame’s encoding process is finished [4]. Stegozoa is

the first system that adopts an intra-embedding technique based on

QDCT coefficients to steganographically secure the transmission

of covert data within WebRTC media streams.

Video steganalysis: The state-of-the-art steganalysis techniques
focus on detecting particular steganographic schemes (e.g., mo-

tion vector-based, QDCT coefficients-based) through a combina-

tion of feature-based steganalysis and machine learning (ML) tech-

niques [32]. ML steganalysis typically assumes that the steganalyst

has full knowledge of the embedding method [25, 57]. While other

proposals exist for “universal" steganalysis techniques, where the

steganographic scheme being used is unknown, these are typically

less effective [55]. In our work, we evaluate Stegozoa leveraging

two state-of-the-art ML-based steganalysis techniques targeting

QDCT-based steganography: IDFB [58] and SUPERB [14].

8 CONCLUSIONS
This paper presents Stegozoa, a novel Internet censorship evasion

system that employs video steganography over WebRTC-mediated

videoconferencing streams. The results of our experimental eval-

uation show that a careful selection of covert data embedding pa-

rameters allows Stegozoa to achieve reasonable throughput while

resisting state-of-the-art traffic analysis and steganalysis attacks

launched by an adversary with the ability to inspect the media

content flowing through Stegozoa endpoints.
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