
OONI : Open Observatory of Network Interference

Arturo Filastò
The Tor Project

art@torproject.org

Jacob Appelbaum
The Tor Project & The University of Washington

jacob@torproject.org

Abstract
OONI, the Open Observatory of Network Interference,
is a global observation network which aims to collect
high quality data using open methodologies, using Free
and Open Source Software (FL/OSS) to share observa-
tions and open data about the various types, methods,
and amounts of network tampering in the world.
Furthermore, OONI is a human rights observation
project – observation is a fundamental requirement for
the advancement of knowledge and OONI aims to en-
sure that the tools to make such observations are freely
available to all. With the belief that unfettered access to
information is an intrinsic human right, OONI seeks to
observe levels of surveillance, censorship, and network
discrimination in order for people worldwide to have a
clearer understanding of the ways in which their access
to information and speech is monitored, censored or oth-
erwise filtered.
The end goal of OONI is to collect data which will show
an accurate topology of network surveillance, interfer-
ence and outright censorship. Through this data, it will
be possible to draw conclusions about how the inter-
net functions from any location where an OONI probe
is present. This data includes which websites are cen-
sored, or which services have been tampered with, and
by whom. The data also includes information about the
observer and will attempt to classify the results. We use
the term filternet to describe network connections that are
under measurable surveillance, tampering, or subject to
censorship.

1 Introduction

Previous work [1] in the realm of censorship, network
filtering, or network censorship detection has largely fo-
cused on general anecdotes [2], network measurements
with the goal of studying network quality [3], in iden-
tifying the presence of traffic discrimination devices [4]

or bypassing such censorship without a full understand-
ing [5, 6, 7] of the system itself. Legal [8] issues have
often caused hurdles [9, 10, 11, 6] for researchers. Tools
and techniques specifically dedicated to detecting cen-
sorship are generally not FL/OSS software [12, 3], the
technical methodology is usually secret [13], or the re-
sulting experiment data is not published in totality, if at
all [14].
The major point that distinguishes OONI from existing
filtering detection technology is that it is a framework
that allows researchers to expand upon it with their own
surveillance and censorship detection tests. The method-
ologies used, and the data, collected are all open, al-
lowing journalists and researchers alike to write network
filtering related reports that are based on independently
verifiable evidence.
OONI aims to detect the presence of otherwise seem-
ingly passive network interception devices which per-
form traffic discrimination and also to understand what
content is being targeted for discrimination. We wish to
understand what addresses are being blocked, the key-
words which are filtered, and the kinds of protocols that
are impacted.
This paper aims at being an introduction to the concepts
and design choices we made in developing the OONI
framework, although it still leaves a lot of open ques-
tions which will be the topic of future work. OONI is
currently in heavy development and is available as Free
Software [15] from The Tor Project.

2 Goals

OONI is designed to detect network related tampering
and to assist in network topology discovery. OONI has
a strong focus on general network interception, of which
internet surveillance is a subset, and of which internet
censorship is a further subset. OONI-probe wishes to de-
tect the presence of network traffic manipulation from
the perspective of a given edge network probe. The

art@torproject.org
jacob@torproject.org


OONI-probe software generally attempts to obtain the
type and kind of content where access is restricted. It
gathers local network information and is able to make
high speed, bulk queries to the greater internet for vari-
ous popular protocols, such as HTTP, HTTPS and DNS.

When possible, we will also attempt to profile any de-
tected interception devices. We attempt to identify the
vendor and product used in a given surveillance and cen-
sorship system by first locating the device and then by
using various probing techniques. Unsurprisingly, many
interception devices in the wild advertise their make and
model information.

2.1 Open Data
It is very important that all of the data collected by OONI
is released to the public under an Open license such as
the Creative Commons by Attribution [16] license. This
allows anybody to freely use and republish this infor-
mation as they wish without restriction. The publishing
of scientific data is in line with the Open Science data
movement – the rate of discovery and scientific progress
is accelerated by better access to data. [17]. While other
projects have attempted to share data, we assert that high
level summaries are simply not enough. We wish to en-
sure that open access to data submitted is available to
all and that techniques for analysis will be equally avail-
able. This will allow for factual assertions based on the
data collected rather than on organizational reputation
alone. While we think that this model may have risks,
no project has resolved such risks by refusing to publish
their datasets. At best, hiding data may stop casual at-
tackers, and, at worst, it creates a very valuable target for
attack [18].

2.2 A FL/OSS tool
Making the tool available as Free Libre Open Source
Software allows researchers to fully grasp the inner
workings of the software, and it allows the building of
a strong skillful community around OONI. People inter-
ested in expanding it will be able to do so freely, which
will help sustain it as a basis for future work. A FL/OSS
tool has the most likely chance of being studied and im-
proved by the research community.

2.3 Open Methodologies
By having openly known and peer reviewed method-
ologies, we able to produce data that is of scientific
value. We believe in the importance of reproducible re-
search [19], meaning that any researcher should be able
to obtain the same results independently. This can only
be achieved by detailing the methods we use in our ex-
periments in plain English as well as in code. We plan to
set the standards for best practices in developing network
surveillance and filtering detection tests.

Focusing on the creation and utilization of tests based
on open methods will allow us to build a taxonomy of
surveillance and censorship. This will expand the abil-
ity of the larger community to independently implement
tests, perform experiments, and reference specifics.

2.4 Towards an Extensible Framework
OONI should be considered the basis of an extensible
framework. Any researcher interested in trying out their
ideas may bootstrap the process of writing tests by us-
ing the OONI-probe framework. This will ease data col-
lection and correlation as well as providing a common
functionality that each researcher would otherwise need
to implement. The OONI framework is written in Python
and provides base classes and methods which can be ex-
tended to suit the needs of researchers and users. It uses
non-blocking network I/O, allowing multiple tests to run
efficiently in parallel, and, if desired, blocking network
I/O is a configurable option.

2.5 Enhancing Awareness
Another important goal of OONI is raising awareness in
the general public on the topic of surveillance and cen-
sorship. Furthermore, legal analysis of specific reali-
ties [20, 21, 22, 23] will allow society at large to have
a more open discussion. With OONI, we plan to sup-
ply this new generation of journalists and legal scholars
with high quality data that they can use to build their sto-
ries upon. This allows technically proficient developers
to focus on the technical implementation and low level
details.

3 Threat Model

Our adversary is capable of doing country-wide network
surveillance and manipulation of network traffic.

The goals of our adversary are:

• Restrict access to certain content, while not degrad-
ing overall quality of the network for unrestricted
content

• Monitor the network in a way that they are able to
identify specific behaviors in real time

Our adversary may wish to detect surveillance and
censorship probing by detecting testers and they may
even desire to tamper with the tester’s results. The iden-
tification of testers does not necessarily have to happen
in real time. While our intention is to minimize the risk
of users running OONI-probe being identified, this may
come with trade-offs in accuracy. It is therefore neces-
sary, in certain tests, to favor fingerprint-ability over ac-
curacy. As an example, rTurtle [13], the software pro-
duced by the ONI, connects to a centralized server [24]



with easily fingerprinted DNS and HTTPS traffic. We
believe such simplistic fingerprinting must be avoided.

4 Methodology

We intend to apply the scientific method to the realm
of network surveillance and filtering detection. In or-
der to ensure reproducibility, all experiments conducted
shall be properly documented and all data collected made
available to the public in a timely manner. The same
observations should be possible to reproduce indepen-
dently, in line with standard full disclosure practice.

We base our tests on the concepts of experiment and
control groups. The experiment is defined as the portion
being run on the test network, and the resultant data is
stored as the experiment result. The control is defined as
what the expected result should be on an unbiased, un-
censored, and otherwise untampered network, and this
control data is compared with the experiment result. If
experiment and control mismatch, then this is an indi-
cation of some unusual network activity. The control
data may be dynamic or static – for example, some DNS
records are predictable while many webpages are geo-
graphically diverse.

Mismatch between experiment and control data is not
always a clear signal of network manipulation, but in
many protocols, it is a clear indication that some kind
of tampering has taken place. We will always favor false
positives rather than false negatives. This means that it is
better to have more events that indicate the possible pres-
ence of censorship rather than fewer. This is because the
false positives can then be investigated further and the
researcher is able to understand if censorship is, in fact,
occurring. This may take the form of large scale data
analysis across all sample data, or, perhaps, only against
a subset of the data. Collection and analysis should be
considered as separate phases even while we do some
kinds of analysis during data collection.

There are instances in which the experiment–control
methodology cannot be applied, and in these cases the
researcher is still advised to focus on being in favor of a
higher false negative rating.

Every test should include a high level description of
how the tests will work as well as an in-depth technical
description. In describing the methodology, we will fo-
cus on result significance and accuracy, in order to enable
non-technical audiences in grasping the actual meaning
and how accurate they should consider the result.

The methods will also be classified by a quantifiable
level of risk. In other words, any person running the test
should be able to comprehend the visibility and type of
traffic which will be generated, what information will be
collected, stored, or sent, and how that information will
be stored or sent. Therefore, given the context of their

own political, economic, and legal circumstances, a per-
son should be able to reasonably calculate a person risk
assessment. We plan to do this by presenting a full text
description of the methods and the data, allowing us to
be completely transparent with people who wish to sup-
port the project by running tests on their networks. By
making it clear what risks they may incur by running
a test, users will be able to make informed consensual
choices. We also intend to educate users about possi-
ble testing scenarios, and to ensure that they understand
any potential differences in conducting tests under per-
sonally identifying circumstances, such as the difference
between running a test on an open wireless network ver-
sus their cell phone with a SIM card registered to their
passport. We believe that previous efforts have not pro-
duced such educational material and that users have been
left in the dark.

5 Architecture

OONI is split into two main Modules: OONIB and
OONIProbe.

OONIB is the backend component of OONI. It is re-
sponsible for exposing test helpers and for collecting re-
ports from probes. Anyone may run an instance of ei-
ther, and we believe this will ensure that the collection of
probe data is resistant to simplistic denial of service. We
plan to provide a public set of collection services over
HTTPS and as Tor Hidden Services [25].

TestHelpers are network services that are exposed to
OONIProbe clients. These could be, for example, an
HTTP server, a DNS server, or a Traceroute server.
When using the TestHelpers, the OONIB will also keep
track of the testing session, logging all traffic related to
the client’s testing session and including it in the report.
Once the client sends their side of the report, OONIB
will match up the client submitted data with the data it
collected locally.

OONI-probe is the measurement tool that will be run
on edge networks; here resides the core of the test logic.

The Preprocessor takes files and inputs and makes
them into Assets. Assets are the inputs to the Test.

The Test module takes care of writing packets to the
wire based on the given inputs. It is designed to be ex-
tensible, and it exposes an interface allowing third party
developers to write tests for it.

The PacketCapture module is responsible for collect-
ing the packet dumps of a test. This can be achieved ei-
ther by having the test writer specify a rule for collecting
packets relevant to the test (BPF filters) or by creating a
tun/tap device through which all the test related data is
routed through.

The ControlChannel is used when running tests with
the assistance of OONIB TestHelpers. As such, the



TestHelper

Reporting

ControlChannel

Internal exposed component

Input processor

Test Logic

Work Processor

Reporting

Test Runner

Node Processor

OONIProbe
HTTP API

Internal dataflow

Test Traffic

Internal component

External component

OONIProbe

OONIB

OONI API

Figure 1: OONI Architecture design

ControlChannel is useful for out-of-band communication
with the backend. During a testing session, the client
may be interested in notifying the OONIB of the data
they have sent. OONIB will verify that the data sent
matches those received and report the result back to the
client.

The WorkProcessor is responsible for accepting inputs
from a remote OONIProbe client and for running tests
obtained through it. If enabled, it exposes an HTTP API
to receive remote test inputs.

The UtilityLib provides utility functions which are
useful for test writing, for example, networking libraries.

Reporting may occur locally or remotely. In the case
of remote reporting, the OONIProbe client will obtain
from an OONIB a Test submission token. This token will
allow them to communicate to the backend the progress
of the Test. The reporting system is designed to accept
data from third party testing systems. OONI does not
deal with making measurements using web technologies
(browser based solutions), however, it is possible to de-
velop such systems and use OONIB’s reporting system
for submitting the data.

The TestState is used internally to keep track of test
progress and state. This is useful for handling errors dur-
ing testing and for providing resume support.

5.0.1 Nodes
The purpose of the Node module is to allow tests to be
run on remote machines. A node can also be another
OONIProbe that accepts incoming test requests. If that
is the case, then the only information which needs to be
sent over the network are the inputs to the test – all test
logic will be present serverside.

Nodes which are not aware of OONI are called Net-
work Nodes. Such Network Nodes are any kind of device
that allows traffic to exit from them, and should be used
as last-resort, impromptu systems for testing censorship

in certain countries.
OONI plans to develop an extension to the SOCKS

protocol that will allow for the creation of RAW sockets.
An OONIProxy will then be Network Nodes which are
not necessarily OONI-aware, i.e. they do not run any
OONI software components, but are able to understand
this extension to the SOCKS protocol.

5.1 Detection Procedure
1. The inputs to the test are obtained either from a re-

mote network call or by passing the user-provided
inputs to the Input Processor. This generates an
OONI Asset. These items can be URLs, keywords,
IP addresses and will be given as input to the test.

2. The inputs are passed to the test logic.
3. If the user has specified that the test should run on

a remote Node, the specified portion of the inputs
is serialized and sent to the remote OONI Node. If
the specified Node is remote, a check, based on the
test procedure, is made to ensure that the Node has
the requisite capabilities for running the test, for ex-
ample, a normal SOCKS server would not allow for
raw socket access.

4. If the test requires communication with an OONIB,
a new test session token is created.

5. The test is run on the network.
6. Every N results, a report is sent back to the OONIB.
7. Once the test has finished, the final report is sent to

the reporting backend, and a report receipt is deliv-
ered to the client.

5.2 Test categorization
The tests which are run by OONI can be divided into two
generalized categories: Traffic Manipulation and Con-
tent Blocking.

For Traffic Manipulation tests, there is no need to sup-
ply a list of assets or targets to be tested for blocking,



whereas in the case of Content Blocking tests, such in-
puts are required.

When running a Content Blocking test, the inputs
go through a preprocessing phase to aggregate a set of
any hostnames, URLs, and/or keywords which are being
tested for censorship on the target network into an Asset.

5.3 Preprocessing
At this phase in our methodology, Assets, which will be
passed to the Test, are constructed. For example, if we
are interested in running a censorship detection test for
a given country that is known to censor politically ori-
ented sites, our list of addresses should contain sites in
that category.

Assets should be classified by language and category.
To obtain such lists, we will use a mix between aggre-
gating open data, obtained by crawling for categorically
relevant web sites, and collecting user’s suggestions for
what should be tested.

5.4 Test Specification
We believe in the importance of detailing tests in plain
English as well as in code. The test should be speci-
fied before being implemented. We propose the follow-
ing template for detailing an OONIProbe test:

What it detects Explain what the test aims at detecting.
Test Categorization If it is a Traffic Manipulation test

or a Content Blocking test.
Inputs If the test requires any inputs and what those in-

puts should be.
Experiment The operations which will occur on the test

network.
Control The operations which should verify if censor-

ship has occurred.
Output The data which will be output from the test.

We will not go into the details of every test, but will
provide a brief overview of the kinds of tests we plan
to specify, implement, and run. The reader interested
in more details on test specifics is invited to look at the
OONI test documentation [26]

5.5 Traffic Manipulation
These are tests which aim to detect the presence of deep
packet inspection (DPI) devices. Their aim is not that of
detecting what is being censored, but rather if and how.
When running a traffic manipulation test, one is trying to
answer the question: “If there is surveillance or censor-
ship, where is it likely taking place?” When possible, we
will attempt to fingerprint the surveillance and censor-
ship techniques and the specific device or software used.

Tests which fit into this category are:

Latency based measurements This involves noticing
timing differences in packets which are directed at

specific ports or which possess certain packet struc-
ture. If the timing difference between packets is sig-
nificant, this may be an indication of packet inspec-
tion.

Two way traceroute If there is a difference between an
inbound traceroute and an outbound traceroute for
certain source and destination ports this may be in-
dicative of traffic being routed to interception de-
vices.

Header field manipulation By varying the capitaliza-
tion and adding certain headers to layer 7 protocols,
it is possible to detect if traffic has been tampered
with on the receiving end.

5.6 Content Blocking

The goal of these tests is to detect what content is being
restricted. These tests typically involve iteration through
a list of keywords or hostnames in order to identify which
subset of these are being blocked. When running a con-
tent blocking test, one is trying to answer the question ”Is
there censorship, and, if so, what is being censored?”.
When possible, we will attempt to determine the tech-
nique used for censoring content and the specific device
or software being used.

Examples of tests that are in this category are:

HTTP Host The Host header field of an HTTP request
is changed to that of the site one wishes to check for
censorship.

DNS lookup A DNS lookup is resolved for a given host-
name to verify that it matches the expected result.

Keyword filtering Data containing keywords which are
suspected of being censored are sent and received
on the test network. The set is then bisected to de-
termine the subsets of keywords which are trigger-
ing the filter.

HTTP scan A full connection to the site in question is
attempted, and, if the content does not match the
expected result, then a censored candidate flag is
raised.

Multi-protocol Traceroute TCP, UDP, ICMP, and IP
traceroute-style packets are generated for specific
destination addresses. If there are discrepancies in
the routing paths within the local vicinity of either
endpoint, then a censorship candidate flag is raised.

RST packet detection A connection to a certain desti-
nation is attempted to check whether or not the re-
sponse is a TCP RST packet.

CrossBear Implementation of CrossBear [27] [28] to
detect and localize SSL/TLS Men-in-the-middle.



6 Data Collection

All data collected by OONI must be open and accessible,
and well as consensually submitted by the users. We will
make efforts to not redact any data that is contained in the
logs, unless it is content could potentially lead to harm or
identification of users. We also intend, where possible,
for users to submit data over the Tor [29] network, so that
they do not connect back to a centralized server, reducing
that facet of fingerprint-ability.

We do not consider the data anonymization problem
to be solved by any project at this time. Projects either
refuse to release their large archive of data or they do not
address it meaningfully.

The data format for the reports is YAMLOONI, a doc-
ument format based on YAML [30]. Every report must
contain as a bare minimum the following information:

• Timestamp of start and end of test
• BGP ASN from which the test originated
• The types, kinds and versions of any tests run
• The test results

The timestamp format we use is that specified in
RFC3339 [31]. All times are expressed in UTC.

We decided to choose YAML as a data format because
we believe it is the best compromise between human
readable and machine parsable. YAML supports binary
data, allowing us to also store packet captures inside of
YAMLOONI reports.

When running a test with the assistance of an OONIB,
the report from the client is paired with the data collected
on the server. This allows us to have both connection
viewpoints.

7 Community

In order for the network surveillance and censorship de-
tection field to progress, it is necessary to build a commu-
nity. We hope by making this software and data available
to the public, that a large diversity of people interested in
these topics will gather around OONI.

People who are likely to be interested are researchers
developing network filtering detection tools, social sci-
entists or legal scholars [23, 22] who want high quality
data about censorship around the world, and data visual-
ization specialists who seek to increase public awareness
of trends.

Developers will also be interested in OONI, because
they will be able to write their own tests with reduced
effort. Social scientists will be able to use data collected
with OONI as a basis for further research, and for ex-
ploration into the political, sociological, and economic
contexts of countries where surveillance and censorship
are prevalent. Journalists will be able to cite a trustwor-

thy source when they wish to do data journalism. People
interested the wider matter of censorship will be able to
draw upon the OONI data to make their point.

8 Deployment

The software is created with the intention of being de-
ployed both on servers and on client machines, running
Windows, OSX or Linux.

It will also be deployed through integration into the
upcoming Torouter [32], allowing people to assist simply
by configuring their router to run those OONI tests which
they feel comfortable with running.

9 Implementation Status

At the moment of writing of this paper, a prototype of
OONI has been implemented. OONI is written in Python
and is based upon the Twisted networking framework.
The current implementation of OONI provides a frame-
work for test writing, support for locally running tests
and a local reporting mechanism. Some parts of OONIB
have been implemented, but they do not yet interact prop-
erly with OONIProbe. Utility libraries for writing layer
2 packets have been written based upon scapy. These li-
braries wrap scapy and make sending and receiving func-
tions non-blocking. The packet capture system has been
implemented, based on libpcap and libdnet.

10 Limits and future work

We have not discussed a large number of issues inside
of this paper because of FOCI size constraints. It is, for
example, unclear how much data we should be collect-
ing in test results and how to properly anonymize it; nor
have we found a good heuristic for producing categori-
cal lists of content likely to be censored. This needle in a
hackstack problem requires human tuning and dovetails
nicely with projects such as Herdict [33, 34].

Our threat model is not entirely clear, and we are still
unsure if there will be active effort by ISPs in detecting
network censorship detectors and if it is indeed worth-
while to focus on making it harder for them to detect the
presence of an OONIProbe. By making it harder for the
censor to detect the detection attempt we will probably
end up with slightly less reliable results, though this is
still not fully clear.

We also did not deal with the implementation specifics
for tests that we wish to run with OONIProbe, and the
details of censorship detection tests will be the subject of
future papers.



References

[1] Philipp Winter. ”censorbib: Selected papers
in censorship”. http://www.cs.kau.se/
philwint/censorbib/, 2012. [Online; ac-
cessed 28-June-2012].

[2] Richard P. Feynman. Surely You’re Joking Mr.
Feynman. 1985.

[3] Christian Kreibich, Nicholas Weaver, Boris
Nechaev, and Vern Paxson. Netalyzr: illuminating
the edge network. In Mark Allman, editor, Internet
Measurement Conference, pages 246–259. ACM,
2010. [Online; accessed 28-June-2012].

[4] Electronic Frontier Foundation. Swizer-
land. https://www.eff.org/pages/
switzerland-network-testing-tool,
2010. [Online; accessed 28-June-2012].

[5] Bennett Haselton. How to use steganography
to securely circumvent network-level censor-
ship. http://www.peacefire.org/
techpapers/steganography-network-
level.html, 2000. [Online; accessed 28-June-
2012].

[6] Eddy L O ”Saruman” Jansson of DFR Re-
search & Engineering. The penetration of
cybersitter’97. http://web.archive.
org/web/20050306044647/http:
//polywog.navpoint.com/reveng/
cs97/cs97hack.html, 1997. [Online;
accessed 28-June-2012].

[7] Eddy L O ”Saruman” Jansson of DFR Re-
search & Engineering. The reversal of netnanny.
http://www.polywog.org/reveng/
nn/reversal_of_netnanny.html, 1999.
[Online; accessed 28-June-2012].

[8] J. Zittrain. Be careful what you ask for: Reconcil-
ing a global internet and local law. Who rules the
net, pages 13–30, 2003.

[9] F. Von Lohmann and Electronic Frontier Founda-
tion. Unintended Consequences: Twelve Years un-
der the DMCA. Electronic Frontier Foundation,
2010.

[10] S. Finkelstein. Keeping it clean. Index on Censor-
ship, 38(1):123–127, 2009.

[11] S. Cherry. The net effect. IEEE Spectrum, 2005.

[12] Andreas Sfakianakis, Elias Athanasopoulos, and
Sotiris Ioannidis. CensMon: A Web Censorship
Monitor. In USENIX Workshop on Free and Open
Communications on the Internet, San Francisco,
CA, 2011. USENIX Association.

[13] OpenNet Initiative. rturtle. private source code leak
and private correspondence, 2009.

[14] OpenNet Initiative. Opennet initiative. http:
//opennet.net/research/, 2012. [Online;
accessed 28-June-2012].

[15] The Tor Project. ooni probe git reposi-
tory. https://gitweb.torproject.org/
ooni-probe.git, 2011. [Online; accessed 28-
June-2012].

[16] Creative Commons. Creative commons at-
tribution 3.0 unported license. http:
//creativecommons.org/licenses/
by/3.0/. [Online; accessed 28-June-2012].

[17] Ray P. Norris. How to make the dream come true:
the astronomers’ data manifesto. Data Science
Journal, 6:S116–S124, 2007.

[18] William Shakespeare. Hamlet: Act 5, scene
2. http://shakespeare-navigators.
com/hamlet/HamletNotes52.html#17.

[19] Yale Law School Roundtable on Data and Code
Sharing. Reproducible research. Computing in Sci-
ence and Engineering, 12:8–13, 2010. [Online; ac-
cessed 28-June-2012].

[20] L. Lessig. What things regulate speech: Cda 2.0 vs.
filtering. Jurimetrics, 38:629, 1997.

[21] J. Weinberg. Rating the net. Hastings Comm. &
Ent. LJ, 19:453, 1996.

[22] J.M. Balkin. Media filters, the v-chip, and the foun-
dations of broadcast regulation. Duke Law Journal,
45(6):1131–1175, 1996.

[23] R.J. Peltz. Use the filter you were born with: The
unconsitutionality of mandatory internet filtering
for the adult patrons of public libraries. Wash. L.
Rev., 77:397, 2002.

[24] OpenNet Initiative. rturtle. private source code leak
and analysis, 2009 - 2012.

[25] The Tor Project. Tor rendezvous specification.
https://gitweb.torproject.org/
torspec.git?a=blob_plain;hb=HEAD;
f=rend-spec.txt, 2004.

[26] The Tor Project. Ooni test list. https:
//trac.torproject.org/projects/
tor/wiki/doc/OONI/Tests, 2012.

[27] Ralph Holz, Thomas Riedmaier, Nils Kammenhu-
ber, and Georg Carle. X.509 Forensics: Detecting
and Localising the SSL/TLS Men-in-the-middle. In
Proc. 17th European Symposium on Research in
Computer Security (ESORICS 2012), Pisa, Italy,
September 2012.

http://www.cs.kau.se/philwint/censorbib/
http://www.cs.kau.se/philwint/censorbib/
https://www.eff.org/pages/switzerland-network-testing-tool
https://www.eff.org/pages/switzerland-network-testing-tool
http://www.peacefire.org/techpapers/steganography-network-level.html
http://www.peacefire.org/techpapers/steganography-network-level.html
http://www.peacefire.org/techpapers/steganography-network-level.html
http://web.archive.org/web/20050306044647/http://polywog.navpoint.com/reveng/cs97/cs97hack.html
http://web.archive.org/web/20050306044647/http://polywog.navpoint.com/reveng/cs97/cs97hack.html
http://web.archive.org/web/20050306044647/http://polywog.navpoint.com/reveng/cs97/cs97hack.html
http://web.archive.org/web/20050306044647/http://polywog.navpoint.com/reveng/cs97/cs97hack.html
http://www.polywog.org/reveng/nn/reversal_of_netnanny.html
http://www.polywog.org/reveng/nn/reversal_of_netnanny.html
http://opennet.net/research/
http://opennet.net/research/
https://gitweb.torproject.org/ooni-probe.git
https://gitweb.torproject.org/ooni-probe.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://shakespeare-navigators.com/hamlet/HamletNotes52.html#17
http://shakespeare-navigators.com/hamlet/HamletNotes52.html#17
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=rend-spec.txt
https://trac.torproject.org/projects/tor/wiki/doc/OONI/Tests
https://trac.torproject.org/projects/tor/wiki/doc/OONI/Tests
https://trac.torproject.org/projects/tor/wiki/doc/OONI/Tests


[28] Crossbear Team (Ralph Holz and Thomas Ried-
maier). Turning the tables and how we
got there. https://pki.net.in.tum.de/
files/berlinsides.pdf. [Online; accessed
28-June-2012].

[29] Roger Dingledine, Nick Mathewson, and Paul
Syverson. Tor: The second-generation onion
router. In Proceedings of the 13th USENIX Secu-
rity Symposium, August 2004.

[30] Oren Ben-Kiki, Clark Evans, and Ingy döt Net.
YAML ain’t markup language (YAML) (tm) ver-
sion 1.2. Technical report, YAML.org, 9 2009. [On-
line; accessed 28-June-2012].

[31] G. Klyne and C. Newman. Date and Time on the In-
ternet: Timestamps. http://www.ietf.org/
rfc/rfc3339.txt, July 2002. RFC 3339 (Pro-
posed Standard).

[32] The Tor Project. Torouter. https:
//trac.torproject.org/projects/
tor/wiki/doc/Torouter, 2012. [Online;
accessed 28-June-2012].

[33] Berkman Center for Internet & Society at Har-
vard University. Herdict. https://www.
herdict.org/, 2012. [Online; accessed 28-
June-2012].

[34] T. Hwang. Herdict: a distributed model for threats
online. Network Security, 2007(8):15–18, 2007.

https://pki.net.in.tum.de/files/berlinsides.pdf
https://pki.net.in.tum.de/files/berlinsides.pdf
http://www.ietf.org/rfc/rfc3339.txt
http://www.ietf.org/rfc/rfc3339.txt
https://trac.torproject.org/projects/tor/wiki/doc/Torouter
https://trac.torproject.org/projects/tor/wiki/doc/Torouter
https://trac.torproject.org/projects/tor/wiki/doc/Torouter
https://www.herdict.org/
https://www.herdict.org/

	Introduction
	Goals
	Open Data
	A FL/OSS tool
	Open Methodologies
	Towards an Extensible Framework
	Enhancing Awareness

	Threat Model
	Methodology
	Architecture
	Nodes
	Detection Procedure
	Test categorization
	Preprocessing
	Test Specification
	Traffic Manipulation
	Content Blocking

	Data Collection
	Community
	Deployment
	Implementation Status
	Limits and future work

