
Detecting Probe-resistant Proxies

Sergey Frolov
University of Colorado Boulder

sergey.frolov@colorado.edu

Jack Wampler
University of Colorado Boulder

jack.wampler@colorado.edu

Eric Wustrow
University of Colorado Boulder

ewust@colorado.edu

to have no discernible fingerprints or header fields, making
them difficult for censors to passively detect. However, censors
such as the Great Firewall of China (GFW) have started
actively probing suspected proxies by connecting to them and
attempting to communicate using their custom protocols [18].
If a suspected server responds to a known circumvention
protocol, the censor can block them as confirmed proxies.
Active probing can be especially effective at detecting sus-
pected proxies, because censors can discover new servers as
they are used. Previous work has shown that China employs
an extensive active probing architecture that is successful in
blocking older circumvention protocols like vanilla Tor, obfs2
and obfs3 [18], [4], [45].

In response to this technique, circumventors have devel-
oped probe-resistant proxy protocols, such as obfs4 [6],
Shadowsocks [2], and Lampshade [26], that try to prevent
censors from using active probing to discover proxies. These
protocols generally require that clients prove knowledge of a
secret before the server will respond. The secret is distributed
along with the server address out-of-band, for example through
Tor’s BridgeDB [38] or by email, and is unknown to the censor.
Without the secret, censors will not be able to get the server
to respond to their own active probes, making it difficult for
the censor to confirm what protocol the server speaks.

In this paper, we investigate several popular probe-resistant
proxy protocols in use today. Despite being designed to be
probe-resistant, we discover new attacks that allow a censor
to positively identify proxy servers using only a handful
of specially-crafted probes. We compare how known proxy
servers respond to our probes with the responses from legiti-
mate servers on the Internet (collected from a passive network
tap and active scanning), and find that we can easily distinguish
between the two with negligible false positives in our dataset.

We analyze five popular proxy protocols: obfs4 [6] used
by Tor, Lampshade [26] used in Lantern, Shadowsocks [2],
MTProto [11] used in Telegram, and Obfuscated SSH [27]
used in Psiphon. For each of these protocols, we find ways to
actively probe servers of these protocols, and distinguish them
from non-proxy hosts with a low false positive rate.

Our attacks center around the observation that never re-
sponding with data is unusual behavior on the Internet. By
sending probes comprised of popular protocols as well as
random data, we can elicit responses from nearly all endpoints
(94%) in our Tap dataset of over 400k IP/port pairs. For
endpoints that do not respond, we find TCP behavior such
as timeouts and data thresholds that are unique to the proxies
compared to other servers, which provide a viable attack for
identifying all existing probe-resistant proxy implementations.

We use our dataset to discover the most common responses

Abstract—Censorship circumvention proxies have to resist ac-
tive probing attempts, where censors connect to suspected servers
and attempt to communicate using known proxy protocols. If the
server responds in a way that reveals it is a proxy, the censor can
block it with minimal collateral risk to other non-proxy services.
Censors such as the Great Firewall of China have previously been
observed using basic forms of this technique to find and block
proxy servers as soon as they are used. In response, circumventors
have created new “probe-resistant” proxy protocols, including
obfs4, shadowsocks, and Lampshade, that attempt to prevent
censors from discovering them. These proxies require knowledge
of a secret in order to use, and the servers remain silent when
probed by a censor that doesn’t have the secret in an attempt to
make it more difficult for censors to detect them.

In this paper, we identify ways that censors can still
distinguish such probe-resistant proxies from other innocuous
hosts on the Internet, despite their design. We discover unique
TCP behaviors of five probe-resistant protocols used in popular
circumvention software that could allow censors to effectively
confirm suspected proxies with minimal false positives. We
evaluate and analyze our attacks on hundreds of thousands of
servers collected from a 10 Gbps university ISP vantage point
over several days as well as active scanning using ZMap. We
find that our attacks are able to efficiently identify proxy servers
with only a handful of probing connections, with negligible false
positives. Using our datasets, we also suggest defenses to these
attacks that make it harder for censors to distinguish proxies
from other common servers, and we work with proxy developers
to implement these changes in several popular circumvention
tools.

I. INTRODUCTION

Internet censorship continues to be a pervasive problem
online, with users and censors engaging in an ongoing cat-and-
mouse game. Users attempt to circumvent censorship using
proxies, while censors try to find and block new proxies to
prevent their use.

This arms race has led to an evolution in circumvention
strategies as toolmakers have developed new ways to hide
proxies from censors while still being accessible to users. In
recent years, censors have learned to identify and block
common proxy protocols using deep packet inspection (DPI),
prompting circumventors to create new protocols such as
obfsproxy [15] and Scramblesuit [47] that encrypt traffic to be
indistinguishable from random. These protocols are designed

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA
ISBN 1-891562-61-4
https://dx.doi.org/10.14722/ndss.2020.23087
www.ndss-symposium.org

and TCP behavior of servers online, and use this data to
inform how probe-resistant proxies can better blend in with
other services, making them harder to block. We work with
several proxy developers including Psiphon, Lantern, obfs4,
and Outline Shadowsocks to deploy our suggested changes.

II. BACKGROUND

In this section, we describe the censor threat model, and
provide background on the probe-resistant circumvention pro-
tocols we study, focusing on how each prevents censors from
probing.

A. Censor Threat Model

We assume that censors can observe network traffic and
can perform follow-up probes to servers they see other clients
connecting to. The censor can also perform large active net-
work scans (e.g. using ZMap [16]). We assume the censor
knows and understands the circumvention protocols and can
run local instances of the servers themselves, or can discover
subsets of (but not all) real proxy servers through legitimate
use of the proxy system.

In this paper, we focus on identifying potential proxies via
active probing. Although censors may have other techniques
for discovering and blocking proxies (e.g. passive analysis [42]
or distribution system enumeration [14]), these attacks are
beyond the scope of this paper. While successful circumvention
systems must protect against these and other attacks, it is also
necessary for the proxies to be resistant to active probes, which
is the focus of our paper.

We assume that the censor does not know the secrets
distributed out-of-band for every proxy server. Although the
censor can use the distribution system to learn small subsets
of proxies (and their secrets) and block them, full enumeration
of the distribution system is out of scope.

B. Probe-resistant Protocols

Circumvention protocols must avoid two main threats to
avoid being easily blocked by censors: passive detection, and
active probing. If a censor can passively detect a protocol
and distinguish it from legitimate ones, the protocol can be
blocked with minimal collateral damage. Circumvention pro-
tocols attempt to avoid passive identification by trying to blend
in with other protocols or implementations [17], [32], [15],
[22], or by creating randomized protocols with no discernible
fingerprints [6], [26], [2], [47].

Alternatively, censors can identify or confirm suspected
proxies by actively probing them. The Great Firewall of
China (GFW) has previously been observed sending follow-
up probes to suspected Tor bridges [41], [45], [18], [4]. These
probes were designed to confirm if a proxy is a Tor bridge (by
attempting to use it to access Tor), and block the IP if it is.

To combat this style of active identification, circumvention
protocols now attempt to be probe-resistant. For instance, in
obfs4, clients are given a secret key that allows them to connect
to the provided server. Without this key, active probing censors
cannot complete the initial handshake, and the obfs4 server will
close the connection after a brief timeout.

We now describe each of the five proxy protocols we study.
An overview of how each protocol attempts to thwart active
probing is seen in Table I.

1) obfs4: obfs4 [6] is a generic protocol obfuscation layer,
frequently used as a Pluggable Transport [39] for Tor bridges.
obfs4 proxies are distributed to users along with a corre-
sponding 20-byte node ID and Curve25519 public key. Upon
connecting to an obfs4 server, the client generates their own
ephemeral Curve25519 key pair, and sends an initial message
containing the client public key, random padding, and an
HMAC over the server’s public key, node ID, and client public
key (encoded using Elligator [10] to be indistinguishable from
random), with a second HMAC including a timestamp. The
server only responds if the HMACs are valid. Since computing
the HMACs requires knowledge of the (secret) server public
key and node ID, censors cannot elicit a response from the
obfs4 server. If a client sends invalid HMACs (e.g. a probing
censor), the server closes the connection after a server-specific
random delay.

2) Lampshade: Lampshade [26] is a protocol used by the
Lantern censorship circumvention system, and uses RSA to
encrypt an initial message from the client. Clients are given
the server’s RSA public key out of band, and clients use
it to encrypt the initial plaintext message containing a 256-
bit random seed, the protocol versions, and ciphers that the
client supports. Subsequent messages are encrypted/decrypted
using the specified cipher (usually AES-GCM) and the client-
chosen seed, with prepended payload lengths encrypted using
ChaCha20. Since the censor does not know a server’s RSA
public key, they will be unable to send a valid initial message
with a known seed, and any subsequent messages will be
ignored. If the server fails to decrypt the expected 256-byte
ciphertext (based on an expected magic value in the plaintext),
it will close the connection.

3) Shadowsocks: Shadowsocks is a popular protocol devel-
oped and used in China, and has many different interoperable
implementations available [25], [50], [13]. Shadowsocks does
not host or distribute servers themselves. Instead, users must
launch their own private proxy instances on cloud providers,
and configure it with a user-chosen password and timeout.
Users can then tunnel their traffic to their private proxy using
the Shadowsocks protocol. Shadowsocks clients generate a
key from a secret password and random salt, and then sends
the random salt and encrypted payload using an authenticated
(AEAD) cipher to the server. A censor without the secret
password will not be able to generate valid authenticated
ciphertexts, and their invalid ciphertexts will be ignored by
the server.

There are numerous implementations of the Shadowsocks
protocol [2]; our analysis covers two: the event driven Shad-
owsocks implementation in Python [13], and Jigsaw’s Out-
line [25]. We refer to these as shadowsocks-python and
shadowsocks-outline respectively. In the AEAD-mode, both
server implementations wait to receive 50 bytes from the
client, and if the AEAD tag is invalid, the server closes the
connection.

4) MTProto: MTProto [1] is a proprietary protocol de-
signed and used by the Telegram [3] secure messaging app.
In countries that block the service, Telegram employs the

2

Protocol Client’s first message Server Behavior
obfs4 [6] K = server pubkey |NODEID

M = client pubkey | padding |HMACK(client pubkey)
send: M |HMACK(M | timestamp)

Reads 8192 bytes (max handshake padding length)
If no valid HMAC is found, server reads a random 0-8192 additional
bytes, then closes the connection.

Lampshade [26] send: RSAencrypt (server pubkey, ... | seed) Reads 256 bytes (corresponding to RSA ciphertext length) and attempts
to decrypt. If it fails, the server closes the connection.

Shadowsocks [2] K = HKDF(password,salt,“ss− subkey”)
send: salt |AEADK(payload len) |AEADK(payload)

Reads 50 bytes (corresponding to salt, 2-byte length, and AEAD tag)
If the tag is invalid, server closes the connection.

MTProto Proxy [1] K = sha256(seed | secret)
send: seed | IV |EK(magic)

Does not close the connection on invalid handshake.

OSSH [27] K = SHA11000(seed | secret)
send: seed |EK(magic | payload)

Reads 24 bytes, and closes the connection if the expected magic value is
not decrypted.

TABLE I: Probe-resistant Protocols — In this table we list the first message sent by the client in the probe-resistant proxy
protocols we study, and the server’s corresponding parsing behavior. Blue text denotes secrets distributed to the client out-of-
band. Servers typically close the connection after they receive an invalid handshake message; however, precisely when a server
closes a failed connection can reveal a unique fingerprint that could be used to distinguish them from other services.

MTProto Proxy protocol, which only adds obfuscation, and
will be referred to as simply MTProto for the remainder of
the paper. MTProto derives a secret key from the hash of a
random seed and a secret distributed out-of-band. The key is
then used to encrypt a 4-byte magic value using AES-CTR.
If the server does not decrypt the client’s first message to the
expected magic value, it will not respond. Since the censor
does not know the secret, they will be unable to construct
a ciphertext that decrypts to the proper 4-byte value. Upon
handshake failure, the server keeps the connection open forever
but does not respond.

There are many unofficial implementations of MTProto
servers, including versions in Python [11], Golang [36], and
NodeJS [20], but we only investigate servers included with
the Telegram Android application by default, which are more
likely to be an official implementation.

5) Obfuscated SSH: Obfsucated SSH [27] (OSSH) is a
simple protocol that wraps the SSH protocol in a layer of
encryption, obfuscating its easily-identified headers. Clients
send a 16-byte seed, which is hashed along with a secret
keyword thousands of times using SHA-1 to derive a key.
The key is used to encrypt a 4-byte magic value along with
any payload data (i.e. SSH traffic) using RC4. The server
re-derives the key from the seed and secret keyword and
decrypts to verify the magic value. We specifically looked
at Psiphon’s OSSH implementation [35], which uses a 32-
byte secret keyword distributed to clients. Without knowing
the keyword, censors cannot create valid ciphertext1. If an
OSSH server receives an invalid first message, it closes the
connection.

III. PROBE DESIGN

To detect probe-resistant proxy servers, we consider what
each protocol has in common. Specifically, each protocol
requires knowledge of a secret that is proven cryptographically.
If the client does not know the secret, the server will simply not
respond, and eventually close the connection. We start with the
intuition that such non-response is uncommon on the Internet,
especially to a large corpus of probes in popular protocols. For

1We note that a 4-byte magic value may be insufficient to validate
knowledge of the keyword; 1 in 4 billion random ciphertexts may decrypt
to contain any 4-byte value, though this is likely infeasible for censors to
practically use

instance, it’s trivial to distinguish between all HTTP servers
and probe-resistant proxies, as HTTP servers will respond to
HTTP requests while the proxies will not.

Following this intuition, we create several protocol-specific
probes for well-known protocols unrelated to censorship cir-
cumvention, and send them to a large sample of Internet hosts
to see how they respond. If most or all of the hosts respond,
or otherwise close the connection in a way distinguishable
from the proxy servers we study, then a censor could use
this as an effective strategy for identifying proxy servers and
distinguishing them from legitimate hosts.

A. Basic Probes

Our probes are data that we send to a server after connect-
ing over TCP. We limit our probes to TCP as all of the proxy
protocols we study use TCP, though our techniques could be
expanded to UDP. We started with 6 basic probes: HTTP, TLS,
MODBUS, S7, random bytes, and an empty probe that sends
no data after connecting. For each probe, we record how a
server responds in terms of the data (if any) it replies with,
the time that it closes the connection (if it does), and how it
closes the connection (TCP FIN or RST). We briefly describe
each of our initial probes.

a) HTTP: For HTTP, we send a simple HTTP/1.1 GET
request with a host header of example.com. As HTTP
remains one of the most popular protocols on the Internet,
we expect many servers will respond with HTTP responses,
redirects, or error pages. We note that like any protocol-specific
probe, even servers that are not HTTP may respond to this
probe with an error message native to their protocol.

b) TLS: We send a TLS Client Hello message that is
typically generated by the Chromium version 71 browser. This
includes popular cipher suites and extensions, though we note
that even if there is no mutual support between an actual TLS
server and our Client Hello, the server should respond with a
TLS Alert message, allowing us to distinguish it from silent
proxy servers.

c) Modbus: Modbus is commonly used by pro-
grammable logic controllers (PLC) and other embedded de-
vices in supervisory control and data acquisition (SCADA)
environments. We used a probe defined in ZGrab [51] that
sends a 3-byte command that requests a device info descriptor
from the remote host.

3

d) S7: S7 is a proprietary protocol used by Siemens
PLC devices. We again used the probe defined in ZGrab [51]
which sends a request for device identifier over the COTP/S7
protocol.

e) Random bytes: We also send several probes with
differing amounts of random bytes, with the hope that servers
that attempt to parse this data will fail and respond with
an error message or close the connection in a way that
distinguishes them from proxy servers.

f) Empty probe: We also have a specific “probe” that
sends no data after connecting. Some protocols (such as SSH)
have the server communicate first (or simultaneously) with
the client. For other protocols, implementations may have
different timeouts for when the client has sent some initial
data compared to when no data is sent.

We initially probed a small sample of about 50,000 server
endpoints collected from our passive tap (see Section III-B)
with these initial 6 probes, and compared how they responded
(data, connection close type and timing) with how instances
of our proxy servers responded. With only these probes, there
were still hundreds of servers that responded identical to
the obfs4 servers we probed. After manual analysis of these
servers, we added two additional probes based on the types of
servers we identified:

g) DNS AXFR: Although DNS requests are typically
done over UDP, DNS zone transfers are carried out over
TCP. We identified several hosts in our initial sample that
appeared to be DNS servers based on our manual probing
using nmap [29]. To detect these using our probes, we crafted
a DNS AXFR (zone transfer) query probe based on the DNS
specification [31].

h) STUN: We discovered several endpoints on TCP port
5004 that we were unable to directly identify. We found many
of the hosts also had port 443 open and responded with TLS
self-signed certificates that suggested they were Cisco WebEx
devices. While this confirmed these were unlikely to be proxy
servers, we were also able to find a more direct way to identify
these hosts. We used our passive network tap to look at data
sent over TCP port 5004, and used the data we collected
to help us identify what protocol these devices support and
how to generate a probe for them. Although an uncommon
port (we only saw 4 data-carrying packets over several days
of collection on a 10 Gbps tap), we were able to identify
this port as supporting Session Traversal Utilities for NAT
(STUN) protocols based on a magic cookie value included in
the data. With this knowledge, we implemented a STUN probe
based on the ZGrab Golang library, which we confirmed elicits
responses from these remaining hosts, allowing us to directly
distinguish them from proxies.

B. Comparison Dataset

We create a dataset comprised of known proxy endpoints
(IP/port pairs) and common (non-proxy) endpoints. For each
proxy we investigate, we collect a sample set of active end-
points from their respective proxy distribution system (e.g.
BridgeDB), contacting the developers, or by running our own
instance. We collect over 20 obfs4 proxy endpoints from Tor’s
BridgeDB, and receive 3 Lampshade proxies from Lantern

developers. We obtain 3 OSSH proxy endpoints from Psiphon
developers, and discover 3 endpoints of MTProto by using the
Telegram application. As Shadowsocks is designed for users
to run their own proxies, we set up our own shadowsocks-
python instance (configured using the chacha20-ietf-poly1305
cipher) and received an address of shadowsocks-outline from
developers.

Gathering a realistic “common” (non-proxy) endpoints
dataset is trickier. Ideally, we want a large set of endpoints
that contains a diverse set of non-proxy hosts. We could
potentially create our own set of endpoints by running known
implementations of non-proxy services ourselves, such as
popular web servers, mail servers, and other network services.
But this would fail to capture proprietary servers as well as the
long-tail of obscure servers that are present in the real world.

Instead, we collect likely non-proxy endpoints from two
sources: active network scans using ZMap [16], and passive
collection of netflow data. We use ZMap to send a SYN
packet to 20,000 hosts on every TCP port (0-65535) for a
total of 1.3 billion probes. We discover 1.5 million endpoints
that responded with SYN-ACKs, which we label as our ZMap
dataset.

For our passive dataset, we collect endpoints by sampling
netflow data from a 10 Gbps router at the University of
Colorado. Our intuition is that due to its network position in a
country that does not censor its Internet, the vast majority of
traffic seen from this vantage point will not contain proxies.
This ISP’s users have little motivation to use censorship
circumvention proxies, so endpoints collected here are likely
to be predominantly other services. Moreover, these hosts are
more representative of useful services, as opposed to endpoints
in the ZMap scan that may not have any actual clients connect
to them beside our scanner.

Over a 3-day timespan, we collected over 550,000 unique
server IP/port endpoints from our ISP that we observed sending
data, and sent follow-up connections from our scanning server.
Of these, 433,286 (79%) hosts accepted our connection (re-
sponded with a TCP SYN-ACK), with the remaining majority
simply timing out during the attempted connection. We believe
this response rate can be explained by two reasons. First, our
follow-up scans occurred up to several days after the connec-
tions were observed, and some servers could have moved IPs
or been taken offline in the meantime. Second, servers might
be configured with firewalls that only allow access from certain
IPs, potentially blocking our ZMap scanning host. Nonetheless,
we are still able to capture over 400,000 unique endpoints in
this dataset that we know are servers that have been observed
sending data.

Both datasets might still contain some amount of actual
proxy endpoints in them, which we investigate further in
Section V-D. Nonetheless, these two datasets provide a diverse
list of common endpoints for us to compare with our limited
proxies.

IV. IDENTIFYING PROXIES

A censor’s goal is to find ways to differentiate proxy servers
from other benign servers on the Internet, in order to block
proxies without blocking other services. In this section, we

4

discuss techniques for differentiating servers from one another
for the purpose of uniquely identifying proxy servers.

At a high level, our goal is to identify ways to evoke unique
responses from proxy servers in comparison to non-proxy
servers. If we are able to get a proxy server implementation to
respond in a distinct way from every other server on the Inter-
net, censors could use their unique responses to identify and
block proxies. We identify three critical features in the ways
that servers respond to probes that can be used to fingerprint
modern proxies: response data, connection timeouts, and close
thresholds, which we detail next.

A. Response Data

Most servers will respond with some kind of data when
sent a probe. For instance, HTTP servers will respond to our
HTTP probe, but many other protocols will respond with error
messages or information when they receive application layer
data that they do not understand. On the flip side, we observe
that none of our proxy servers respond with any data for any
of the probes. This is due to the proxy strategy of remaining
silent unless the client proves knowledge of the secret, which
a probing censor is unable to do. However, if the censor has a
set of probes that can coax at least one response from all hosts
that aren’t proxies, then non-response could inform a censor
that the host is a proxy and safe to block.

Proxies might try to provide some form of response,
though this likely commits the proxy to a particular protocol,
which has been shown to be a difficult strategy to employ
correctly [24]. Modern probe-resistant proxies never respond
with data to any of our probes, so we can easily mark any
servers that respond with data to any of our probes as a non-
proxy endpoint.

B. Timeouts

Even if a server does not reply with any data, they might
still close the connection in unique ways. For example, some
servers have an application-specified timeout, after which they
will close a connection. Timeouts might also be different
depending on the state that a server is in. For instance, a
server might timeout a connection after 10 seconds if it hasn’t
received any data, but timeout after 60 seconds if it has
received some initial data from the client.

Servers might also differ in the way that they close the
connection after the timeout. TCP sessions end after either a
TCP FIN or TCP RST packet is sent as determined by the
interactions with the application and the underlying operating
system.

C. Buffer Thresholds

Finally, we discover another implementation-specific be-
havior that can distinguish endpoints even if they have identical
timeouts and never respond with data. Consider a server that
reads N bytes from the client, and attempts to parse it as a
protocol header. If the parsing fails (e.g. invalid fields, check-
sums or MACs), the server may simply close the connection.
However, if the client sends only N−1 bytes, the server might
keep the connection open and wait for additional data before
it attempts to parse.

Fig. 1: TCP Threshold — Many TCP server applications close
the connection after receiving a certain threshold of bytes from
the client (e.g. protocol headers or expected payload chunks)
when they fail to parse them. Servers that close a connection
after a threshold will send a FIN packet. However, if the
application has not read (by calling recv) all of the data from
the OS’s connection buffer when it calls close, the server will
send a RST instead. These thresholds can be learned remotely
(via binary search using random/invalid data) and used as a
way to identify or fingerprint server implementations.

We term such a data limit the close threshold of a server.
If a client (or probing censor) sends less than this number of
bytes, the server will wait, even if those bytes are random and
non-protocol compliant. However, as soon as the client sends
data beyond the threshold limit, the server will attempt to parse
the data (and likely fail in the case of random data), and close
the connection with either FIN or RST.

Not every server implementation has a close threshold.
Some implementations may instead read from the connec-
tion forever after an error is encountered, or only close
the connection after a data-independent timeout. Nonetheless,
servers that do have a threshold provide an additional way for
censors to identify and distinguish them from other servers and
implementations.

We also discover a second type of identifying threshold
for some servers that close the connection after reading a
threshold number of bytes, which we confirmed happens in
a typical Linux application. When a program closes a TCP
connection, the operating system normally sends a FIN packet
and completes a 4-way closing handshake with the remote end.
However, in certain cases the connection will be closed with a
RST packet instead. On Linux, we find if there is any unread
data in the connection buffer, the operating system will send
a RST packet. We define FIN threshold and RST threshold as
the amount of bytes needed to be sent to a server in order
to specifically trigger the FIN or RST, while close threshold
refers to whichever occurs first (lower number of bytes).

Figure 1 illustrates the FIN and RST thresholds and how
they commonly relate. Data sent up to the FIN threshold will
cause the server to keep the connection open, while data sent
beyond that will cause the server to close the connection with
a FIN. If enough data is sent to exceed the RST threshold, the
server will close with a RST.

These limits are due to application-specific behavior. While
prior work has demonstrated ways to measure TCP behavior

5

Connection Timeout FIN Threshold RST Threshold
obfs4 60-180s 8-16 KB next mod 1448

Lampshade 90 / 135s 256 bytes 257 bytes
shadowsocks-python configurable 50 bytes -
shadowsocks-outline configurable 50 bytes 51 bytes

MTProto - - -
OSSH 30s 24 bytes 25 bytes

TABLE II: Proxy timeouts and thresholds — We measured
how long each probe-resistant proxy lets a connection stay
open before it times out and closes it (Connection Timeout),
and how many bytes we can send to a proxy before it
immediately closes the connection with a FIN or RST. obfs4’s
RST Threshold is the next value after the FIN threshold that
is divisible by 1448.

of the underlying OS (e.g. via congestion control [34]), to the
best of our knowledge, we are the first to identify and measure
these application-specific thresholds in TCP programs.

As an example, obfs4 has a randomized close threshold
between 8192 and 16384 bytes. Since the obfs4 handshake
can be up to 8192 bytes in length, the server reads this many
bytes before determining the client is invalid, and entering a
closeAfterDelay function. This function either closes the
connection after a random delay (30-90 seconds) or after the
server has read an additional N bytes, for N chosen randomly
between 0 and 8192 at server startup. However, each of these
reads is done using a 1448-byte buffer. This means that obfs4
servers will send a FIN if they are sent 8192 + N bytes,
and send a RST if they are sent 8192 + N − ((8192 + N)
mod 1448)+1448 bytes, a behavior that appears to be unique
to obfs4. Table II shows the timeouts and thresholds for the
probe-resistant proxies we study.

1) Threshold Detector: We developed a tool to binary
search for the close and RST threshold for a given endpoint.
Our tool starts by connecting and sending 4,096 bytes of ran-
dom data, and seeing if the connection is closed (FIN or RST)
within 3 seconds. If it is, we make subsequent connections,
halving the number of bytes we send until we reach a value
that the server does not close the connection within a second.
If even the original 4,096 byte probe does not result in a close,
we reconnect and send twice the amount of data (up to 1 MB)
until we find a close. Once we have identified an upper and
lower bound for a given server, we binary search between these
bounds to obtain the exact value of the close threshold. Once
a close threshold is found, we reconfirm using two follow up
probes: one immediately below and one immediately above
the found threshold. We use 3 different seeds to generate the
random data in those confirmation probes. If the behavior is
identical with all 3 seeds, we mark it as having a stable close
threshold. Otherwise, we mark the endpoint as unstable and
ignore the threshold value.

V. EVALUATION

To evaluate our competency at distinguishing proxies from
other servers, we sent our probes to over 1.9 million endpoints
contained in our “common servers” dataset, and observed the
ways in which their responses differ from those of known
proxies. As a reminder, this dataset contains over 500,000
endpoints observed at our passive ISP tap, and approximately

Probe Tap ZMap
TLS 87.8% 0.90%

HTTP 64.6% 0.95%
STUN 52.5% 0.56%
Empty 8.4% 0.23%

S7 56.9% 0.66%
Modbus 51.4% 0.54%

DNS-AXFR 58.8% 0.67%
Any 94.0% 1.16%

TABLE III: Percent of endpoints responding with data —
For both our ISP passive (Tap) and active (ZMap) datasets,
we report the percent of endpoints that respond to each of our
probes, as well as the percent that responded to at least one
(Any).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1x106

C
D

F

Unique Responses

ZMap
Tap

Fig. 2: Response set CDF — We group endpoints based on
how they respond to our 7 non-random probes, capturing the
number of bytes the endpoint replies with, how long it keeps
the connection open (binned to seconds), and how it closed the
connection. Over 42% of endpoints respond the same (timeout
after 300 seconds) in our ZMap dataset, which we identify as
a common firewall behavior. Despite being smaller, the Tap
dataset is much more diverse (129k vs 31k unique response
sets).

1.5 million endpoints collected using ZMap on random IPs
and ports. We send 13 probes to each endpoint (our 7 probes
from Section III-A and 6 probes with random data ranging
from 23 bytes to over 17KB) and record if and when the
server responds with data or closes the connection. If the server
closes, we record if it used a FIN or RST. If the server does not
respond or close the connection, we timeout after 300 seconds
and mark the result as a TIMEOUT. In addition to sending
probes, we also use our threshold detector on each endpoint,
recording their close thresholds.

Table III shows each of our (non-random) probes, and the
percent of endpoints in each of our two “common endpoints”
datasets that respond to the probes with data. Since probe-
resistant proxies never respond with data, we can immediately
discard endpoints that reply to any of our probes as non-
proxies. In our passive Tap dataset, this rules out 94% of hosts,
leaving only 26,021 potential proxies. On the other hand, in
our ZMap dataset, the overwhelming majority of hosts do not
respond with data to any probes, allowing us to discard only
1.2% of endpoints based solely on response data.

6

We find a significant reason for this discrepancy is that
ZMap identifies a large number of firewalls that employ
common “chaff” strategies, where they respond to every SYN
they receive on all ports and IPs in their particular subnet [48].
We observe over 42% of endpoints in our ZMap dataset
behave identically by never sending data and never closing the
connection (up to our 300 second timeout) to our probes2. To
understand the diversity of responses, we clustered responses
from endpoints by constructing response sets that captures
the response type (FIN, RST, timeout), number of bytes they
respond with (possibly 0), and the time of connection close
or timeout (binned to integer seconds) for each non-random
probe we send. If two endpoints have identical response sets
(for instance they both respond to probe-A with a FIN after
3 seconds and a 10-byte response, and probe-B with a RST
after 9 seconds with no data, etc), we say they are in the same
response group. In this clustering, we ignore any actual content
and only compare lengths if any response data is sent.

The most popular response group in our Tap dataset
comprises only 3.0% of endpoints, and appears to be TLS
servers (99.9% are on endpoints with port 443) in Cloudflare’s
network. These hosts respond to our TLS probe with a hand-
shake alert, due to the lack of Server Name Indication (SNI)
in our client hello probe. Figure 2 shows a CDF of unique
response sets (sorted by popularity) for our ZMap and Tap
dataset, and illustrates the larger diversity in our Tap dataset.
The top 10 response sets comprise over 80% of endpoints in
the ZMap dataset, but only 13% of endpoints collected at our
Tap.

A. Designing a decision tree

We now turn to distinguishing proxies from the remaining
set of common non-proxy endpoints that did not respond with
any data.

A natural choice for distinguishing proxies from common
hosts is to use machine learning to automate the synthesis of a
classifier model. We evaluated using automatically-generated
decision trees in Appendix A, but did not find them to provide
higher accuracy, and found they require more manual labor
than the decision trees we build manually. In this section we
instead focus on manually creating a decision tree that can
distinguish proxies from common endpoints, as the resulting
trees are easier to interpret and are as effective compared to
the automatically-generated ones.

For each proxy protocol, we manually created a decision
tree from analysis of the proxy’s source code and observed
behavior to our probes. Since none of the proxies send data
responses for any of our probes, the first decision layer is to
mark endpoints that respond with any data as non-proxies. As
shown in Table III, this eliminates 94% of endpoints in our
Tap dataset, but only 1.2% of endpoints in our ZMap dataset.

The next layers of each decision tree are protocol specific,
and we describe each in Figures 3-8. In each of these figures,
each box lists at the top a set of probes, and at the bottom
the expected response. Each expected response is in the form
of a close type (FIN, RST, or TIMEOUT) and a time bound
(in integer seconds). For example, Figure 3 shows the decision

2excluding our random data probes

rand-17k

RST and < 2s

∀ others

FIN and 30s ≤ t < 90s

obfs4

True

not obfs4

False

True

not obfs4

False

Fig. 3: obfs4 Decision Tree — Each box represents a list
of probes (top) and the expected response (close type (FIN,
RST, TIMEOUT)) and the time bound. For instance, rand-
17k represents a 17KB random probe, which obfs4 servers
respond to with an immediate RST due it exceeding obfs4’s
RST threshold. All other probes in our set are below the close
thresholds, and cause obfs4 proxies to produce a FIN between
30 and 90 seconds. Responses that do not satisfy all of these
criteria are labelled not obfs4.

S7, STUN, Modbus, rand-23

FIN and ≥ 30s

∀ others

RST and < 2s

OSSH

True

not OSSH

False

True

not OSSH

False

Fig. 4: OSSH Decision Tree — OSSH’s FIN threshold is 24
bytes, with a RST threshold of 25. Thus, any probes less than
24 bytes in length (S7, STUN, Modbus, and rand-23) cause
OSSH servers to send a FIN after 30 seconds. All our other
probes are beyond OSSH’s RST threshold, causing it to send
an immediate RST.

tree for obfs4, which first looks at the response to the rand-
17k probe that sends 17 KB of random data to the endpoint. If
the endpoint responds with a RST in under 2 seconds, the next
layer in the tree is checked. Otherwise, the endpoint is labeled
as not obfs4. In the next layer, every other probe’s response is
checked to be a FIN between 30 and 90 seconds. If they all
are, the endpoint is labeled as obfs4, otherwise it is not.

We note that since all proxies have mutually exclusive
decision trees, it is possible to compose a multi-class classifier
by checking conditions for each proxy label in any order, and
classifying the unmatched samples as not proxies.

B. Timeouts

We measure the distribution of the duration an endpoint
will keep a connection open before closing it. Figure 9 shows
the distribution of timeouts (binned to seconds) over our Tap
dataset, when we send nothing (Empty) and when we send

7

rand-7k, rand-17k

RST and < 2s

∀ others

FIN and ≥ 90s

Lampshade

True

not Lampshade

False

True

not Lampshade

False

Fig. 5: Lampshade Decision Tree — Lampshade’s RST
threshold is 257 bytes. Only two of our probes (our 7KB
and 17KB random probes) exceed this, and cause Lampshade
servers to RST immediately. Otherwise, Lampshade servers
timeout after 90 seconds. Despite not having Lampshade-
specific probes (meaning our data will likely over-find potential
Lampshade servers), we do not see any servers that meet even
this liberal criteria in our Tap dataset.

TLS, HTTP, DNS, rand-51, rand-7k, rand17k

FIN and < 2s

∀ others

TIMEOUT

Shadowsocks

True

not Shadowsocks

False

True

not Shadowsocks

False

Fig. 6: Shadowsocks-python Decision Tree — Shadowsocks-
python has a FIN threshold of 50 bytes, and no RST threshold
(likely owing to the event driven socket buffering, which is
unlikely to leave data in the socket between events). Thus,
all probes larger than 50 bytes will cause Shadowsocks to
immediately close with a FIN, while probes less than 50 bytes
cause it to timeout.

a single random byte (1 byte). The distribution shows clear
modes at 10, 15, 20, 30, 60, and beyond 300 seconds3. The
different probes have slightly different distributions, meaning
that many endpoints have different timeouts based on the
amount of data they receive. Still, we find that 71% of
endpoints in the Tap dataset have the same timeout for the
empty and 1-byte probes.

This distribution suggests that the popular strategy of
using random timeouts is far from ideal: 82% of endpoints
timeout at one of the top ten timeout values. For instance,
timing out at a random value such as 74 seconds puts such a
hypothetical proxy in a group with only 0.02% of endpoints,
making it easier for censors to block without worry of blocking
legitimate services. We note this analysis is over all endpoints
in our Tap dataset, and many of those endpoints may have
other distinguishing features, such as sending response data

3the upper limit of our measurements

TLS, HTTP, DNS, rand-51, rand-7k, rand17k

RST and < 2s

∀ others

TIMEOUT

Shadowsocks

True

not Shadowsocks

False

True

not Shadowsocks

False

Fig. 7: Shadowsocks-outline Decision Tree — Shadowsocks-
outline has a FIN threshold of 50 bytes, and a RST threshold
of 51. Thus, all probes with size less of 50 bytes will cause
it to timeout, while probes of size 51 and above would cause
shadowsocks-outline to immediately close with a RST. A 50
byte probe would cause the server to immediately close with
FIN, but we did not use such a probe while collecting the data.

∀ probes

TIMEOUT

MTProto

True

not MTProto

False

Fig. 8: MTProto Decision Tree — MTProto does not appear
to have a close threshold, and does not have any unique timeout
(appears to leave the connection open forever). Thus, we label
endpoints that timeout for all our probes as MTProto.

or having unique close thresholds. We further analyze timeout
values that probe-resistant proxies could use in Section VI.

Our measurement tool marks a connection as TIMEOUT
if it doesn’t close or send data for over 300 seconds. However,
it is possible that some servers timeout at values much higher
than that, so we performed a follow-up experiment to deter-
mine if 300 seconds was a reasonable value to TIMEOUT,
or if we were missing distinguishable features by not waiting
longer. We made a followup connection to the 8500 endpoints
that were marked as a 300+ second TIMEOUT in our previous
probes (from both Tap and ZMap datasets), and waited up
to 2.5 hours (9000 seconds) to see if they would close the
connection after 300 seconds. Figure 10 shows our results,
showing that most servers (97.5%) that previously would be
marked as a TIMEOUT at 300 seconds would have also been
marked as a TIMEOUT at 9000 seconds. Only an additional
2.5% would have possibly be labelled differently if we had
waited longer, suggesting 300 seconds is a reasonable cutoff
for a timeout.

This experiment also revealed a bug in our original probing
tool, where a server may be marked as TIMEOUT if it never
acknowledges (with a TCP ACK) the data we sent. In this case,
we will continue to retransmit the data and our prober’s kernel
will close the connection before our 300 second timeout, but
since no FIN or RST is received, we will mark the connection
as a TIMEOUT at less than 300 seconds. We note this is non-

8

 0

 5

 10

 15

 20

 25

 30

15 30 60 90 120 180 240 300+ 0

Pe
rc

e
n
t

e
n
d
p
o
in

ts

Time (s)

Empty
1 byte

Fig. 9: Server timeouts — We measure how long servers in
our dataset will allow a connection to stay open if we send
it no data (Empty) or 1 byte. Unsurprisingly, we find servers
timeout at expected modes in multiples or fractions of minutes.

standard TCP behavior for servers, and happens in about 1.3%
of connections. We label these as retries in Figure 10. The bug
is only triggered by the small fraction of hosts that (counter
to the TCP specification) do not send ACKs for received data.
We do not see this kind of behavior in any of the proxies we
investigated, and do not believe this bug impacts our results.

C. Thresholds

In addition to timeouts, we measure the distribution of
close thresholds (the number of bytes that an endpoint closes
a connection after receiving) for endpoints in our Tap dataset.
Figure 11 shows the histogram of close threshold values. The
most popular threshold values are 11 and 5 bytes, which we
identify is commonly used in TLS server implementations: 5
bytes corresponds to the size of the outer TLS record header,
and 11 bytes corresponds to the minimum size of the outer plus
inner handshake header. Many TLS implementations naturally
read these headers, and close the connection if they fail to parse
them. The next most common close threshold is beyond the
1MB limit of our probing tool, likely indicating a non-existent
close threshold. We label the proxy server close thresholds
on the graph, showing that most are unique, sharing their
threshold with less than 0.05% of endpoints in our dataset.
An exception is MTProto, which has no observable threshold,
behavior shared by about 9% of endpoints in our Tap dataset.

We also investigate whether endpoints follow our expected
understanding of FIN/RST thresholds: that servers will close
with a FIN after receiving certain number of bytes, and
potentially close with a RST after receiving a higher number
of bytes. For the endpoints that we used our threshold detector
on, we looked at the order of FIN, RST, and TIMEOUT
responses as we increase the number of bytes sent to them.
For example, if a server sends a FIN after 80 bytes, and a
RST after 100, we mark it as “FIN before RST”. Figure 12
shows the breakdown of FIN/RST orderings. We find that the
vast majority of endpoints (85%) are observed sending either
only a FIN or a FIN before a RST, which conforms with
our expected understanding of the close threshold described
in Figure 1. Endpoints that send only FIN (and never a RST)
are caused either by our detector not sending enough bytes to

trigger a RST, or by the application always emptying the socket
buffer on every read (common in event-driven applications that
use select or poll). We do observe a minority (5.9%) of
servers that only send a RST, and never send a FIN. Many
of these servers appear to be previous versions of Microsoft
Windows servers that use RST to close connections. A small
fraction (0.4%) interleave RSTs and FINs, meaning there
appears to be no single threshold for either. However, we find
no endpoints that consistently close connections with a RST
for lower thresholds and FIN for higher ones (RST before
FIN).

D. Identified Proxies

Table IV shows the results of applying our decision trees to
both the Tap and ZMap datasets. Despite dozens to hundreds
of endpoints having similar close thresholds as each of our
proxies, our decision tree is able to cut down to only a handful
of proxies that are possibly proxy servers (excepting MTProto).
We note that our decision tree only uses the responses from our
probes, and we use the close thresholds as additional evidence
to help confirm potential proxies.

obfs4 - For obfs4, the 2 servers we identify from our Tap
dataset both have a RST threshold of 10241 bytes with no
FIN threshold, behavior that we observe to be inconsistent
with obfs4 implementations. Both servers are in China, and
one serves a TLS certificate valid for several subdomains
of baofeng.com. We are unable to confirm whether these
endpoints are running obfs4 servers, but conclude that it is
unlikely given the RST threshold results and their location
inside a censored country, where they are unlikely to be useful
for censorship circumvention.

Lampshade - For Lampshade, only one endpoint was
identified in our ZMap dataset. This endpoint did not have
a stable close threshold, and is therefore not a Lampshade
instance. This endpoint is running on a host that also serves
a Traccar login page, an open source tool for interfacing with
GPS trackers.

Shadowsocks - Our decision tree identifies 8 endpoints
in our ZMap dataset as shadowsocks-python, all of which
have a 50 byte FIN threshold, suggestive of the proxy. We
performed manual follow up scans, and found all but one of
these endpoints also run SSH on the same host, with the same
version banner. These hosts are scattered around the world in
various hosting networks, though none in censored countries.
We cannot conclude for certain that these are all shadowsocks
servers, but given the threshold results, and their similarity and
network locations, we believe they likely are. If we extrapolate
from our small ZMap scan to the rest of the Internet, we would
estimate that there are on the order of 1 million shadowsocks-
python endpoints running worldwide. Upon further investiga-
tion of the identified shadowsocks endpoints, 5 are in the same
hosting provider (xTom) and each has a distinct set of 700
sequential TCP ports open that all exhibit identical behavior
consistent with shadowsocks. For example, one IP has TCP
ports 30000–30699 open, all seemingly identical behavior. If
5 out of every 8 shadowsocks-python servers had 700 ports
open in this manner (and the others had only a single port),
our 1 million shadowsocks-python endpoints would extrapolate
to about 2285 shadowsocks servers (unique IPs) worldwide.

9

Fig. 10: Connection Timeouts — For the subset of servers that never responded to any probe within 300s we performed a
followup scan allowing the connection to stay open for an extended period of time to identify a fair representative of an infinite
timeout. The results after 300s are dominated by client timeout suggesting that this is a reasonable approximation of unlimited
timeout. The strategy employed by MTProto to never respond and wait for clients to timeout is well represented in common
server behavior.

 0.001

 0.01

 0.1

 1

 10

 100

1 5 11 100 1KB 8-16KB 100KB 1MB+

La
m

p
sh

a
d
e

O
S
S
H

S
h
a
d
o
w

so
ck

s

o
b
fs

4

M
T
P
ro

x
y

Pe
rc

e
n
t

e
n
d
p
o
in

ts
 (

lo
g
sc

a
le

)

close threshold (bytes)

Fig. 11: Close Thresholds — We measured the close threshold
of over 400,000 server endpoints observed at our ISP. With the
exception of MTProto, most proxy thresholds are relatively
unique. We show the thresholds for OSSH (24), Shadowsocks
(50), Lampshade (256), obfs4 (8-16KB), and MTProto (above
1MB).

Our decision tree also identifies 7 endpoints in the ZMap
dataset as shadowsocks-outline. 6 of those endpoints are in
Netropy IP blocks in South Korea, with the remaining in
Cogent’s network. By the time we performed manual analysis
on these endpoints, they were no longer up, preventing follow-
up analysis.

MTProto - Over 3,000 endpoints were classified as MT-
Proto in our datasets, though likely few (if any) of these
are truly MTProto servers. This over-count is due to the
simple decision tree used to classify MTProto: many endpoints
simply never timeout and do not have any close thresholds,
making them difficult to distinguish from one another. These
endpoints represent 0.56% and 0.02% of our Tap and ZMap
datasets respectively. This suggests that MTProto’s strategy
of camouflage is effective at evading active probing, because
these endpoints offer truly no response, even at the TCP level.

FIN before RST

FIN only

RST only

TIMEOUT only

FIN before RST

FIN only

RST only

TIMEOUT only

interleaved FIN/RST

Fig. 12: Types of close — We measured the threshold behavior
of each of over 400,000 server endpoints. As expected, most
servers close the connection with a FIN, and then if additional
data is sent, a RST (data left in the buffer) (FIN before RST).
The majority of servers send only a FIN, meaning our test did
not send enough data to elicit a RST or the server never sends
a RST. Less commonly, we find (standard non-conforming)
servers that only close with a RST, or servers that interleave
use of RST and FIN.

We provide in-depth discussion of effective defense strategies
in section VI.

OSSH - We classify 8 endpoints in our Tap dataset as
OSSH. We followed up with Psiphon, a popular circumvention
tool that commonly uses OSSH servers, and identified that
7 of these were their own servers, confirming they were
indeed OSSH endpoints. The remaining was hosted in Linode’s
network on port 443, but we cannot confirm if it is running
OSSH or an unrelated service.

10

Endpoints w/ Threshold Decision Tree Labeled
Proxy Tap ZMap Tap ZMap
obfs4 355 65 2 0

Lampshade 2 1 0 1
Shadowsocks 30 18 0 8

MTProto 13k 106k 3144 296
OSSH 70 5 8 0

TABLE IV: Decision Tree Results — We applied our
manually-created decision trees to both the Tap (433k end-
points) and ZMap (1.5M endpoints) datasets. We expect the
decision trees to label very few or no endpoints as proxies.
Indeed, with the exception of MTProto, our decision tree finds
very few or no proxies. In some instances, such as OSSH, 7 of
the 8 endpoints found in our Tap dataset were confirmed to be
actual OSSH servers by their developers. We also present the
number of endpoints that have the same close threshold as the
proxies we study, with the data showing that thresholds alone
are not as discerning as timeouts for identifying proxies.

a) Summary: Our manually-crafted decision tree is
generally effective at distinguishing proxy servers from com-
mon hosts in both our Tap and ZMap datasets (with the ex-
ception of MTProto). In some cases, the handful of endpoints
that were classified as proxies turned out to be discovered
proxies, which we confirmed through private conversation with
their developers. In other cases, such as Shadowsocks, we
have circumstantial evidence that supports the claim that these
endpoints are proxies, but no definitive way to confirm. Despite
our low false-positive rate (conservatively, less than 0.001%
for all protocols beside MTProto), we note that the base rate
of proxies as compared to common endpoints is an important
consideration for would-be censors: even seemingly negligible
false positive rates can be too high for censors to suffer [42].
We also observe that MTProto demonstrates an effective
behavior that makes it more difficult to distinguish from a small
but non-negligible fraction of non-proxy endpoints (0.56% and
0.02% of Tap and ZMap datasets), offering a potential defense
to other proxies, which we further investigate in Section VI.

VI. DEFENSE EVALUATION

Given the result that most of the probe-resistant proxies
can be identified with a handful of probes, we now turn to
discuss how to improve these protocols to protect them from
such threats: How should probe-resistant proxies respond to
best camouflage themselves in with the most servers?

To answer this, we look in our datasets for the most
common responses to our probes. If proxies respond the same
way as thousands of other endpoints, they will better blend in
with common hosts on the Internet, making them harder for
censors to identify and block.

We note that proxies should not attempt to directly mimic
common data-carrying responses to our probes. Sending any
response data commits a proxy to a particular protocol, which
introduces significant challenges in faithfully mimicking the
protocol [24], [22]. Thus, despite TLS errors being the most
common response to our probes, we rule out these and other
endpoints that respond to our probes with data.

Ruling out the endpoints that respond with data eliminates
407k (94%) endpoints from our tap dataset, and nearly 9k

0 10 20 30 60 90 120 180 240 300
Response Time(s)

100

101

102

103

Oc
cu

rre
nc

es

FIN
RST
TIMEOUT

(a)

0 10 20 30 60 90 120 180 240 300
Response Time(s)

100

101

102

103

104

105

Oc
cu

rre
nc

es

FIN
RST
TIMEOUT

(b)

Fig. 13: Probe-indifferent Server Timeouts — We define
an endpoint as probe-indifferent if it responds to all of our
probes in the same way (i.e. with only one of FIN, RST,
or TIMEOUT at (approximately) the same time). We compare
the probe-indifferent timeouts for our Tap dataset (a) and our
ZMap dataset (b). The most popular behavior, shared by both
datasets, is to never respond to any of our probes, as shown
by our 300+ second TIMEOUT in grey.

(1.1%) endpoints from our ZMap dataset. However, many of
the remaining servers still close the connection at different
timeouts depending on the probe we send. For example, servers
that have a close threshold will close the connection with FIN
or RST at varying times, depending on the length of probe we
send. It is possible that other probes beyond our own could
elicit other timeouts or even data responses from these servers.
We thus only consider servers that are probe-indifferent, in that
they respond to all of our probes with the same response type
(FIN or RST) at a similar time (within 500 milliseconds of
their other responses, to allow for network jitter). We exclude
the empty probe (where we do not send data) response times
from our probe-indifferent endpoints as these servers are still
waiting for data and might timeout at a different time.

Figure 13 shows the response type and timeout of the
6,956 probe-indifferent endpoints in our tap dataset (568,121 in
ZMap). In both datasets, the overwhelmingly popular response
type is timeout, which indicates the endpoint did not respond
within the 5 minute limit for our scanner. As measured in
Figure 10, these endpoints predominantly never timeout, and
instead read from the connection forever without responding.
Over 0.7% of our tap dataset endpoints (42% of ZMap)

11

exhibit such “infinite timeout” behavior. Due to this relative
ubiquity, we recommend proxy developers implement un-
limited timeouts for failed client handshakes, keeping the
connection open rather than closing it. This strategy is already
employed by MTProto servers we probed, and we have made
recommendations to other probe-resistant proxy developers to
implement this as well.

However, not all proxies may be willing to keep unused
or failed connections open forever. In addition, it may be ben-
eficial for circumvention tools to employ multiple strategies,
such as selecting between no timeouts and other popular finite
timeouts on a per-server basis. For proxies that must timeout,
a naive strategy would be to look at common (finite) response
times in Figure 13, which shows the distribution of probe-
indifferent timeouts (i.e. how long a server waited to timeout
for all our probes). However, many popular response times
are shared by groups of servers that share other important
characteristics that could be difficult for proxies to mimic. For
example, many probe-indifferent endpoints responded with a
FIN to all our probes after 90 seconds, but manual investigation
reveals that all of these endpoints are in the same /16 and
running on the same port (9933). In addition, each of the
servers have the same additional port open (9443) that return
identical HTTP 503 errors carrying the name of a Canadian
video game developer. If probe-resistant proxies attempted
to mimic these endpoints by only responding to all failed
handshakes with a FIN after 90 seconds, an observant censor
could distinguish them from the other common endpoints.
Another example popular response is responding with a FIN
3 seconds after our probe, but we observe almost all of these
hosts appear to be infrastructure associated with the Chandra
X-ray Observatory [5].

One response exhibited by a heterogeneous mix of IP
subnets and ports in both datasets is to close the connection
with either a RST4 or FIN at 0 seconds, meaning these servers
closed the connection right away after our probes. While
intuitive, applications must be careful to ensure they only send
FINs or only send RSTs on invalid handshakes, regardless of
client probe size. In addition, proxy applications must choose
how long to wait if no data is sent when a connection is
opened. We find that for endpoints in our tap dataset that
send FINs right away to our data probes, the most common
timeouts for empty probes (where we send no data) is to close
the connection with a FIN after 120, 2, or 60 seconds. We
caution that our manual analysis of these endpoints is not
exhaustive: there may be other probes that allow censors to
distinguish between proxies and common endpoints, and we
recommend proxies choose no timeout over a specific finite
one. However, if proxies must choose finite timeouts, these
values may provide the best cover, provided the proxy also
sends FINs right away for any data received.

VII. RELATED WORK

Several prior works have identified ways to passively iden-
tify proxy protocols, allowing censors to differentiate proxy
traffic from other network traffic. For example, Wang et al. [42]
use entropy tests to distinguish obfs4 flows (and other proxies)

4accomplished in Linux by setting the SO_LINGER socket option with a
zero timeout

from common network traffic, observing that it is unusual for
normal traffic to have high entropy, particularly early on in
the connection. Since even encrypted protocols like SSH and
TLS have low-entropy headers, the high-entropy bytes in obfs4
connections is an effective signal. Previously, Wiley [46] used
Bayesian models to identify OSSH from other traffic. Finally,
Shahbar et al. [37] use a classifier over several traffic features
(e.g. packet size, timings, etc) to identify several proxies,
including obfs3, a previous version from obfs4 that is not
probe-resistant.

Our active probing attack complements these existing pas-
sive detectors for two reasons. First, because the base rate
of “normal” (non-proxy) traffic is significantly higher than
proxy traffic, even with low false positive rates, the majority
of flows identified as proxies by a censor may actually be
false positives [42]. Thus, our active approach could help
censors confirm suspected proxies found using passive tech-
niques. Second, proxies can thwart such passive analysis by
adding random timing and/or padding to their traffic [12].
However, even with such defenses, existing proxies could still
be vulnerable to active probing. Therefore, we argue that both
passive and active attacks must be addressed, and focus on the
active attack in this paper.

One of the main motivations for probe-resistant protocols to
use randomized streams is from Houmansadr et al. [24] (“The
Parrot is Dead”). This work argued that mimicry of existing
protocols such as Skype or HTTP—employed by proxies at
the time—is difficult to do correctly, as even small implemen-
tation subtleties can reveal differences between true clients
and proxies that attempt to mimic them. The authors reveal
several active and passive attacks to identify SkypeMorph [32],
StegoTorus [44], and CensorSpoofer [43] from protocols (e.g.
Skype, HTTP) they attempt to use or mimic.

Finally, there are circumvention tools that do not require
endpoints to remain hidden from censors. For example, meek
(domain fronting) [19] and TapDance (Refraction Network-
ing) [49], [21] both have users connect to “decoy” sites that
are not complicit in the circumvention system, and use network
infrastructure (i.e. load balancers or ISP taps) to act as proxies
that redirect traffic to their intended destination. Even if a
censor discovers the decoy sites (which are public), they
cannot block them without also blocking legitimate access
to those sites as well. Flashproxies [33], and more recently
Snowflake [40], create short-lived proxies in web browsers
of users that visit particular websites. These websites serve
JavaScript or WebRTC-based proxies that run in the visitor’s
browser, and can transit traffic for censored users for as long as
the visitor remains on the page. These short-lived proxies can
still be blocked by censors, but doing so reliably is difficult
due to their ephemeral nature.

VIII. DISCUSSION

A. Responsible disclosure

We shared our findings with developers of the probe-
resistant proxies we studied, who acknowledged and in most
instances made changes to address the issue. Specifically,
we reached out to developers of Psiphon for OSSH (who
pushed a fix on May 13, 2019), obfs4 (fixed June 21, 2019,
version 0.0.11), Shadowsocks Outline (fixed September 4,

12

2019, version 1.0.7), and Lantern’s Lampshade (fixed October
31, 2019). Psiphon’s fix for OSSH is to read forever after
an initial handshake failure, while the others read until data
is not sent for a certain period of time, after which the
connection is closed. All of these fixes remove the close
threshold behavior from these probe-resistant proxies, though
may still be observable due to their timeout behavior.

B. Future Work

Looking forward we believe that there are several avenues
for extending this work to strengthen both the attack and
defenses.

First, enriching the set of probes that we use could help
to elicit responses from more non-proxy endpoints, ultimately
improving our attack. To discover or even automatically create
new probes, we could extract data from live connections in
our ISP tap. Watching what data is sent in connections could
allow us to infer the protocols being used, allowing us to
synthesize additional probes for those protocols. Doing so
requires overcoming privacy challenges, ensuring that private
information is not inadvertently collected and then sent in
probes to other endpoints.

As another improvement to active attacks, future work
could investigate the other ports that are open on a suspected
proxy host. For instance, many hosts in our ZMap dataset
responded as open on all TCP ports when scanned using nmap,
a common firewall behavior that is intended to thwart active
scanning. However, our detector could be extended to collect
and use this data as additional information in identifying
proxies.

C. Long-term defenses

Section VI details and evaluates immediate small changes
that existing probe-resistant proxies can make to help address
our immediate attacks. However, solving this problem fully
in the long term may require rethinking the overall design of
probe-resistant proxies.

Wang et al. [42] categorize circumvention techniques into
three categories: Randomizing, Protocol Mimicry and Tun-
nelling.

Randomizing transports attempt to hide the application-
layer fingerprints and essentially have “no fingerprint” by
sending messages of randomized size that are encrypted to
be indistinguishable from random bytes. All probe-resistant
transports we cover in this paper fall into this category. These
transports detect probing by testing the client’s knowledge
of a secret, and do not respond if it fails. As we show, not
responding to any probes is rare and a fingerprint itself, that
probing censors could use to block such transports.

Both Protocol Mimicry and Tunnelling approaches attempt
to make traffic look like it belongs to a certain protocol or
an application, but with an important distinction: Mimicry
involves implementing a look-alike version of the protocol,
while Tunnelling leverages an existing popular implementation
of a protocol or application and tunnels circumvention traffic
over it. Prior work [24] has shown that Protocol Mimicry is
difficult, due to the complexity of features in popular imple-
mentations. Protocol Mimicry transports like SkypeMorph [32]

attempt to respond to censor probes with realistic common
responses, but minor differences with a target protocol or
popular implementation can yield unique fingerprints that
censors can use to block [24], [23]. Thus, Protocol Mimicry
transports are difficult to use in probe-resistant proxies.

On the other hand, Tunnelling protocols like
DeltaShaper [8], Facet [28], and CovertCast [30] tunnel
circumvention traffic over existing implementations and
services. Censors that probe these servers receive responses
from legitimate implementations, making them difficult to
distinguish from benign (non-proxy) services. There have been
several Tunnelling protocols proposed in the literature [8],
[28], [30] and deployed in practice [19] demonstrating their
strong potential. Tunnelling transports can defend against
active probing by looking like legitimate services, even
evading censors that whitelist popular protocols [7]. While
recent work has demonstrated the feasibility of detecting
Tunnelling transports using machine learning [9], to the best
of our knowledge, these techniques have yet to be employed
by censors, possibly due to the challenging combination of
false positive rates of the detection algorithms and base rates
of legitimate traffic [42].

IX. ACKNOWLEDGEMENTS

We wish to thank the many people that helped make
this work possible, especially the University of Colorado IT
Security and Network Operations for providing us access to
the network tap used in this paper, and J. Alex Halderman
for providing ZMap data. We also thank the many proxy
developers we discussed this paper with and for providing
proxies to test against, including Ox Cart at Lantern, Michael
Goldberger and Rod Hynes at Psiphon, and Vinicius Fortuna
and Ben Schwartz from Google Jigsaw (Outline). We are also
grateful to Prasanth Prahladan for his initial discussion and
participation on this work, and we thank David Fifield for his
valuable comments, feedback, and suggestions on the paper in
several drafts.

X. CONCLUSION

Probe resistance is necessary for modern proxy imple-
mentations to avoid being blocked by censors. In this work,
we demonstrate that existing probe-resistant strategies are
generally insufficient to stop censors from identifying proxies
via active probes. We identify several low-level choices that
proxy developers make that leave them vulnerable to active
probing attacks. In particular, proxy servers reveal developer
choices about when connections are closed in terms of timing
or bytes read, allowing censors to fingerprint and differentiate
them from other non-proxy servers.

We evaluate the effectiveness of identifying proxies by
probing endpoints collected from both passive tap observations
and active ZMap scans, and find that our attacks are able
to identify most proxies with negligible false positive rates
that make these attacks practical for a censor to use today.
Leveraging our datasets, we make recommendations to exist-
ing circumvention projects to defend against these potential
attacks.

13

REFERENCES

[1] “Mtproto mobile protocol: Detailed description,”
https://core.telegram.org/mtproto/description.

[2] “Shadowsocks: A secure socks5 proxy,”
https://shadowsocks.org/assets/whitepaper.pdf.

[3] “Telegram: a new era of messaging,” https://telegram.org/.
[4] “How the great firewall of china is blocking tor,” in Presented

as part of the 2nd USENIX Workshop on Free and Open
Communications on the Internet. Bellevue, WA: USENIX, 2012. [On-
line]. Available: https://www.usenix.org/conference/foci12/workshop-
program/presentation/Winter

[5] “Chandra X-ray Observatory,” Oct. 2019. [Online]. Available:
http://cxc.harvard.edu

[6] Y. Angel, “obfs4 (The obfourscator) specification,”
https://gitlab.com/yawning/obfs4/blob/master/doc/obfs4-spec.txt.

[7] S. Aryan, H. Aryan, and J. A. Halderman, “Internet censorship in
Iran: A first look,” in 3rd USENIX Workshop on Free and Open
Communications on the Internet, Washington, D.C., 2013.

[8] D. Barradas, N. Santos, and L. Rodrigues, “DeltaShaper: Enabling un-
observable censorship-resistant TCP tunneling over videoconferencing
streams,” Proceedings on Privacy Enhancing Technologies, vol. 2017,
no. 4, pp. 5–22, 2017.

[9] ——, “Effective detection of multimedia protocol tunneling using
machine learning,” in 27th USENIX Security Symposium. USENIX
Association, 2018.

[10] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings,”
in Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 967–980.

[11] A. Bersenev, “Async MTProto proxy for Telegram in Python,”
https://github.com/alexbers/mtprotoproxy.

[12] X. Cai, R. Nithyanand, and R. Johnson, “CS-BuFLO: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society. ACM, 2014, pp. 121–
130.

[13] clowwindy, “shadowsocks (python),”
https://github.com/shadowsocks/shadowsocks, Jun 2019.

[14] R. Dingledine, “Strategies for getting more bridge addresses,”
https://blog.torproject.org/strategies-getting-more-bridge-addresses,
2011.

[15] ——, “Obfsproxy: the next step in the censorship arms race,”
https://blog.torproject.org/obfsproxy-next-step-censorship-arms-race,
2012.

[16] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast internet-
wide scanning and its security applications,” in 22nd USENIX Security
Symposium (USENIX Security ’13), 2013, pp. 605–620.

[17] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Protocol
misidentification made easy with format-transforming encryption,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security. ACM, 2013, pp. 61–72.

[18] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver, and V. Paxson,
“Examining how the great firewall discovers hidden circumvention
servers,” in Proceedings of the 2015 Internet Measurement Conference.
ACM, 2015, pp. 445–458.

[19] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson, “Blocking-
resistant communication through domain fronting,” Proceedings on
Privacy Enhancing Technologies, vol. 2015, no. 2, pp. 46–64, 2015.

[20] FreedomPrevails, “High Performance NodeJS MTProto Proxy,”
https://github.com/FreedomPrevails/JSMTProxy.

[21] S. Frolov, F. Douglas, W. Scott, A. McDonald, B. VanderSloot,
R. Hynes, A. Kruger, M. Kallitsis, D. G. Robinson, S. Schultze et al.,
“An ISP-scale deployment of TapDance,” in 7th USENIX Workshop on
Free and Open Communications on the Internet (FOCI ’17), 2017.

[22] S. Frolov and E. Wustrow, “The use of TLS in censorship circumven-
tion,” in Proc. Network and Distributed System Security Symposium
(NDSS), 2019.

[23] J. Geddes, M. Schuchard, and N. Hopper, “Cover your ACKs: Pitfalls of
covert channel censorship circumvention,” in Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security.
ACM, 2013, pp. 361–372.

[24] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead:
Observing unobservable network communications,” in Security and
Privacy (SP), 2013 IEEE Symposium on. IEEE, 2013, pp. 65–79.

[25] Jigsaw Operations LLC, “Outline VPN.” [Online]. Available:
https://www.getoutline.org/en/home

[26] Lantern Project, “Lampshade: a transport between Lantern clients and
proxies,” https://godoc.org/github.com/getlantern/lampshade.

[27] B. Leidl, “Obfuscated OpenSSH,” https://github.com/brl/obfuscated-
openssh/blob/master/README.obfuscation.

[28] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over videocon-
ferencing for censorship circumvention,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society. ACM, 2014, pp. 163–
172.

[29] G. F. Lyon, Nmap network scanning: The official Nmap project guide
to network discovery and security scanning. Insecure, 2009.

[30] R. McPherson, A. Houmansadr, and V. Shmatikov, “CovertCast: Using
live streaming to evade internet censorship,” Proceedings on Privacy
Enhancing Technologies, vol. 2016, no. 3, pp. 212–225, 2016.

[31] P. Mockapetris, “Domain names - implementation and
specification,” IETF, RFC 1035, Nov. 1987. [Online]. Available:
http://tools.ietf.org/rfc/rfc1035.txt

[32] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Goldberg,
“SkypeMorph: Protocol obfuscation for Tor bridges,” in Proceedings of
the 2012 ACM conference on Computer and communications security.
ACM, 2012, pp. 97–108.

[33] A. Moshchuk, S. D. Gribble, and H. M. Levy, “Flashproxy: transpar-
ently enabling rich web content via remote execution,” in Proceedings
of the 6th international conference on Mobile systems, applications, and
services. ACM, 2008, pp. 81–93.

[34] J. Pahdye and S. Floyd, “On inferring TCP behavior,” ACM SIGCOMM
Computer Communication Review, vol. 31, no. 4, pp. 287–298, 2001.

[35] Psiphon Inc, “Psiphon tunnel core,” https://github.com/Psiphon-
Labs/psiphon-tunnel-core, 2019.

[36] Sergey Arkhipov, “MTProto proxy for Telegram in Golang,”
https://github.com/9seconds/mtg.

[37] K. Shahbar and A. N. Zincir-Heywood, “An analysis of Tor pluggable
transports under adversarial conditions,” in 2017 IEEE Symposium
Series on Computational Intelligence (SSCI). IEEE, 2017, pp. 1–7.

[38] Tor Project, “Bridgedb,” https://bridges.torproject.org/.
[39] ——, “Tor: Pluggable Transports,”

https://www.torproject.org/docs/pluggable-transports.html.
[40] ——, “Snowflake: pluggable transport that prox-

ies traffic through temporary proxies using webrtc.”
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake, 2018.

[41] twilde, “Knock Knock Knockin’ on Bridges’ Doors,”
https://blog.torproject.org/knock-knock-knockin-bridges-doors , 2012.

[42] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton, “Seeing
through network-protocol obfuscation,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2015, pp. 57–69.

[43] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and N. Borisov,
“Censorspoofer: asymmetric communication using IP spoofing for
censorship-resistant web browsing,” in Proceedings of the 2012 ACM
conference on Computer and communications security. ACM, 2012,
pp. 121–132.

[44] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S. Cheung,
F. Wang, and D. Boneh, “StegoTorus: a camouflage proxy for the tor
anonymity system,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 109–120.

[45] T. Wilde, “Great firewall Tor probing circa 09 DEC 2011,”
https://gist.github.com/da3c7a9af01d74cd7de7, 2011.

[46] B. Wiley, “Blocking-resistant protocol classification using bayesian
model selection,” Technical report, University of Texas at Austin, Tech.
Rep., 2011.

[47] P. Winter, T. Pulls, and J. Fuss, “ScrambleSuit: A polymorphic network
protocol to circumvent censorship,” in Proceedings of the 12th ACM

14

workshop on Workshop on privacy in the electronic society. ACM,
2013, pp. 213–224.

[48] R. Wright and A. Wick, “CyberChaff: Confounding and detecting
adversaries,” https://galois.com/project/cyberchaff/, 2019.

[49] E. Wustrow, C. Swanson, and J. A. Halderman, “TapDance: End-to-
middle anticensorship without flow blocking.” in 23rd USENIX Security
Symposium, Aug. 2014.

[50] L. Yang, M. Lv, and C. Windy, “Shadowsocks-libev libev port of shad-
owsocks,” https://github.com/shadowsocks/shadowsocks-libev, 2014.

[51] ZMap project, “ZGrab: Application layer scanner that operates with
ZMap,” https://github.com/zmap/zgrab.

APPENDIX A
AUTOMATED PROXY CLASSIFICATION

While we used manually-crafted decision trees to distin-
guish proxies from common (non-proxy) endpoints, we also
created automatically-generated decision trees. In this section,
we present the challenges in using machine learning in this
context, and compare the results to our manual approach.

We start by filtering our Tap and ZMap datasets to exclude
endpoint samples that respond with data to our probes, as
they are trivial to classify as non-proxy results, even without
knowing any details of probe-resistant proxy protocols. This
leaves 25k samples from our Tap dataset (776k from ZMap)
that we use for training and testing our automated classifier.

Even after removing these trivially classified samples, our
datasets remain extremely unbalanced as we have only a hand-
ful of positive proxy samples (compared to tens or hundreds of
thousands of non-proxy samples). To address this imbalance,
we synthesize proxy samples based on our understanding from
manual inspection of their source code. To simulate network
measurement, we add a random 20–500 milliseconds of latency
to the timeouts specified by the proxy’s server timeout code.
We emphasize that while necessary to balance our datasets,
understanding proxy behavior at this level of detail is already
sufficient to create the manual decision trees.

We must be careful about the data imbalance in our dataset,
as we synthesize the samples. If we synthesize too many,
proxies will be a large cluster in an otherwise heterogeneous
population. Otherwise, if we synthesize too few, the tree will
overfit to the small sample of proxies and not generalize. We
chose to generate the amount of proxy samples equal to 1%
of the amount of not-proxy samples. As a result, for each
proxy label we generate a total of 258 samples for Tap dataset,
and 7767 samples for ZMap dataset. This helps to balance
the dataset while still conveying that proxies are relatively
uncommon on the Internet.

We then trained and tested an automated multi-class de-
cision tree on our ZMap and Tap datasets, including in each
the synthetic samples we generated to balance the datasets.
We also build a manual multi-class classifier based on the
conditions from Figures 3-8 for each proxy label, and classify
any unmatched samples as not proxies. Since all proxies have
mutually exclusive trees, we can check them in any order. The
resulting accuracy for our automated decision tree is shown in
Table V. To evaluate our automated decision tree on datasets
it has not seen before, we train on one dataset (Tap or ZMap),
and test on the other (ZMap or Tap). We also use 5-fold cross-
validation when we train and test using subsets of the same

Fig. 14: Overfit subtree — Our automated decision tree
(trained on our ZMap dataset with synthetic samples) shows
evidence of overfitting. At the root node of this subtree,
there are 1171 shadowsocks and 4 non-proxy samples left to
classify. Rather than deciding on something inherent to the
shadowsocks protocol, the classifier divides samples based on
extrinsic response latency differences to the TLS probe (TLS
abort time). Parts of the tree divide samples into endpoints
that responded to our TLS probe between 336 and 338 mil-
liseconds, and to our rand-17410 probe between 334 and 338
milliseconds. We confirmed none of these times are intrinsic
to the shadowsocks implementations.

Evaluated on
Trained on ZMap Tap

ZMap 0.99959 0.88180
Tap 0.99017 0.98910

manual 0.99962 0.88386

TABLE V: Accuracy of decision trees — We evaluated ac-
curacy of our manual and automated decision trees, trained
on our ZMap and Tap datasets (including synthetic samples).
We excluded endpoints that respond with data to any of our
probes, yielding 25k samples from our Tap dataset and 776k
from the ZMap dataset. We used 5-fold cross-validation to
train and test the automated decision trees when training and
evaluating on the same dataset. The majority of inaccuracies
for both automated and manual decision trees stem from
misclassifications of MTProto.

dataset, partitioning the set into distinct subsets for training
and testing.

There are 3233 (12.5%) non-proxy endpoints in our Tap
learning dataset that never close the connection5. This behavior
is shared by MTProto, and the decision whether or not to
classify those endpoints as MTProto affects accuracy the most
for the Tap datasets. The manual decision tree and automated
classifier learned on ZMap data both classify these endpoints
as MTProto, while the automated decision tree learned on
Tap data classified them as not-proxies. The high number of
MTProto-like samples in the non-proxy Tap dataset and the
Tap-trained tree’s decision to classify them as non-proxies
explains the higher accuracy of the decision tree that was
trained and 5-fold cross-validated on Tap data. To provide a
full summary of both correct and incorrect predictions that

5or do so after our 300 second probing utility timeout

15

Predicted as Actual label
not-proxy lampshade mtproto obfs4 ossh ss-python

not-proxy 776421 0 0 0 0 0
Lampshade 1 7767 0 0 0 0

MTProto 296 0 7767 0 0 0
obfs4 0 0 0 7767 0 0

OSSH 0 0 0 0 7767 0
ss-python 8 0 0 0 0 7767

(a) manual, tested on ZMap dataset

Predicted as Actual label
not-proxy Lampshade MTProto obfs4 OSSH ss-python

not-proxy 22721 0 0 0 0 0
Lampshade 0 258 0 0 0 0

MTProto 3145 0 258 0 0 0
obfs4 2 0 0 258 0 0

OSSH 8 0 0 0 258 0
ss-python 0 0 0 0 0 258

(b) manual, tested on Tap dataset

Predicted as Actual label
not-proxy Lampshade MTProto obfs4 OSSH ss-python

not-proxy 22665 0 0 0 0 0
Lampshade 2 258 0 0 0 0

MTProto 3182 0 258 0 0 0
obfs4 19 0 0 258 0 0

OSSH 8 0 0 0 258 0
ss-python 0 0 0 0 0 258

(c) automated, trained on ZMap, tested on Tap

Predicted as Actual label
not-proxy Lampshade MTProto obfs4 OSSH ss-python

not-proxy 776663 8 7767 24 122 31
Lampshade 11 7759 0 0 0 0

MTProto 0 0 0 0 0 0
obfs4 25 0 0 7743 0 0

OSSH 6 0 0 0 7645 0
ss-python 21 0 0 0 0 7736

(d) automated, trained on Tap, tested on ZMap

TABLE VI: Confusion Matrices — Confusion matrices for
our manual and automatically-generated decision trees for both
our Tap and ZMap datasets. We see good performance overall
for identifying proxies, though note all classifiers struggle to
distinguish MTProto, due to the ubiquity of endpoints that have
no connection timeout.

our manual and automated decision trees made, we include
their Confusion Matrices in Table VI. Nonetheless, in all
other cases, our manual decision tree slightly out-performs the
automated decision tree. We present our automated multi-class
decision tree trained on our Tap (and synthetic data) dataset
in Figure 15.

We conclude that automated decision trees may be a viable
way to allow proxy developers to quickly test if their servers
have responses that stand out, but are no more accurate than
our manually created decision trees, while requiring no less
manual labor. We note our manually created trees have the
advantage that they were built using only domain knowledge
of the specific proxies; any updates to proxies can be directly
encoded. On the other hand, our “automated” decision trees
will need to be provided both updated domain knowledge (for
synthetic samples), and also retrained if even unrelated non-
proxy traffic changes; the “automated” decision tree also needs
to be retrained if only one of the proxies change behavior.

16

s7
 a

b
o
rt

 t
im

e
 <

=
 3

0
.0

1
3

g
in

i
=

 0
.0

9
2

sa
m

p
le

s
=

 2
7

1
6

6
v
a
lu

e
 =

 [
2

5
8

7
6

,
2

5
8

,
2

5
8

,
2

5
8

,
2

5
8

,
2

5
8

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
8

1
6

4
v
a
lu

e
 =

 [
1

8
1

6
4

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

T
ru

e

s7
 a

b
o
rt

 t
im

e
 <

=
 3

0
.5

2
g

in
i

=
 0

.2
6

2
sa

m
p

le
s

=
 9

0
0

2
v
a
lu

e
 =

 [
7

7
1

2
,

2
5

8
,

2
5

8
,

2
5

8
,

2
5

8
,

2
5

8
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

F
a
ls

e

ra
n

d
-4

7
 g

o
t

F
IN

 <
=

 0
.5

g
in

i
=

 0
.3

7
2

sa
m

p
le

s
=

 3
4

0
v
a
lu

e
 =

 [
8

1
,

0
,

0
,

2
,

2
5

7
,

0
]

c
la

ss
 =

 o
ss

h

ra
n

d
-1

7
4

1
0

 a
b

o
rt

 t
im

e
 <

=
 0

.5
g

in
i

=
 0

.2
2

sa
m

p
le

s
=

 8
6

6
2

v
a
lu

e
 =

 [
7

6
3

1
,

2
5

8
,

2
5

8
,

2
5

6
,

1
,

2
5

8
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-2

3
 g

o
t

R
S

T
 <

=
 0

.5
g

in
i

=
 0

.0
7

9
sa

m
p

le
s

=
 2

6
8

v
a
lu

e
 =

 [
1

1
,

0
,

0
,

0
,

2
5

7
,

0
]

c
la

ss
 =

 o
ss

h

ra
n

d
-7

9
3

6
 a

b
o
rt

 t
im

e
 <

=
 3

0
.0

8
3

g
in

i
=

 0
.0

5
4

sa
m

p
le

s
=

 7
2

v
a
lu

e
 =

 [
7

0
,

0
,

0
,

2
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-2

3
 a

b
o
rt

 t
im

e
 <

=
 3

0
.2

4
5

g
in

i
=

 0
.0

5
2

sa
m

p
le

s
=

 2
6

4
v
a
lu

e
 =

 [
7

,
0

,
0

,
0

,
2

5
7

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
v
a
lu

e
 =

 [
4

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-5

1
 a

b
o
rt

 t
im

e
 <

=
 0

.2
5

4
g

in
i

=
 0

.0
9

8
sa

m
p

le
s

=
 1

3
5

v
a
lu

e
 =

 [
7

,
0

,
0

,
0

,
1

2
8

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
2

9
v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
1

2
9

,
0

]
c
la

ss
 =

 o
ss

h

ra
n

d
-1

7
4

1
0

 a
b

o
rt

 t
im

e
 <

=
 0

.1
9

3
g

in
i

=
 0

.0
8

6
sa

m
p

le
s

=
 1

3
4

v
a
lu

e
 =

 [
6

,
0

,
0

,
0

,
1

2
8

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

0
b

y
te

 a
b

o
rt

 t
im

e
 <

=
 3

0
.0

5
4

g
in

i
=

 0
.0

3
7

sa
m

p
le

s
=

 1
0

6
v
a
lu

e
 =

 [
2

,
0

,
0

,
0

,
1

0
4

,
0

]
c
la

ss
 =

 o
ss

h

s7
 a

b
o
rt

 t
im

e
 <

=
 3

0
.2

0
4

g
in

i
=

 0
.2

4
5

sa
m

p
le

s
=

 2
8

v
a
lu

e
 =

 [
4

,
0

,
0

,
0

,
2

4
,

0
]

c
la

ss
 =

 o
ss

h

d
n

s-
a
x
fr

 a
b

o
rt

 t
im

e
 <

=
 0

.0
5

2
g

in
i

=
 0

.1
4

2
sa

m
p

le
s

=
 1

3
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
1

2
,

0
]

c
la

ss
 =

 o
ss

h

ra
n

d
-1

7
4

1
0

 a
b

o
rt

 t
im

e
 <

=
 0

.1
2

4
g

in
i

=
 0

.0
2

1
sa

m
p

le
s

=
 9

3
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
9

2
,

0
]

c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
2

v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
1

2
,

0
]

c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 5
2

v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
5

2
,

0
]

c
la

ss
 =

 o
ss

h

ra
n

d
-7

9
3

6
 a

b
o
rt

 t
im

e
 <

=
 0

.1
2

4
g

in
i

=
 0

.0
4

8
sa

m
p

le
s

=
 4

1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
4

0
,

0
]

c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
0

v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
4

0
,

0
]

c
la

ss
 =

 o
ss

h

0
b

y
te

 a
b

o
rt

 t
im

e
 <

=
 3

0
.2

g
in

i
=

 0
.4

9
sa

m
p

le
s

=
 7

v
a
lu

e
 =

 [
4

,
0

,
0

,
0

,
3

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
1

v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
2

1
,

0
]

c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v
a
lu

e
 =

 [
2

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-4

7
 a

b
o
rt

 t
im

e
 <

=
 0

.2
0

9
g

in
i

=
 0

.4
8

sa
m

p
le

s
=

 5
v
a
lu

e
 =

 [
2

,
0

,
0

,
0

,
3

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
3

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v
a
lu

e
 =

 [
2

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 5
7

v
a
lu

e
 =

 [
5

7
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-1

7
4

1
0

 a
b

o
rt

 t
im

e
 <

=
 0

.1
6

1
g

in
i

=
 0

.2
3

1
sa

m
p

le
s

=
 1

5
v
a
lu

e
 =

 [
1

3
,

0
,

0
,

2
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v
a
lu

e
 =

 [
0

,
0

,
0

,
2

,
0

,
0

]
c
la

ss
 =

 o
b

fs
4

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
3

v
a
lu

e
 =

 [
1

3
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-7

9
3

6
 a

b
o
rt

 t
im

e
 <

=
 2

4
.0

3
6

g
in

i
=

 0
.4

8
4

sa
m

p
le

s
=

 2
5

4
2

v
a
lu

e
 =

 [
1

7
7

2
,

2
5

8
,

0
,

2
5

6
,

1
,

2
5

5
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

0
b

y
te

 a
b

o
rt

 t
im

e
 <

=
 2

9
8

.9
2

5
g

in
i

=
 0

.0
8

2
sa

m
p

le
s

=
 6

1
2

0
v
a
lu

e
 =

 [
5

8
5

9
,

0
,

2
5

8
,

0
,

0
,

3
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-4

7
 a

b
o
rt

 t
im

e
 <

=
 1

3
3

.2
8

3
g

in
i

=
 0

.3
7

7
sa

m
p

le
s

=
 2

2
6

5
v
a
lu

e
 =

 [
1

7
5

1
,

2
5

8
,

0
,

0
,

1
,

2
5

5
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

h
tt

p
 a

b
o
rt

 t
im

e
 <

=
 1

5
.7

8
7

g
in

i
=

 0
.1

4
sa

m
p

le
s

=
 2

7
7

v
a
lu

e
 =

 [
2

1
,

0
,

0
,

2
5

6
,

0
,

0
]

c
la

ss
 =

 o
b

fs
4

tl
s

a
b

o
rt

 t
im

e
 <

=
 8

6
.2

7
9

g
in

i
=

 0
.1

8
sa

m
p

le
s

=
 1

7
7

1
v
a
lu

e
 =

 [
1

5
9

4
,

1
7

6
,

0
,

0
,

1
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-5

1
 a

b
o
rt

 t
im

e
 <

=
 4

5
.4

5
4

g
in

i
=

 0
.6

0
5

sa
m

p
le

s
=

 4
9

4
v
a
lu

e
 =

 [
1

5
7

,
8

2
,

0
,

0
,

0
,

2
5

5
]

c
la

ss
 =

 s
s-

li
b

e
v

s7
 a

b
o
rt

 t
im

e
 <

=
 3

0
.5

5
4

g
in

i
=

 0
.0

0
1

sa
m

p
le

s
=

 1
4

4
1

v
a
lu

e
 =

 [
1

4
4

0
,

0
,

0
,

0
,

1
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

tl
s

a
b

o
rt

 t
im

e
 <

=
 9

1
.7

8
5

g
in

i
=

 0
.4

9
8

sa
m

p
le

s
=

 3
3

0
v
a
lu

e
 =

 [
1

5
4

,
1

7
6

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 l
a
m

p
sh

a
d

e

ra
n

d
-4

7
 g

o
t

R
S

T
 <

=
 0

.5
g

in
i

=
 0

.5
sa

m
p

le
s

=
 2

v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
1

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
4

3
9

v
a
lu

e
 =

 [
1

4
3

9
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
1

,
0

]
c
la

ss
 =

 o
ss

h

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
7

4
v
a
lu

e
 =

 [
0

,
1

7
4

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 l
a
m

p
sh

a
d

e

ra
n

d
-2

3
 a

b
o
rt

 t
im

e
 <

=
 1

2
7

.9
4

2
g

in
i

=
 0

.0
2

5
sa

m
p

le
s

=
 1

5
6

v
a
lu

e
 =

 [
1

5
4

,
2

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

s7
 a

b
o
rt

 t
im

e
 <

=
 9

1
.3

5
4

g
in

i
=

 0
.0

1
3

sa
m

p
le

s
=

 1
5

5
v
a
lu

e
 =

 [
1

5
4

,
1

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
0

,
1

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 l
a
m

p
sh

a
d

e

ra
n

d
-2

3
 a

b
o
rt

 t
im

e
 <

=
 4

5
.2

9
7

g
in

i
=

 0
.5

sa
m

p
le

s
=

 2
v
a
lu

e
 =

 [
1

,
1

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
5

3
v
a
lu

e
 =

 [
1

5
3

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
1

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v
a
lu

e
 =

 [
0

,
1

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 l
a
m

p
sh

a
d

e

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
5

5
v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
0

,
2

5
5

]
c
la

ss
 =

 s
s-

li
b

e
v

s7
 a

b
o
rt

 t
im

e
 <

=
 2

1
7

.7
4

8
g

in
i

=
 0

.4
5

1
sa

m
p

le
s

=
 2

3
9

v
a
lu

e
 =

 [
1

5
7

,
8

2
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 8
2

v
a
lu

e
 =

 [
0

,
8

2
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 l
a
m

p
sh

a
d

e

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
5

7
v
a
lu

e
 =

 [
1

5
7

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
6

v
a
lu

e
 =

 [
1

6
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

h
tt

p
 a

b
o
rt

 t
im

e
 <

=
 1

0
4

.5
6

5
g

in
i

=
 0

.0
3

8
sa

m
p

le
s

=
 2

6
1

v
a
lu

e
 =

 [
5

,
0

,
0

,
2

5
6

,
0

,
0

]
c
la

ss
 =

 o
b

fs
4

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
5

6
v
a
lu

e
 =

 [
0

,
0

,
0

,
2

5
6

,
0

,
0

]
c
la

ss
 =

 o
b

fs
4

g
in

i
=

 0
.0

sa
m

p
le

s
=

 5
v
a
lu

e
 =

 [
5

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
4

3
6

v
a
lu

e
 =

 [
2

4
3

6
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

h
tt

p
 a

b
o
rt

 t
im

e
 <

=
 2

9
9

.2
0

4
g

in
i

=
 0

.1
3

2
sa

m
p

le
s

=
 3

6
8

4
v
a
lu

e
 =

 [
3

4
2

3
,

0
,

2
5

8
,

0
,

0
,

3
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-5

1
 a

b
o
rt

 t
im

e
 <

=
 0

.5
g

in
i

=
 0

.0
3

3
sa

m
p

le
s

=
 1

7
9

v
a
lu

e
 =

 [
1

7
6

,
0

,
0

,
0

,
0

,
3

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

m
o
d

b
u

s
g

o
t

T
IM

E
O

U
T

 <
=

 0
.5

g
in

i
=

 0
.1

3
6

sa
m

p
le

s
=

 3
5

0
5

v
a
lu

e
 =

 [
3

2
4

7
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-2

5
 a

b
o
rt

 t
im

e
 <

=
 1

5
0

.2
9

g
in

i
=

 0
.3

2
sa

m
p

le
s

=
 1

5
v
a
lu

e
 =

 [
1

2
,

0
,

0
,

0
,

0
,

3
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
6

4
v
a
lu

e
 =

 [
1

6
4

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
2

v
a
lu

e
 =

 [
1

2
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v
a
lu

e
 =

 [
0

,
0

,
0

,
0

,
0

,
3

]
c
la

ss
 =

 s
s-

li
b

e
v

g
in

i
=

 0
.0

sa
m

p
le

s
=

 7
0

v
a
lu

e
 =

 [
7

0
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

tl
s

a
b

o
rt

 t
im

e
 <

=
 2

4
1

.1
7

1
g

in
i

=
 0

.1
3

9
sa

m
p

le
s

=
 3

4
3

5
v
a
lu

e
 =

 [
3

1
7

7
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
5

v
a
lu

e
 =

 [
1

5
,

0
,

0
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-1

7
4

1
0

 g
o
t

T
IM

E
O

U
T

 <
=

 0
.5

g
in

i
=

 0
.1

3
9

sa
m

p
le

s
=

 3
4

2
0

v
a
lu

e
 =

 [
3

1
6

2
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 7
v
a
lu

e
 =

 [
7

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-7

9
3

6
 a

b
o
rt

 t
im

e
 <

=
 2

6
5

.3
9

9
g

in
i

=
 0

.1
4

sa
m

p
le

s
=

 3
4

1
3

v
a
lu

e
 =

 [
3

1
5

5
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
v
a
lu

e
 =

 [
4

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-4

7
 g

o
t

F
IN

 <
=

 0
.5

g
in

i
=

 0
.1

4
sa

m
p

le
s

=
 3

4
0

9
v
a
lu

e
 =

 [
3

1
5

1
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

ra
n

d
-5

1
 g

o
t

T
IM

E
O

U
T

 <
=

 0
.5

g
in

i
=

 0
.1

4
sa

m
p

le
s

=
 3

4
0

6
v
a
lu

e
 =

 [
3

1
4

8
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v
a
lu

e
 =

 [
3

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v
a
lu

e
 =

 [
3

,
0

,
0

,
0

,
0

,
0

]
c
la

ss
 =

 n
o
t-

p
ro

x
y

g
in

i
=

 0
.1

4
sa

m
p

le
s

=
 3

4
0

3
v
a
lu

e
 =

 [
3

1
4

5
,

0
,

2
5

8
,

0
,

0
,

0
]

c
la

ss
 =

 n
o
t-

p
ro

x
y

Fig. 15: Automated Decision Tree — We trained a multi-class decision tree classifier on the 25k endpoints in our Tap dataset
(and 1k synthetically-generated proxy samples). Each node contains an array of the number of samples yet to be classified at
that point in the tree: [not proxy, lampshade, mtproto, obfs4, ossh, shadowsocks-python]. Nodes are labeled with the current
classification, and colored according to how confident a decision could be made at that point.

17

