
HTTPT: A Probe-Resistant Proxy

Sergey Frolov
University of Colorado Boulder

Eric Wustrow
University of Colorado Boulder

Abstract
Recently, censors have been observed using increasingly so-
phisticated active probing attacks to reliably identify and
block proxies.

In this paper, we introduce HTTPT, a proxy designed to
hide behind HTTPS servers to resist these active probing
attacks. HTTPT leverages the ubiquity of the HTTPS protocol
to effectively blend in with Internet traffic, making it more
difficult for censors to block. We describe the challenges that
HTTPT must overcome, and the benefits it has over previous
probe-resistant designs.

1 Introduction

Internet censors strive to detect and block circumvention prox-
ies. Many censors have adopted sophisticated proxy discovery
techniques, such as active probing [14, 38, 39], where the cen-
sor connects to suspected proxy servers and sends probes
designed to distinguish them from non-proxies. In response
to this attack, developers designed and built probe-resistant
proxies, such as ScrambleSuit [40], obfs4 [44], and Shadow-
socks [2] which require clients to prove knowledge of a secret
key (obtained out of band) before the proxy will respond to
them.

While probe-resistant proxies are harder for censors to
identify, recent work demonstrates there are still ways censors
could detect probe-resistant proxies [20]. For instance, not
responding to common protocols like HTTP or TLS is un-
usual behavior for servers. Recently, China’s GFW has been
observed using similar active probing techniques to detect
and block Shadowsocks [3].

In this work, we propose HTTPT, an alternative proxy
architecture that is designed to defend against advanced ac-
tive probing. While previous probe-resistant designs avoid
looking like any protocol, we argue this approach is funda-
mentally limited, as this behavior is unusual for servers on
the Internet [20]. Instead, HTTPT uses HTTPS, a ubiquitous
protocol with many diverse implementations, providing a het-
erogeneous set of behaviors to blend in with. HTTPT can be

deployed behind already-existing Web Servers, making it im-
possible for censors to access and identify the proxy without
knowing the secret necessary to use it.

1.1 Benefits

HTTPT has several benefits over existing designs:

Replay attack protection Existing probe-resistant proxies
are vulnerable to replay attacks, where the censor re-sends ob-
served client messages. Some proxies, such as shadowsocks-
libev [43], implement a cache to prevent replays of previous
connections. However, China’s active probing thwarts this
defense by permuting replays [3], and the behavior of not re-
sponding at all to replays may be unusual. In contrast, HTTPT
is immune to replay attacks due to its reliance on TLS, which
includes bidirectional nonces in the handshake.

Using existing web servers HTTPT leverages existing
web servers, making it more difficult for censors to single out
or identify. Hiding a proxy behind an authentic web server,
such as Apache or nginx, obviates the need to mimic TLS or
any other server fingerprints [21] that could allow censors to
block it.

Overhead After the initial TLS handshake, HTTPT’s over-
head is minimal. To avoid the overhead associated with send-
ing HTTP-compatible encodings, HTTPT instead uses Web-
Sockets between client and server. This allows the client
and server to send binary data over the web server, obviating
the need for costly HTTP-safe encodings such as MIME or
base64.

Using a popular protocol Existing probe-resistant proxies
rely on randomized protocols that try to blend in with generic
Internet traffic and make it hard for censors to identify pas-
sively. However, prior work has shown that these protocols
might still be detectable using entropy analysis and machine
learning [5, 37]. In HTTPT, we rely on the popular TLS pro-
tocol to tunnel data, making it more difficult for censors to
block outright (because TLS is popular), and hard to perform
fingerprinting attacks due to the heterogeneity of the protocol.



2 Background

The arms race between censors and circumvention tools has
led to new techniques from both sides. In this section, we pro-
vide background on the active probing attacks and defenses
employed recently.

Active Probing To detect and block proxies, censors often
use active probing attacks, where they connect to suspected
proxy servers and attempt to communicate using known cir-
cumvention protocols. If a server responds to these probes
using the protocol (e.g. they offer proxy service to the censor),
the censor learns the server is in fact a proxy, and can block it.
The Great Firewall of China (GFW) have used this technique
for nearly a decade to find and block Tor bridges and other
proxies [14, 38, 39].

Censors typically find suspected proxies by traffic analysis
or Internet scanning [13]. For instance, the GFW has been
observed to send probes to TLS (TCP port 443) servers when
a client first connects to them [38]. These probing techniques
include sending random data and attempting to perform a Tor
handshake. If the server responds like a proxy, for instance
by responding with the Tor protocol, the endpoint is blocked
by the censor.

Probe-resistant proxies To resist active probing attacks,
circumvention tools have developed probe-resistant proxy
protocols, such as ScrambleSuit [40], obfs4 [44], Shadow-
socks [2], and Lampshade [28]. These protocols require
clients to prove knowledge of a shared secret before the server
will respond. This shared secret is distributed among the
clients through private channels, such as Tor’s BridgeDB [36]
or email, and without the knowledge of the secret, censors are
unable to get responses to their probes. As these proxies effec-
tively remain silent to such probes, it is difficult for censors
to confirm if they are proxies.

Detecting probe-resistant proxies However, there are still
ways censors can identify probe-resistant proxies. In 2020,
Frolov et al. showed how not responding to any probes is
uncommon behavior online: over 94% of servers responded
with data to at least one popular protocol [20]. Furthermore,
circumvention servers would often have unique timeouts or
data limits before they closed connections, allowing censors to
identify and even fingerprint probe-resistant proxies that never
respond to the censor. For example, Lampshade reads 256
bytes from the client, and closes the connection immediately
if it does not demonstrate knowledge of the secret (e.g. a
censor sends random data). However, if less than 256 bytes
is read, the server will wait for 90 seconds, and then timeout
and close the connection.

This gives censors a new strategy for identifying probe-
resistant proxies: send several probes for popular protocols

and random data, and identify the servers whose responses
are consistent with responses of a given proxy (e.g. close im-
mediately for probes over 256 bytes or close after 90 seconds
otherwise for Lampshade).

Another potential way censors can identify probe-resistant
proxies is with replay attacks, where they replay a previous
legitimate client’s initial message to the server. Since this mes-
sage proves knowledge of the secret, the server will respond,
alerting the censor it is a proxy.

Recently, the GFW has been observed using replay attacks
and the aforementioned timeout fingerprinting to identify and
block Shadowsocks servers [3]. When a client connects to
a server and sends a Shadowsocks-sized initial message, the
GFW will send several follow-up probes, including replays
of the client’s message, and random-data probes of various
sizes up to and exceeding the 50-byte data limit unique to
Shadowsocks.

Probe-resistant proxies could try to prevent replay attacks
using server randoms or challenges, where the client proves
knowledge of the shared secret by hashing it with server-
provided (random) data. However, this would require the
server send data before the client has authenticated, which
could be used by censors to identify those proxies.

In contrast, web servers provide a natural defense against
replays due to the security properties of TLS. TLS defends
against client replay attacks by including the server random
in the key agreement, ensuring each connection uses unique
cryptographic keys.

TLS also has a large number of popular implementations,
providing a plethora of fingerprints to blend into [21]. While
previous work has shown the difficulty in mimicking existing
protocols for circumvention [25], many of these protocols
only had a single used implementation, making it difficult for
circumvention tools to copy perfectly. In contrast, our tech-
nique leverages existing TLS implementations and efficiently
tunnels through them, avoiding the difficult task of mimicry al-
together. While prior work has tunneled circumvention traffic
through other protocols, including chat applications, Skype,
or video streaming [4,29,31,32], these protocols are generally
less popular than TLS and used in a narrow set of applica-
tions. This allows censors to use traffic analysis to find proxy
use [23]. In contrast, the wide range of applications used
by TLS makes it more difficult (though not impossible) to
perform this kind of analysis.

3 Design

At a high level, HTTPT functions as a TLS server that also
has secret proxy functionality. The proxy function can only
be accessed by clients that know a secret key, distributed
out of band. If a censor attempts to probe an HTTPT server,
they will receive the TLS server’s benign response, making
it difficult to identify the server as a proxy. We first describe



HTTPT 
Client Web Server

HTTPT 
Server

Destination

Server Hello, Change Cipher Spec

{TLS Encrypted Extentions, Cert, Cert Verify, F
inished}

{TLS Finished}{HTTP GET /SecretLink

Upgrade: WebSocket
X-Destination: example.com:4242

X-Message: hi server!}

TLS Client Hello

HTTP GET /SecretLink...

{HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade}

hi server!

HTTP/1.1 101...

hi client!

{hi client!}

hi client!

Figure 1: HTTPT Handshake — HTTPT minimizes Time
To First Byte by passing application data together with the
first HTTP request. Following initial handshake, the traffic
passes through the proxy with relatively small overhead, asso-
ciated with encrypting all traffic between HTTPT client and
the web server using TLS. Curly brackets denote messages in
encrypted TLS Records. Overhead per TLS Record amounts
to only 5 bytes of the TLS header frame, and the message au-
thentication code, which is 16 bytes for most common MACs,
such as Galois MAC and Poly1305.

the challenges in crafting benign responses in Section 3.1
and several solutions in Section 3.2. Finally, we describe how
clients can access the proxy functionality in Section 3.3.

3.1 Benign Response Challenges
When probed by a censor, the HTTPT server must respond
in a normal-seeming way that does not identify it as a proxy.
There are several features of TLS servers that might be used
to identify HTTPT servers.

TLS implementation TLS servers (and clients) can be fin-
gerprinted based on identifying features they send in the TLS
handshake. For instance, the cipher suites or extensions they
support or use may vary by implementation, and those dif-
ferences have been used by censors previously to identify
proxies [15,21]. Thus, in HTTPT we must be careful to avoid
having identifying characteristics in the TLS layer. On the
server side we address this by using existing popular TLS
implementations and servers, obviating the need to mimic
them. Our client implementation currently uses uTLS [21]
library to mimic popular TLS fingerprints; alternatively, we
may use a popular browser to establish TLS connections.

TLS certificate A related feature is the certificate the server
sends. TLS certificates contain a public key, one or more do-

User Device
Proxy Server Host

HTTPT Client

User App

HTTPT Server

Common
Web Server

‘He
llo

’

TLS Record(‘Hello’)
‘He

llo
’

Destination

‘Hello’

Figure 2: HTTPT Overall Diagram — In addition to client
and server applications, present in most proxy designs,
HTTPT adds an extra component: a Web Server used to de-
ter active probing by providing plausible responses to the
censors’ probes.

main names, a CA signature, and other extensions. To avoid
detection, the HTTPT server must respond with a realistic
certificate. This is challenging because real certificates of-
ten contain legitimate domain names and are usually signed
by trusted certificate authorities, preventing us from forging
arbitrary CA-signed certificates for domains we do not con-
trol. Self-signed certificates could be used instead, allowing
us to construct arbitrary values. However, self-signed certifi-
cates may be easier for censors to block, since websites, that
are popular and therefore their blocking may cause collateral
damage, use CA-signed certificates.

TLS Content Once a TLS connection is established and
the client (or censor) sends a request, the HTTPT server must
respond with benign data, such as an HTTP response with an
HTML payload. The contents of this payload must be care-
fully chosen so that censors cannot identify HTTPT servers
based on their responses. Ideally, this content appears to (or
actually does) provide real-value to legitimate users, so that
censors have a harder time blocking the service. For instance,
while a blank page may be common to non-HTTPT servers,
it does not carry significant collateral damage that would dis-
courage a censor from blocking it.

3.2 Benign Responses

We propose several approaches that allow HTTPT to make
the TLS certificate and content appear innocuous to probing
censors. If HTTPT servers are able to utilize multiple ap-
proaches, censors must find ways to identify and block all of
these variants to prevent its use. If any of these schemes are
successful at evading detection, HTTPT will still be able to
provide circumvention value to users.



3.2.1 Existing servers

One option is to place HTTPT proxies at already existing
HTTPS servers run by volunteers. These servers already have
valid certificates and content that can be returned to a prob-
ing censor, providing legitimate camouflage that the HTTPT
proxy hides behind. Because HTTPT proxies don’t change
the behavior of the underlying website, the censor will not be
able to determine based on certificates or content if the site is
a proxy or not.

Existing servers provide an ideal deployment for HTTPT,
particularly if they are popular. We discuss strategies for
recruiting existing sites to operate HTTPT proxies in Sec-
tion 5.1.

3.2.2 Mask sites

Alternatively, HTTPT can adopt an idea from Conjure [19]
and mimic existing servers not controlled by the HTTPT
proxy admin. In this configuration, HTTPT will transpar-
ently proxy all traffic to a dedicated “mask site”, which is an
external TLS server. When a censor makes a connection to
the HTTPT server, their packets are relayed to the mask site,
and the responses are sent back to the censor. This allows an
HTTPT proxy admin to have their server mimic any existing
site online, in both certificate and content. We describe how
the HTTPT proxy can detect the secret from the client in
Section 3.3. Censors unable to prove knowledge of the secret
will continue to have their traffic transparently relayed to the
mask site, making it appear as if the HTTPT server is in fact
the mask site.

3.2.3 Common error pages

For content, HTTPT servers could serve a benign error page
and respond with 4xx or 5xx HTTP status code. Censys [12]
scans of IPv4 HTTPS [9] servers demonstrate that these sta-
tus codes are common online: as of June 2020 over 21% of
the servers probed for / responded with 400 Bad Request,
11.19% responded with 403 Forbidden, 8.62% with 404
Not Found, and 2.91% with 401 Unauthorized.

3.2.4 Copying Content

Content could also be copied directly from existing websites,
providing a defense similar to mask sites. Unlike mask sites,
hosting the content directly avoids delays in TCP/TLS pack-
ets that would be present when transparently proxying at the
packet level. However, copying content has several downsides.
First, it may violate copyright law, making HTTPT servers
a target from domestic legal threats as well as from censors.
Second, it still requires servers to provide a plausible certifi-
cate (and potentially a domain) for this content, which may
be difficult to pair with already-existing content.

3.2.5 Restricted Access

Finally, we can avoid having to send content altogether by
restricting access to it. For instance, requiring an HTTP autho-
rization, or a login page, and returning generic errors or denial
pages for all attempted passwords. Such prompts are common
online, causing censors to hesitate to block such sites, even
without being able to see the content.

These restrictions could also be implemented at the TLS
level: clients that send an incorrect server name indication
(SNI) could trigger a handshake alert—behavior shared with
approximately 3% of endpoints online [20]. However, cen-
sors could still replay the correct SNI value from legitimate
HTTPT clients, as it is sent in the clear in the Client Hello
message. TLS 1.3 offers an encrypted SNI extension [34, 35]
that would address this, but it has yet to see wide use, and
there have already been mixed reports of censors blocking
it [10, 22].

3.3 Proving knowledge of the secret
Legitimate clients must prove knowledge of a secret shared
out-of-band to use the proxy. However, they must do so in
a way such that incorrect guesses do not reveal to the client
that the guess was even checked. For instance, if the server
responded with an “invalid secret” response, a censor could
use this to identify and block HTTPT proxies via probing.

HTTPT provides two ways for clients to prove knowledge
of the secret.

Secret URL First, HTTPT clients can include the shared
secret in the URL of the initial HTTP request as an authen-
tication mechanism. The web server is configured to reverse
proxy all requests visiting the secret phrase to the HTTPT
server. This allows the web server to respond with its normal
error page (e.g. 404 Not Found) for incorrect guesses from a
censor, indistinguishable from a non-proxy web server. This
method works for existing sites, where the HTTPT admin can
easily configure the site.

In-band TLS When using mask sites, the HTTPT server
is not able to directly observe the URL that the client visits.
Instead, we adopt a technique from Conjure [19] to covertly
detect legitimate users. During connection establishment, the
HTTPT server proxies all traffic transparently to the mask
site, allowing the HTTPT client to complete a normal TLS
handshake with the mask site. This means the HTTPT server
appears to be sending certificates as the mask site, though
does not have control over the private key and thus cannot
decrypt or inject data into this connection.

After the TLS handshake completes, the HTTPT client
switches to a new Master Secret, derived from the HTTPT
shared secret combined with the client and server random
values in the mask site TLS connection to prevent replay



attacks. The HTTPT server also derives this new master secret,
and if it is able to decrypt the client’s application data, it
knows the client is authentic (i.e. knows the shared secret).
Otherwise, the HTTPT server continues forwarding packets
to the mask site.

4 Evaluation

4.1 Implementation

We implemented a prototype HTTPT client and server in
Golang. Our prototype is relatively simple: our client and
server are written in 163 and 158 lines respectively. We con-
firmed our prototype is compatible with several popular web
servers, including Apache 2.4.43, nginx 1.16.1, and Caddy
2.1.0. We currently support existing sites configured in any of
these servers, which allows us to support all of the schemes
in Section 3.2 except mask sites.

Figure 2 gives an overview of the components in the
HTTPT system. Our implementation focuses on minimiz-
ing framing overhead between the web server and the HTTPT
server. HTTPT clients make a normal TLS connection with
the web server, and send an HTTP request with the secret
URL and a WebSocket upgrade header. The web server (e.g.
Caddy) is configured to reverse proxy this request to the
HTTPT server WebSocket application based on the URL and
the HTTPT server confirms the WebSocket upgrade. At this
point, the web server simply forwards all application traffic
transparently between the client and the HTTPT server. While
normally WebSockets contain a small framing overhead, we
found that this was not necessary for the web servers we
tested, allowing us to have no framing between HTTPT client
and server after the initial WebSocket upgrade.

This means any bytes the client sends will be encapsulated
in TLS, decrypted by the web server, and forwarded directly
on to the HTTPT server. Over this transport, HTTPT could
support any proxying protocol, such as SOCKS. We choose
to implement HTTP proxying, allowing clients to connect to
and transparently communicate with an arbitrary endpoint
over the HTTPT tunnel.

4.2 Performance

We evaluate the performance of HTTPT by comparing it with
Shadowsocks. Shadowsocks is designed to be lightweight: it
does not add padding and eliminates round trips in the initial
connection, which provides exceptional performance, but with
no forward secrecy.

We launched shadowsocks-libev 3.1.3 and HTTPT clients
in a VM in Karnataka, India, a Shadowsocks and HTTPT
proxy server in Oregon, USA, and had the client connect to a
“covert” destination web server in Virginia, USA via its respec-
tive proxy. The round-trip latency between the proxy client

HTTPT(TLS 1.2)
600

700

800

900

1000

1100

1200

HTTPT(TLS 1.3)
600

700

800

900

1000

1100

1200

shadowsocks-libev 3.1.3
600

700

800

900

1000

1100

1200

Ti
m

e 
To

 F
irs

t B
yt

e 
(m

s)

Figure 3: Time To First Byte — Having performed 100 mea-
surements, we found that the median time to the first byte for
Shadowsocks was 612ms, 844ms for HTTPT (TLS 1.3), and
1085 ms for HTTPT (TLS 1.2).

HTTPT (TLS 1.2)20

22

24

26

28

30

32

34

shadowsocks-libev 3.1.320

22

24

26

28

30

32

34

10
0-

m
eg

ab
yt

e 
fil

e 
do

wn
lo

ad
 ti

m
e 

(s
)

Figure 4: Bandwidth Test — For a bandwidth test, we down-
load a 100-megabyte file 25 times. The resulting median time
for shadowsocks is 24.65 seconds, which is comparable to
the HTTPT median time of 25.15 seconds.

and server VMs is around 230ms, and the latency between
the proxy server and the destination server is 80 ms.

We perform 100 measurements of Time To First Byte for
shadowsocks, and for two configurations of HTTPT, one using
TLS 1.2, and another TLS 1.3, and show results in Figure 3.
Shadowsocks provides faster latency by having fewer round
trips in its handshake: compared to Shadowsocks, TLS 1.2
requires 2 additional RTT, and TLS 1.3 requires 1 additional
RTT. We note that it is possible to take advantage of TLS 1.3
Zero Round Trip Resumption to match Shadowsocks’ TTFB,
however, this feature sacrifices forward secrecy, and may be
used by censors as a distinguisher due to its infrequency on
the Internet, or allow them to execute replay attacks.

To evaluate bandwidth, we perform 25 measurements of
the time it takes to fetch a 100-megabyte file from the covert
destination through each proxy. As shown in Figure 4, the
median time to fetch the file for Shadowsocks was 24.65
seconds, and the median time for HTTPT was 25.15 seconds
(2% overhead), a difference explained by the extra round trips
involved for HTTPT.

Figures 3 and 4 demonstrate that HTTPT performance



is comparable to that of Shadowsocks, and we argue that a
single extra round trip of connection establishment time is
an acceptable price to pay for forward secrecy and increased
probe resistance.

5 Discussion

5.1 Deployment Incentives
In order for HTTPT proxies to be effective, they must be
deployed to a wide range of heterogeneous servers. If the
servers all share some fingerprint (e.g. follow a template or
have certain features in their domain names), censors may be
able to easily identify and block these proxies. We envision
two likely modes of deployment of HTTPT.

First, circumvention tool developers could spin up their
own proxies. This would likely involve using a combination
of error-page or restricted access-type servers, as well as lever-
aging mask sites. Deployers in this model should be careful
to deploy to multiple cloud providers to avoid identifying
clusters of proxies based on IP or AS.

Second, volunteers could be encouraged to run HTTPT
proxies on their existing sites. Websites that wish to support
censored users could enable these proxies. We note it may be
difficult to recruit volunteers, as ideally, they do not advertise
they are supporting this effort. Nonetheless, sites that wish to
support these efforts could deploy HTTPT proxies and have a
direct impact. Additionally, if a large enough cohort of high-
profile websites supports HTTPT proxies, then advertising
support could still be possible, assuming censors are unwilling
to collectively block these sites.

This second type of deployment would require coordina-
tion from a central party, such as a circumvention tool, that
keeps track of what sites and secret URLs can be used as
HTTPT proxies, and provides easy-to-install configurations
to volunteers. Websites could also choose whether they are
comfortable exiting proxy traffic directly from the web server
(which increases user privacy), or if they want to relay such
traffic to the central party (which limits abuse and liability
concerns for the website).

5.2 Future Work
In the future, we plan to implement other benign response
strategies (Section 3.2) such as mask sites, which will allow
HTTPT to be used in an even wider range of scenarios.

In addition, there are several implementation features that
we believe would benefit HTTPT. These include HTTP/2 [6],
which could allow multiplexing of multiple covert connec-
tions over a single stream, or fine-grained padding control.

We also plan to adopt TurboTunnel [16], an inner reliability
layer for circumvention protocols. This layer makes it easier
to multiplex sessions over multiple overt connections in the
event they are disconnected or disrupted.

5.3 Limitations

HTTPT is not designed to defend the proxy distribution sys-
tem against enumeration attacks, where censors could dis-
cover IPs and secrets of proxies in bulk. Solutions such as
Salmon [11] or Hyphae [30] could be used to defend against
such attacks.

HTTPT also does not protect against website fingerprinting
attacks. While prior research has shown machine learning clas-
sification may allow future censors to passively distinguish
proxy use from other website access [24,33], researchers have
not yet observed these techniques used by censors in practice.
This is likely due to the base-rate of non-proxy web traffic
making it difficult for censors to justify using methods with
even small (but non-zero) false positive detection rates [37].
Therefore, we believe that website fingerprinting is not an
immediately likely attack against HTTPT, though it may pose
one in the future. In any case, it should be possible to adapt
existing fingerprinting defenses to our design [7, 8].

5.4 Related Work

The HTTPS protocol has been previously proposed in
censorship circumvention technologies, including Domain
Fronting [17] and Refraction Networking [18, 19, 26, 27, 41,
42]. However, these technologies are intended to protect open
proxies against enumeration attacks, and have deployment
requirements that constrain deployment. In contrast, HTTPT
can be deployed at any web server and does not require ISP
or CDN cooperation.

TLS has also been used in VPN proxies, such as Open-
VPN [1]. However, these proxies do not address any of the
benign response challenges that HTTPT solves, and are thus
easily actively probed by censors.

6 Conclusion

Censors have recently adapted new methods to detect probe-
resistant proxies [3, 20]. In this paper, we present HTTPT,
which provides a defense against recent such active probe
attacks employed by censors. By leveraging the existing pop-
ular TLS protocol, HTTPT avoids the bulk of attacks that
existing probe-resistant proxies face. We address several new
challenges that HTTPT introduces, and evaluate our proto-
type, finding that it is comparable to existing popular proxies
used today. We plan to release our code as open source1.

While HTTPT is not the final word in the censorship arms
race, we believe it presents a unique new challenge for cen-
sors to effectively detect at scale, making it well-suited to
protecting circumvention tools from discovery.

1https://github.com/sergeyfrolov/httpt

https://github.com/sergeyfrolov/httpt


References
[1] OpenVPN: VPN Software Solutions & Services For Business. https:

//openvpn.net.

[2] Shadowsocks: A secure socks5 proxy. https://shadowsocks.org/
assets/whitepaper.pdf.

[3] ANONYMOUS, FIFIELD, D., AND HOUMANSADR, A. How China
Detects and Blocks Shadowsocks. https://gfw.report/blog/gfw_
shadowsocks.

[4] BARRADAS, D., SANTOS, N., AND RODRIGUES, L. DeltaShaper:
Enabling unobservable censorship-resistant TCP tunneling over video-
conferencing streams. Proceedings on Privacy Enhancing Technologies
2017, 4 (2017), 5–22.

[5] BARRADAS, D., SANTOS, N., AND RODRIGUES, L. Effective detec-
tion of multimedia protocol tunneling using machine learning. In 27th
USENIX Security Symposium (2018), USENIX Association.

[6] BELSHE, M., THOMSON, M., AND PEON, R. Hypertext transfer
protocol version 2 (http/2).

[7] BOCOVICH, C., AND GOLDBERG, I. Slitheen: Perfectly imitated
decoy routing through traffic replacement. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security
(2016), ACM, pp. 1702–1714.

[8] CAI, X., NITHYANAND, R., AND JOHNSON, R. CS-BuFLO: A con-
gestion sensitive website fingerprinting defense. In Proceedings of
the 13th Workshop on Privacy in the Electronic Society (2014), ACM,
pp. 121–130.

[9] CENSYS. Most common Status Lines responses of an internet-wide
scan of IPv4 HTTPS servers on port 443. https://censys.io/ipv4/
report?field=443.https.get.status_line.raw, June 2020.

[10] CHAI, Z., GHAFARI, A., AND HOUMANSADR, A. On the impor-
tance of encrypted-sni ({ESNI}) to censorship circumvention. In 9th
{USENIX} Workshop on Free and Open Communications on the Inter-
net ({FOCI} 19) (2019).

[11] DOUGLAS, F., PAN, W., CAESAR, M., ET AL. Salmon: Robust proxy
distribution for censorship circumvention. Proceedings on Privacy
Enhancing Technologies 2016, 4 (2016), 4–20.

[12] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., BAILEY, M., AND HAL-
DERMAN, J. A. A search engine backed by Internet-wide scanning. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 542–553.

[13] DURUMERIC, Z., WUSTROW, E., AND HALDERMAN, J. A. ZMap:
Fast internet-wide scanning and its security applications. In 22nd
USENIX Security Symposium (USENIX Security ’13) (2013), pp. 605–
620.

[14] ENSAFI, R., FIFIELD, D., WINTER, P., FEAMSTER, N., WEAVER,
N., AND PAXSON, V. Examining how the great firewall discovers
hidden circumvention servers. In Proceedings of the 2015 Internet
Measurement Conference (2015), ACM, pp. 445–458.

[15] FIFIELD, D. Cyberoam firewall blocks meek by TLS signa-
ture. https://groups.google.com/forum/#!topic/traffic-
obf/BpFSCVgi5rs/, 2016.

[16] FIFIELD, D. Turbo tunnel. designing circumvention protocols for
speed, flexibility, and robustness. https://www.bamsoftware.com/
sec/turbotunnel.html, 2019.

[17] FIFIELD, D., LAN, C., HYNES, R., WEGMANN, P., AND PAXSON, V.
Blocking-resistant communication through domain fronting. Proceed-
ings on Privacy Enhancing Technologies 2015, 2 (2015), 46–64.

[18] FROLOV, S., DOUGLAS, F., SCOTT, W., MCDONALD, A., VANDER-
SLOOT, B., HYNES, R., KRUGER, A., KALLITSIS, M., ROBINSON,
D. G., SCHULTZE, S., ET AL. An ISP-scale deployment of TapDance.
In 7th USENIX Workshop on Free and Open Communications on the
Internet (FOCI ’17) (2017).

[19] FROLOV, S., WAMPLER, J., TAN, S. C., HALDERMAN, J. A.,
BORISOV, N., AND WUSTROW, E. Conjure: Summoning proxies from
unused address space. In Proceedings of the 2019 ACM SIGSAC Con-
ference on Computer and Communications Security (2019), pp. 2215–
2229.

[20] FROLOV, S., WAMPLER, J., AND WUSTROW, E. Detecting Probe-
resistant Proxies. In Proc. Network and Distributed System Security
Symposium (NDSS) (2020).

[21] FROLOV, S., AND WUSTROW, E. The use of TLS in censorship circum-
vention. In Proc. Network and Distributed System Security Symposium
(NDSS) (2019).

[22] GATLAN, S. South korea is censoring the internet by snooping on SNI
traffic. https://www.bleepingcomputer.com/news/security/
south-korea-is-censoring-the-internet-by-snooping-on-
sni-traffic/, 2019.

[23] GEDDES, J., SCHUCHARD, M., AND HOPPER, N. Cover your ACKs:
Pitfalls of covert channel censorship circumvention. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications
security (2013), ACM, pp. 361–372.

[24] HAYES, J., AND DANEZIS, G. k-fingerprinting: A robust scalable
website fingerprinting technique. In 25th USENIX Security Symposium
(USENIX Security 16) (Austin, TX, Aug. 2016), USENIX Association,
pp. 1187–1203.

[25] HOUMANSADR, A., BRUBAKER, C., AND SHMATIKOV, V. The parrot
is dead: Observing unobservable network communications. In Security
and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE, pp. 65–79.

[26] HOUMANSADR, A., NGUYEN, G. T., CAESAR, M., AND BORISOV,
N. Cirripede: Circumvention infrastructure using router redirection
with plausible deniability. In Proceedings of the 18th ACM conference
on Computer and communications security (2011), ACM, pp. 187–200.

[27] KARLIN, J., ELLARD, D., JACKSON, A. W., JONES, C. E., LAUER,
G., MANKINS, D., AND STRAYER, W. T. Decoy routing: Toward
unblockable internet communication.

[28] LANTERN PROJECT. Lampshade: a transport between Lantern clients
and proxies. https://godoc.org/github.com/getlantern/
lampshade.

[29] LI, S., SCHLIEP, M., AND HOPPER, N. Facet: Streaming over video-
conferencing for censorship circumvention. In Proceedings of the 13th
Workshop on Privacy in the Electronic Society (2014), ACM, pp. 163–
172.

[30] LOVECRUFT, I. A., AND DE VALENCE, H. HYPHAE: Social secret
sharing. Tech. rep., Tech. rep. 2017-04-21. Apr. 2017.

[31] MCPHERSON, R., HOUMANSADR, A., AND SHMATIKOV, V. Covert-
Cast: Using live streaming to evade internet censorship. Proceedings
on Privacy Enhancing Technologies 2016, 3 (2016), 212–225.

[32] MOHAJERI MOGHADDAM, H., LI, B., DERAKHSHANI, M., AND
GOLDBERG, I. SkypeMorph: Protocol obfuscation for Tor bridges. In
Proceedings of the 2012 ACM conference on Computer and communi-
cations security (2012), ACM, pp. 97–108.

[33] PANCHENKO, A., LANZE, F., PENNEKAMP, J., ENGEL, T., ZINNEN,
A., HENZE, M., AND WEHRLE, K. Website fingerprinting at internet
scale. In NDSS (2016).

[34] RESCORLA, E. The transport layer security (TLS) protocol version
1.3. https://tlswg.github.io/tls13-spec/, May 2016.

[35] RESCORLA, E., OKU, K., SULLIVAN, N., AND WOOD, C. A. TLS
Encrypted Client Hello. Internet-Draft draft-ietf-tls-esni-07, Internet
Engineering Task Force, June 2020. Work in Progress.

[36] TOR PROJECT. Bridgedb. https://bridges.torproject.org/.

[37] WANG, L., DYER, K. P., AKELLA, A., RISTENPART, T., AND
SHRIMPTON, T. Seeing through network-protocol obfuscation. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 57–69.

https://openvpn.net
https://openvpn.net
https://shadowsocks.org/assets/whitepaper.pdf
https://shadowsocks.org/assets/whitepaper.pdf
https://gfw.report/blog/gfw_shadowsocks
https://gfw.report/blog/gfw_shadowsocks
https://censys.io/ipv4/report?field=443.https.get.status_line.raw
https://censys.io/ipv4/report?field=443.https.get.status_line.raw
https://groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
https://groups.google.com/forum/#!topic/traffic-obf/BpFSCVgi5rs/
https://www.bamsoftware.com/sec/turbotunnel.html
https://www.bamsoftware.com/sec/turbotunnel.html
https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
https://www.bleepingcomputer.com/news/security/south-korea-is-censoring-the-internet-by-snooping-on-sni-traffic/
https://godoc.org/github.com/getlantern/lampshade
https://godoc.org/github.com/getlantern/lampshade
https://tlswg.github.io/tls13-spec/
https://bridges.torproject.org/


[38] WILDE, T. Great firewall Tor probing circa 09 DEC 2011. https:
//gist.github.com/da3c7a9af01d74cd7de7, 2011.

[39] WINTER, P., AND LINDSKOG, S. How the great firewall of china is
blocking tor. In Presented as part of the 2nd USENIX Workshop on
Free and Open Communications on the Internet (Bellevue, WA, 2012),
USENIX.

[40] WINTER, P., PULLS, T., AND FUSS, J. ScrambleSuit: A polymorphic
network protocol to circumvent censorship. In Proceedings of the
12th ACM workshop on Workshop on privacy in the electronic society
(2013), ACM, pp. 213–224.

[41] WUSTROW, E., SWANSON, C., AND HALDERMAN, J. A. TapDance:
End-to-middle anticensorship without flow blocking. In 23rd USENIX

Security Symposium (Aug. 2014).

[42] WUSTROW, E., WOLCHOK, S., GOLDBERG, I., AND HALDERMAN,
J. A. Telex: anticensorship in the network infrastructure. In Pro-
ceedings of the 20th USENIX conference on Security (2011), USENIX
Association.

[43] YANG, L., LV, M., AND WINDY, C. Shadowsocks-libev – libev port of
shadowsocks. https://github.com/shadowsocks/shadowsocks-
libev, 2014.

[44] YAWNING ANGEL. obfs4 (The obfourscator) specification.
https://gitlab.com/yawning/obfs4/blob/master/doc/
obfs4-spec.txt.

https://gist.github.com/da3c7a9af01d74cd7de7
https://gist.github.com/da3c7a9af01d74cd7de7
https://github.com/shadowsocks/shadowsocks-libev
https://github.com/shadowsocks/shadowsocks-libev
https://gitlab.com/yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://gitlab.com/yawning/obfs4/blob/master/doc/obfs4-spec.txt

	Introduction
	Benefits

	Background
	Design
	Benign Response Challenges
	Benign Responses
	Existing servers
	Mask sites
	Common error pages
	Copying Content
	Restricted Access

	Proving knowledge of the secret

	Evaluation
	Implementation
	Performance

	Discussion
	Deployment Incentives
	Future Work
	Limitations
	Related Work

	Conclusion

