
MIMIQ: Masking IPs with Migration in QUIC

Yashodhar Govil, Liang Wang, and Jennifer Rexford
Princeton University

Abstract
The emerging QUIC transport protocol offers new opportu-
nities to protect user privacy. We present MIMIQ, a privacy-
enhancing system that leverages QUIC to protect user identity
and thwart traffic-analysis attacks. MIMIQ leverages QUIC’s
connection migration capability to change a client’s IP
address frequently—even within individual connections—
without disrupting ongoing transfers or changing the client’s
physical location. MIMIQ is readily deployable, requiring no
cooperation from networks other than the trusted network
where it runs. The trusted network facilitates routing of
return traffic by running an address allocation server that
assigns IP addresses to clients and forwarding rules to
switches. By strategically choosing migration times, MIMIQ
can defeat certain traffic-analysis attacks while incurring low
performance overhead.

1 Introduction

As the general public has grown more and more concerned
with maintaining privacy online, there has been an increasing
adoption of encryption over the Internet. Nowadays, almost all
communication over the Internet is encrypted [19]. While this
may obscure much of the information content, users’ Internet
Protocol (IP) addresses are still visible to eavesdroppers, and
may leak sensitive information [8, 9, 11, 13, 23, 34].

Most existing approaches for hiding users’ IP addresses,
such as Tor [7] and network-layer anonymity systems [3–5,15,
30], face serious deployment challenges, because they require
either extensive modifications to the Internet or support from
many stakeholders (e.g., Autonomous Systems along the
client-server path). Alternatively, a single ISP could deploy
the Address Hiding Protocol (AHP) [26] to encrypt each
flow’s source IP address to make it look like another random
address in the same network (similar to NAT). However,
AHP’s address mixing is coarse-grained, with randomization
at the flow level. As such, AHP does not protect against traffic-
analysis attacks, which can learn a user’s sensitive information
based on a single flow [14, 22, 24, 32, 33].

We therefore ask this question: Can we achieve fine-
grained and flexible IP address mixing? Instead of random-
izing a user’s IP address on a per-flow basis, we want to
randomize the IP address in the middle of a flow, or even
every few packets. At first glance, this seems to be infeasible,

Adversary

Server
Client

Trusted network Internet

IP = 1.1.1.1

IP = 1.1.1.2

Address

allocation

server conn 1

conn 2

?

IPs:
1.1.1.1,
1.1.1.2,

…

Edge
switch

Figure 1: MIMIQ setup: clients in the trusted network communicate
with an unmodified QUIC server.

as doing so in TCP, the current cornerstone of the Internet,
would break ongoing connections.

The emerging QUIC [18] transport protocol, however,
brings a new opportunity—a connection migration feature
that can change a client’s IP address during an ongoing
connection. Originally designed to support mobile clients,
connection migration can be used in a novel way to randomize
client IP addresses. We propose MIMIQ (Masking IPs with
Migration In QUIC), a privacy-enhancing system that enables
flexible IP address mixing. MIMIQ only relies on a single
trusted network for deployment, as shown in Figure 1. Using
MIMIQ, a client frequently changes its IP address (i.e.,
IP hopping) within the trusted network’s address space,
without changing locations or disrupting ongoing connections.
Leveraging IP hopping and QUIC, MIMIQ prevents an
adversary from discovering the client originating a flow or
associating multiple flows with the same client. By changing
the IP address in the middle of a connection, MIMIQ can
split a connection into multiple smaller flows to reduce the
amount of information the adversary can learn from a single
connection, further mitigating traffic-analysis attacks.

One major challenge is that changing the client’s IP address
makes it difficult to route return traffic back to the client.
Another challenge is to avoid different clients using the same
IP address at the same time (i.e., address collisions) to prevent
a client from receiving traffic intended for another client.
To handle these issues, the trusted network runs an address
allocation server that assigns IP addresses to its clients and
forwarding-table entries to its switches. Before performing
connection migration, a client requests new IP addresses from
the allocation server, which can carefully select addresses to
avoid collisions while preventing the adversary from guessing
the IP addresses assigned to each client. The server then

updates the forwarding rules in some critical switches to
facilitate routing of return traffic. The cooperation between
the allocation server and network switches enables MIMIQ to
scale to large networks, which provide larger anonymity sets
(i.e., more clients and more IP addresses) for better privacy. In
a way, MIMIQ achieves connection migration for a stationary
client by migrating the client twice—once in the transport
layer with QUIC and again in the routing layer.

MIMIQ is incrementally deployable: other than the alloca-
tion server and several critical switches in the trusted network,
MIMIQ does not make modifications to the existing network
and server infrastructure. We do not require changes to QUIC-
based client applications or the remote server (beyond running
QUIC), or require the participation of other networks. The
low deployment barriers allow access ISPs to participate for
financial incentives, e.g., an ISP can deploy MIMIQ as a
privacy-enhancing service to attract more customers.

We implement a proof-of-concept prototype of MIMIQ
and test its feasibility using Mininet [21] with an unmodified
QUIC server. As expected, performance overhead increases
with migration frequency. However, clients who prefer privacy
over performance may tolerate higher overhead. In fact,
clients can apply flexible IP hopping strategies to strike a
balance between performance and privacy. We demonstrate
that, under certain scenarios, the client only needs to change
its IP address once during a connection to effectively defeat
the adversary.

Overall, MIMIQ is a novel privacy application of QUIC.
Our work suggests that QUIC has great potential for boot-
strapping advanced privacy-enhancing techniques.

2 Background

Threat model. A client communicates through a trusted
provider (e.g., enterprise or ISP network) with an unmodified
remote server, using standard QUIC [17] (see §3.1 for more
details) as the transport protocol. The participating client
runs a MIMIQ agent, which can configure host IP addresses,
to cooperate with the trusted provider to enable frequent IP
address hopping. The trusted provider’s network (or trusted
network for simplicity) can be either a IPv4 or IPv6 network.
To have a good anonymity set, we assume a considerable
number of clients participate in MIMIQ, and the trusted
provider reserves at least the same number of public IP
addresses for the participating clients.

We focus on a passive adversary, who sits between the
trusted provider’s network and the server, and can see and
record all traffic exchanged between the trusted network
and the server. In addition, the adversary may control a
few hosts in the trusted network, send arbitrary traffic to
the server, and observe the IP addresses of the traffic sent
by these colluding hosts. The adversary’s main goal is to
discover the client’s original network-layer identity. Also,

the adversary may perform traffic-analysis attacks to learn
sensitive information about the client (e.g., the website the
client is visiting). The adversary, however, cannot see traffic
within the trusted network (which may reduce the anonymity
set) or between the non-colluding clients and the trusted
provider. The trusted network should be properly protected
with best security practices (e.g., setting up IPsec between
geographically distributed sub-networks) and the adversary
cannot compromise the trusted network.

The server will not collude with the adversary, but may be
curious about the client’s identity. We do not try to hide that
the changing IP addresses are part of the same connection
from the server, but do want to hide the client’s identity.

Privacy goals. MIMIQ does not aim to achieve privacy
properties as strong as those of Tor and other network-layer
anonymity systems (e.g., receiver anonymity and location
anonymity). By employing ephemeral IP addresses, MIMIQ
aims to make discovering the identity (IP address) of the client
more difficult and provide stronger resilience against traffic-
analysis attacks. To mitigate traffic-analysis attacks, MIMIQ
needs to achieve client unlinkabilty, i.e., the adversary cannot
reliably link packets to the same client, which QUIC already
provides to some extent. Some side-channels (e.g., packet
timing) may be exploited to link traffic to clients, but we do
not yet consider them in this work. A key factor in achieving
these goals is QUIC’s handling of encryption and migration,
discussed in §3.1.

Related work. Tor [7] and network-layer anonymity systems,
such as LAP [15], Dovetail [30], HORNET [3], and PHI [5],
provide stronger privacy guarantees than MIMIQ; however,
they typically require multiple ASes along an end-to-end path
to cooperate in the protocol, which raises their deployment
barriers. SPINE [6] performs per-packet encryption to hide
endpoints’ IP addresses and to hinder traffic-analysis attacks,
but requires the cooperation of endpoint ASes. MASQUE [31,
Sec 8.1] suggests mitigating traffic-analysis attacks by trans-
ferring QUIC connections among a set of proxy servers.
Unfortunately, QUIC has limited support for server-address
migration [17, Sec 9.6]. Address Hiding Protocol (AHP) [26]
can conceal client IP address in a single trusted AS, but it
lacks flexibility and fails to protect against traffic-analysis
attacks. Virtual Private Networks (VPNs), though lightweight,
require careful configurations to avoid unintentional IP
leaks [25]. Besides, public VPN services may collect client
IP addresses [23] and sell this information to advertising
companies to facilitate delivering of IP targeting ads [8].

HyWF aims to defeat traffic-analysis attacks by sending
traffic over different routing paths via MPTCP so that
adversaries only get partial flow information [12]. However,
multipathing itself does not offer unlinkability and anonymity
against eavesdroppers or endpoints. A powerful adversary
could be listening on multiple paths that the client uses,
and may still be able to reconstruct connections based on

the global data sequence numbers. In MIMIQ, even an
adversary that sees all of a client’s traffic still cannot reliably
reconstruct connections. MIMIQ can be used in combination
with multipathing to further improve user privacy.

3 MIMIQ Design

MIMIQ hides client identities by repeatedly changing client
IP addresses. MIMIQ has three components: the client
agent, the address allocation server, and the edge switch.
The allocation server, which has a global view of the IP
address assignment in the trusted network, assigns unused
IP addresses to a client upon request, and dynamically
updates forwarding rules in the switches to route return
traffic. Running on participating clients’ hosts, the MIMIQ
agent communicates with the allocation server to request IP
addresses, determines when to hop to a new address and which
address to use, and performs IP hopping.

3.1 Seamless connection migration via QUIC

One of the major problems with changing a client’s IP address
is that all the connections established from the client to the
server could be disrupted. If a connection to the server is
dropped, the client must attempt to reestablish the connection
and incur a significant performance penalty. To avoid this,
MIMIQ leverages QUIC’s connection migration capability.

QUIC is a transport protocol developed by Google [18].
Although still in development, QUIC is seeing rapid adoption
as it is is the basis of HTTP/3 [2]: QUIC accounted for
about 7% of global Internet traffic in 2016 [18]. Since 2016,
the number of QUIC-enabled domains has increased by a
factor of 40 to more than 600 K, and the number of QUIC-
capable IPs has almost tripled to over 1.6 M [28, 29]. The
connection migration feature of QUIC allows a client to
change its IP address in the middle of a connection without
having to reestablish the connection. QUIC connection
migration involves sending a relatively small token for path
validation [17, Sec 8.2], which offers substantial performance
benefits over a protocol like TCP that does not support
migration. These benefits are especially pronounced if the
client intends to migrate multiple times.

Unlinkability. Many of QUIC’s features facilitate mitigation
of client linkability during migration. QUIC packets carry pub-
lic connection IDs, which are used by endpoints to associate
flows to the same connection during connection migration. To
reduce linkability, the IETF QUIC specification [17, Sec 9]
specifies that for each connection endpoints should negotiate
a sufficient number of connection IDs during handshakes,
and an endpoint must not reuse a connection ID when
initiating connection migration. New connection IDs will
be negotiated before the available IDs are exhausted. A client
might further reduce linkability by changing the source UDP

port during migration. QUIC is end-to-end encrypted so that
eavesdroppers cannot learn the negotiated connection IDs
during handshakes. The token sent to validate connection
migration is encrypted, and, with appropriate padding, looks
indistinguishable from data sent by the client application.
Therefore, the adversary cannot determine with certainty
whether and when connection migration events happen. As a
result, the adversary also cannot distinguish the case where
(1) a client is migrating from one IP address to another, from
the case where (2) one client is pausing communications
from the first address and a second distinct client is starting
communications from the second address.

3.2 Assigning IP addresses to multiple clients

To avoid multiple clients having the same IP address at
the same time, MIMIQ uses an address allocation server
in the trusted network to assign IP addresses. The client’s
MIMIQ agent periodically requests a new IP address from
the allocation server, and later performs IP hopping. The
allocation server returns a randomly-selected, unused address
from its address pool. With knowledge of all IP addresses
currently in use, the allocation server can ensure that there
are no address collisions. To enable flexible IP hopping, the
allocation server can assign multiple IP addresses—an IP
address set—to each client. This also reduces the performance
overhead introduced by requesting new IP addresses, as the
client does not need to communicate with the allocation server
for every connection migration event. Upon receiving an IP
address set from the allocation server, the MIMIQ agent can
perform flexible IP hopping using different strategies, as we
discuss in §5.

Triggering connection migration. The MIMIQ agent trig-
gers connection migration by changing the host IP ad-
dress (e.g., using ifconfig). However, simultaneous connec-
tions from the client will share the same source IP address,
which may be susceptible to flow correlation attacks. To
mitigate this issue, the MIMIQ agent can setup multiple
virtual NICs associated with different IP addresses, and
instructs the QUIC library (which is modified to be able to
interact with the agent) being used by client applications to
bind a newly-created connection to a specific IP address. The
applications do not need to be aware of these operations. We
emphasize the single-connection scenario is actually realistic,
e.g., a privacy-savvy client may use QUIC-based VPNs or
QuicTor [1] to tunnel all traffic over a single connection.

Managing IP address lifetime. To use IP addresses effi-
ciently, especially in IPv4 networks, MIMIQ recycles as-
signed IP addresses. Each assigned address (or address set)
has a lifetime tip, which is randomly selected from a given
range. The client is expected to stop sending packets using
an IP address after tip seconds. The allocation server tracks
the lifetimes of IP addresses, and recycles an address by

removing the corresponding forwarding rules (see §3.3) from
the switches, so packets associated with that IP address can
no longer be sent from/to the client.

3.3 Forwarding return traffic to the clients

In this section we discuss how to handle routing during IP
hopping. We only consider scaling MIMIQ to large networks
of a particular type in this paper, and leave other types of
networks as future work. The target network comprises
multiple client-facing switches that connect to the clients,
and one edge switch that connects to the Internet. All the
client-facing switches and the edge switch are controlled by
the address allocation server. We assume each client host and
switch in the trusted network has a globally unique static
MAC address, each switch has an internal IP address for
internal routing, and clients include their MAC addresses in
requests to the address allocation server. Each client-facing
switch is also assigned a unique identifier SID by the address
allocation server. Similar to a DHCP relay agent, when a
client-facing switch forwards an IP assignment request from
a client, it adds its own SID to the request so the allocation
server can locate it. The other switches in the network perform
normal operations as usual.

Reducing performance overhead via passive ARP learn-
ing. In addition to MAC learning, the client-facing switch
would normally need to run the Address Resolution Pro-
tocol (ARP) or the Neighbor Discovery Protocol (NDP) to
determine the MAC address associated with an IP address.
However, frequent IP hopping would lead to a high rate of
ARP requests, degrading network performance significantly.
We take a different approach that we call passive ARP
learning to solve this issue: The allocation server records
the assigned IP address(es) and the client’s MAC address,
and updates the ARP table in the relevant client-facing
switch (Figure 2, 2). One security benefit of using passive
ARP learning is to mitigate IP spoofing, as only the allocation
server can manage the ARP table.

Efficient routing via address encoding. When receiving a
return packet, the edge switch needs to forward the packet
to the relevant client-facing switch. A naive approach is
to record every assigned IP address and internal address
of the relevant client-facing switch. This approach can be
sufficient for IPv4 networks: we estimate that the state-of-
the-art programmable switch can easily handle the routing
entries for /9 IPv4 networks, and can handle /8 networks with
certain optimizations [20]. However, it may be hard to scale
to IPv6 networks because of large routing tables. Instead,
for IPv6 networks, we can encode SID directly into the non-
prefix bits of an assigned IP address, and the edge switch
only needs to maintain a static table that maps SID to client-
facing switch internal IP address. A generated IP address is
a concatenation of the network prefix, SID, and random bits,

Internet

R
eq

ue
st

 IP
 fr

om
 A

fro
m

 s
w
itc

h
10

.0
.0

.1

Client-facing

switch 0001

Internal IP

= 10.0.0.1

Address allocation server

Edge switch

IP
 =

 1
.3

.1
.1 SID

Routing tableTab
le up

d
ate

Client 1

MAC = A
To: 1.3.1.1

To: 1.3.1.1

To: 10.0.0.1

To: 1.3.1.1

return packet

Internal

IP

0x01 10.0.0.1

SID’ = 0x03
SID = 0x01

Net prefix (8) SID’ (8) Random (16)

IP generation (IPv4)

0x02, 0x03
0x04, 0x05,

0x02, 0x03

0x06, 0x07,

0x04, 0x05

1.3.1.1

ARP table

A

IP MAC

Time
t_sid0 2 * t_sid

(a)

(b)

SID encoding

SID’ SID

0x03 0x01

0x02 0x01

Alias names

for SID 0x01

Bold: Will be used for

address generation

Italic: Remain valid but

will not be used

2

1

3

2
Table update

Figure 2: (a) An example of SID encoding. The allocation server
encodes SID′ in the assigned IP address. The edge switch extracts
SID′ from a return packet, gets the address of the client-facing
switch, and sends the encapsulated packet to the switch, who will de-
encapsulate the packet and forward it to the client. (b) An example
of SID′ updating when k and the size alias name set are 2. The alias
names generated at time 0 remain valid for 2× tsid seconds.

as shown in Figure 2. One issue is the adversary may be able
to link clients to switches based on SID, which reduces the
anonymity set. A preliminary solution is the allocation server
generates multiple random alias names SID′ for an SID, and
randomly encodes one alias name in the address. The alias
name sets are updated periodically every tsid seconds.

The edge switch additionally learns (from the allocation
server) the mapping between alias names and SID. Given
a return packet, the edge switch finds the SID and internal
address of the relevant client-facing switch, and encapsulates
the packet with an outer IP header in which the destination
IP address is set to the address of the switch. The client-
facing switch de-encapsulates the packet from the edge switch,
and forwards the packet to the client. With the allocation
server distributing forwarding rules, MIMIQ can handle
asymmetric routing easily in the case that multiple edge
switches are deployed.

Assuming l is the number of non-prefix bits in the address,
the number of clients that participate in MIMIQ x and the
number of client-facing switches y should satisfies xy ≤ 2l .
This constraint can easily be satisfied for IPv6 networks,
considering that IPv6 networks would have large amounts
of unused addresses. For instance, MIMIQ can support up
to 248 clients and 216 switches for a common /64 IPv6
network. While it is determined by the number of active
clients in the naive approach, the forwarding-table size in
the encoding approach is determined by the number of client-
facing switches, which could be orders of magnitude smaller.

Handling in-flight packets. Return packets in flight might
get dropped after migration or SID update. To alleviate this
issue, MIMIQ offers mechanisms at the network layer to
facilitate the delivery of in-flight packets. The allocation

server will keep the forwarding rules for an IP address in
the switches for an additional tremove seconds after the IP
has expired. Similarly, an alias name set remains valid for at
least k× tsid seconds, but will not be used for generating new
addresses during that period. See Figure 2(b) for an example.
The allocation server ensures that during any given k× tsid
seconds, all valid alias names are unique. If the client interface
can have multiple IP addresses at once, packets in flight could
still be delivered to the correct host and consumed. As future
work, we will develop a method to determine and optimize the
timing parameters (e.g., tremove and tsid) in our mechanisms to
reduce in-flight packet loss.

3.4 In-network IP generation and hopping
The central allocation server in MIMIQ could become a single
point of failure and we therefore look for a way to make
MIMIQ more robust. Note that QUIC is also robust to passive
migration, i.e., NAT rebinding. So alternatively, we can adopt
an AHP-like approach to encrypt source IP addresses on-
the-fly in the edge switch to trigger connection migration,
without using an allocation server. Return traffic handling
becomes easier: the edge switch just needs to decrypt the
return traffic correctly, and the existing routing infrastructure
in the trusted network can remain unmodified. However, with
the in-network approach, the edge switch must update QUIC
connection IDs during migration; otherwise, the first packet
with the new IP address would include an old connection ID
that links it directly to existing connections. Since connection
IDs are negotiated by the client and the server, the edge switch
would need to communicate with the client to get the available
connection IDs and also notify the client to request new
IDs if the available IDs are exhausted. Not only requiring
extensive modifications to the QUIC protocol, this may also
affect network performance. Our future work will consider
offloading some computations from the allocation server to
the edge switch while minimizing the modifications to QUIC.

4 Evaluation

We are still in the process of developing a full prototype. In
the evaluation we only demonstrate the feasibility of MIMIQ
and estimate the potential performance overhead.

4.1 MIMIQ prototype
To demonstrate feasibility, we implement a proof-of-concept
prototype of MIMIQ. 1 We instantiate the address allocation
server with an off-the-shelf DHCP server [16]. We set small
DHCP lease times, so that old IP address leases expire in
time for new requests. Note that one should replace DHCP
with customized protocols for better performance. For the

1https://github.com/liangw89/p4privacy

0 20 40

500.0

1,000.0

No. of migrations per 100 packets sent

T
hr

ou
gh

pu
t(

K
bp

s)

10 ms 20 ms 30 ms 40 ms 50 ms

Figure 3: Evaluation of client throughput under different migration
frequencies and propagation delays.

core QUIC components, we use the open-source QUIC toy
client and server implementations in the Chromium source
code [10]. We modify the QUIC client to act as a MIMIQ
agent: it sends DHCP requests to the DHCP server, and
triggers connection migration by changing its interface IP
using ifconfig. The QUIC client can be configured to hop
with different frequencies. Ideally, a dedicated MIMIQ agent
should run as a daemon and request IP addresses asyn-
chronously for graceful connection migration. Unfortunately,
connection migration is not fully supported in the toy client,
which causes the client to crash if IP hopping happens
before receiving the HTTP response from the server (we
can migrate in between successive request-response pairs,
though). As a workaround, we let the QUIC client control the
IP hopping timing. 2

Mininet emulation. We use Mininet [21] to emulate two test
networks: a single-client setting with only one QUIC client
running and a multi-client setting with four QUIC clients
running on different hosts. Each network also has a DHCP
server and a QUIC server. In each network, all hosts are
connected to a central switch that simply forwards traffic
between the hosts. The link capacity is set to 1 Gbps to
eliminate any bottleneck in bandwidth.

Feasibility. Each client establishes a QUIC connection with
the server and sends multiple GET requests. The server
responds with the HTML file of www.example.com. In
between requests, clients contact the DHCP server to acquire
new IP addresses. In both settings, the client(s) can migrate
at different frequencies without any issues.

4.2 Performance evaluation
We measure the performance overhead of connection migra-
tion in a single-client setting. In our experiment, the client
sends 1,000 requests over the same connection to the server to
download the index.html file of www.example.com (totaling
about 2.7 MB of data), and hops between two fixed IP
addresses after a set number of requests, without contact-

2In our tests there are no packets in flight or packet loss. We will
investigate the performance impact of packet loss on MIMIQ in the future.

ing the DHCP server. 3 We repeat the experiment with
different migration frequencies and round-trip propagation
delays (10 ms, 20 ms, 30 ms, 40 ms, and 50 ms), and record the
total time taken to complete all requests. To be consistent with
previous traffic-analysis studies [24, 32, 33], which usually
examine a certain number of packets in a flow, we convert
requests to the corresponding number of packets (each client
request takes two packets). We define migration frequency
as the number of migrations per 100 packets, and consider
migration frequencies from 0 (i.e., no migration) to 50 (i.e.,
every two packets). Note that we perform migration at fixed
packet intervals only because it makes it easier to understand
the impact of migration on performance; such a predicable
migration strategy should not be used in practice.

As expected, more frequent connection migration leads to
lower throughput, as shown in Figure 3. The performance
penalty becomes less severe as propagation delay increases.
For a round-trip time of 50 ms, the throughput drops by only
10% when the migration frequency is four (i.e., migrating
per 25 packets). The average latency introduced by each
migration also increases as migration frequency increases,
ranging from 7 ms to 64 ms, and from 43 ms to 99 ms
for round-trip times of 10 ms and 50 ms, respectively. One
possible reason for this lies in congestion control. According
to the QUIC specification [17], endpoints should reset their
congestion control state after a connection migration since the
new path may have different congestion properties. Though
this affects performance, resetting the congestion state is
useful for hiding migration events from the adversary, i.e.,
the traffic after a migration would look similar to that of a
new connection.

A client who prefers privacy over performance may be
willing to tolerate higher overhead, but can migrate more
strategically to balance the performance/privacy trade-off.
See §5 for more discussions.

5 Discussion and Future Work

IP hopping strategy and privacy. The involvement of the
client makes MIMIQ more flexible than AHP. Given an IP
address set, each client can specify its own policy to freely
determine when to hop and which IP address to use. For
instance, instead of migration at fixed packet intervals, a client
can migrate at random packet intervals or time intervals to
make it more difficult to predict migration. One may also
migrate more strategically. For instance, if a censor uses
the attacks proposed in [33] to detect the application-layer
protocols based on encrypted payloads and only looks at the
first 30 packets in a flow, the client only needs to migrate

3We want to focus on the performance impact of connection migration,
but the unmodified DHCP server is a performance bottleneck. The client
needs to block ongoing communication and wait for DHCP responses, which
adds additional delay that cannot be attributed to migration itself.

once after 30 packets have been exchanged. The censor may
block the client’s IP if the detected application is blacklisted
(e.g., Tor), but by that time the client has already switched to
a new IP address and can continue the connection normally.
This strategy effectively defeats the censor’s attacks with low
performance overhead.

Most traffic-analysis attacks (e.g., website fingerprinting
attacks and flow correlation attacks) tend to use information
extracted from as many packets in a flow as possible to
increases attack accuracy [14, 22, 24, 32, 33]. Using MIMIQ
to split a connection into smaller flows can reduce the amount
information the adversary learns from a single flow, and
make traffic-analysis attacks less efficient. We evaluated
the efficiency of MIMIQ against state-of-the-art website
fingerprinting attacks [27], and found migrating per 25 to
100 packets can reduce attack accuracy to less than 10% in
the closed-world setting, which is more efficient than the
advanced defenses [12].

Overall, clients should adopt IP hopping strategies based
on their own preferences for performance and privacy, and the
attacks they want to defeat. Further work is required, however,
to inspect the efficiency and performance/privacy trade-off of
using MIMIQ to mitigate various traffic-analysis attacks.

Deployment hurdles facing MIMIQ and incentives. To
run MIMIQ, no public servers need to be modified, as long as
they support QUIC. Since QUIC is rapidly gaining in popular-
ity and will likely be one of the main transport protocols in the
future, we believe most servers will soon support QUIC [2,28].
One key element of MIMIQ is that it is aligned with different
incentives. The wider Internet has no real incentive to boost
the privacy of its users. MIMIQ does not require any changes
or effort from these uninterested parties. Instead, the only
parties requiring modifications are ASes that have an interest
in boosting their privacy by participating in MIMIQ. ISPs may
also want to participate because of financial incentives, e.g.,
an ISP can deploy MIMIQ as a privacy-enhancing service to
attract more customers.

6 Conclusion

MIMIQ hides users’ identities from downstream ASes and
protects against traffic-analysis attacks. Leveraging QUIC’s
connection migration feature and routing mobility, MIMIQ
enables users to change their IP addresses frequently, without
changing location or disrupting ongoing transfers. In contrast
to prior anonymity solutions, MIMIQ has a low barrier to
deployment, as it requires no cooperation from any ASes
other than a single trusted network. We demonstrate that
MIMIQ is feasible and discuss how MIMIQ can defeat
certain traffic-analysis attacks with low performance overhead.
As future work, we will implement a prototype that can
scale to large networks, conduct a security analysis, and
systematically evaluate the effectiveness against various
traffic-analysis attacks.

References

[1] L. Basyoni, A. Erbad, M. Alsabah, N. Fetais, and
M. Guizani. Empirical performance evaluation of
QUIC protocol for Tor anonymity network. In
International Wireless Communications & Mobile
Computing Conference (IWCMC), pages 635–642.
IEEE, 2019.

[2] M. Bishop. Hypertext transfer protocol version 3
(HTTP/3). https://tools.ietf.org/html/draft-ietf-quic-
http-29, 2020.

[3] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and
A. Perrig. Hornet: High-speed onion routing at
the network layer. In ACM SIGSAC Conference on
Computer and Communications Security, pages 1441–
1454, 2015.

[4] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis,
and C. Troncoso. Taranet: Traffic-analysis resistant
anonymity at the network layer. In IEEE European
Symposium on Security and Privacy, pages 137–152.
IEEE, 2018.

[5] C. Chen and A. Perrig. PHI: Path-Hidden Lightweight
Anonymity Protocol at Network Layer. In Privacy
Enhancing Technologies, pages 100–117, 2017.

[6] T. Datta, N. Feamster, J. Rexford, and L. Wang. SPINE:
Surveillance protection in the network elements. In
USENIX Workshop on Free and Open Communications
on the Internet, 2019.

[7] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In USENIX Security,
2004.

[8] D. A. Gerken. System and method for selectively
acquiring and targeting online advertising based on user
IP address, May 20 2008. US Patent 7,376,714.

[9] D. Goodin. Using IPv6 with Linux? You’ve
likely been visited by Shodan and other
scanners. https://arstechnica.com/information-
technology/2016/02/using-ipv6-with-linux-youve-
likely-been-visited-by-shodan-and-other-scanners/,
2016.

[10] Google. Chromium source code. https://chromium.
googlesource.com/chromium/src, 2020.

[11] B. Greschbach, T. Pulls, L. M. Roberts, P. Winter, and
N. Feamster. The effect of DNS on Tor’s anonymity. In
Network and Distributed Systems Security Symposium,
2017.

[12] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and
P. Thiran. Protecting against website fingerprinting
with multihoming. In Privacy Enhancing Technologies,
volume 2, pages 89–110, 2020.

[13] D. Herrmann, C. Banse, and H. Federrath. Behavior-
based tracking: Exploiting characteristic patterns in
DNS traffic. Computers & Security, 39:17–33, 2013.

[14] A. Hintz. Fingerprinting websites using traffic analysis.
In International Workshop on Privacy Enhancing
Technologies, pages 171–178. Springer, 2002.

[15] H.-C. Hsiao, T. H.-J. Kim, A. Perrig, A. Yamada, S. C.
Nelson, M. Gruteser, and W. Meng. LAP: Lightweight
anonymity and privacy. In IEEE Symposium on Security
and Privacy, pages 506–520. IEEE, 2012.

[16] Internet Systems Consortium. ISC DHCP. https://www.
isc.org/dhcp/, 2020.

[17] J. Iyengar and M. Thomson. QUIC: A UDP-based
multiplexed and secure transport. Internet Draft draft-
ietf-quic-transport-29, https://www.ietf.org/id/draft-ietf-
quic-transport-29.html, 2020.

[18] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al.
The QUIC transport protocol: Design and internet-scale
deployment. In ACM SIGCOMM, pages 183–196, 2017.

[19] M. Meeker. Internet trends report, 2019. https://www.
bondcap.com/report/itr19/#view/168.

[20] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap
using switching ASICs. In ACM SIGCOMM, pages
15–28, 2017.

[21] Mininet. An instant virtual network on your laptop.
http://mininet.org/, 2020.

[22] M. Nasr, A. Bahramali, and A. Houmansadr. Deepcorr.
ACM SIGSAC Conference on Computer and Communi-
cations Security, Jan 2018.

[23] A. O’Driscoll. Does your VPN keep logs? 123 VPN
logging policies revealed. https://www.comparitech.
com/vpn/vpn-logging-policies/, 2019.

[24] A. Panchenko, L. Niessen, A. Zinnen, and T. En-
gel. Website fingerprinting in onion routing based
anonymization networks. In ACM Workshop on Privacy
in the Electronic Society, pages 103–114, 2011.

[25] V. C. Perta, M. V. Barbera, G. Tyson, H. Haddadi, and
A. Mei. A glance through the VPN looking glass: IPv6
leakage and DNS hijacking in commercial VPN clients.
In Privacy Enhancing Technologies Symposium, volume
2015, pages 77–91. De Gruyter Open, 2015.

 https://tools.ietf.org/html/draft-ietf-quic-http-29
 https://tools.ietf.org/html/draft-ietf-quic-http-29
https://arstechnica.com/information-technology/2016/02/using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other-scanners/
https://arstechnica.com/information-technology/2016/02/using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other-scanners/
https://arstechnica.com/information-technology/2016/02/using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other-scanners/
https://chromium.googlesource.com/chromium/src
https://chromium.googlesource.com/chromium/src
https://www.isc.org/dhcp/
https://www.isc.org/dhcp/
https://www.ietf.org/id/draft-ietf-quic-transport-29.html
https://www.ietf.org/id/draft-ietf-quic-transport-29.html
https://www.bondcap.com/report/itr19/#view/168
https://www.bondcap.com/report/itr19/#view/168
http://mininet.org/
https://www.comparitech.com/vpn/vpn-logging-policies/
https://www.comparitech.com/vpn/vpn-logging-policies/

[26] B. Raghavan, T. Kohno, A. C. Snoeren, and D. Wetherall.
Enlisting ISPs to improve online privacy: IP address
mixing by default. In I. Goldberg and M. J. Atallah,
editors, Privacy Enhancing Technologies Symposium,
pages 143–163, 2009.

[27] M. S. Rahman, P. Sirinam, N. Mathews, K. G.
Gangadhara, and M. Wright. Tik-tok: The utility of
packet timing in website fingerprinting attacks. In
Privacy Enhancing Technologies Symposium, 2020.

[28] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld. A first look
at QUIC in the wild. In R. Beverly, G. Smaragdakis, and
A. Feldmann, editors, Passive and Active Measurement,
pages 255–268. Springer International Publishing, 2018.

[29] J. Rüth, I. Poese, C. Dietzel, and O. Hohlfeld. QUIC
research, 2020. https://quic.netray.io/.

[30] J. Sankey and M. Wright. Dovetail: Stronger anonymity
in next-generation internet routing. In Privacy

Enhancing Technologies Symposium, pages 283–303.
Springer, 2014.

[31] D. Schinazi. MASQUE obfuscation. https://tools.ietf.
org/html/draft-schinazi-masque-obfuscation-02, March
2020.

[32] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford,
M. Chiang, and P. Mittal. RAPTOR: Routing attacks on
privacy in Tor. In USENIX Security Symposium, pages
271–286, 2015.

[33] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and
T. Shrimpton. Seeing through network-protocol
obfuscation. In ACM SIGSAC Conference on Computer
and Communications Security, pages 57–69, 2015.

[34] F. Zhao, Y. Hori, and K. Sakurai. Analysis of privacy
disclosure in DNS query. In International Conference
on Multimedia and Ubiquitous Engineering, pages 952–
957. IEEE, 2007.

https://quic.netray.io/
https://tools.ietf.org/html/draft-schinazi-masque-obfuscation-02
https://tools.ietf.org/html/draft-schinazi-masque-obfuscation-02

	Introduction
	Background
	MIMIQ Design
	Seamless connection migration via QUIC
	Assigning IP addresses to multiple clients
	Forwarding return traffic to the clients
	In-network IP generation and hopping

	Evaluation
	MIMIQ prototype
	Performance evaluation

	Discussion and Future Work
	Conclusion

