
Message In A Bottle: Sailing Past Censorship

Luca Invernizzi
UC Santa Barbara

California, USA
invernizzi@cs.ucsb.edu

Christopher Kruegel
UC Santa Barbara

California, USA
chris@cs.ucsb.edu

Giovanni Vigna
UC Santa Barbara

California, USA
vigna@cs.ucsb.edu

ABSTRACT
Exploiting recent advances in monitoring technology and the drop
of its costs, authoritarian and oppressive regimes are tightening
the grip around the virtual lives of their citizens. Meanwhile,
the dissidents, oppressed by these regimes, are organizing online,
cloaking their activity with anti-censorship systems that typically
consist of a network of anonymizing proxies. The censors have
become well aware of this, and they are systematically finding
and blocking all the entry points to these networks. So far, they
have been quite successful. We believe that, to achieve resilience
to blocking, anti-censorship systems must abandon the idea of
having a limited number of entry points. Instead, they should
establish first contact in an online location arbitrarily chosen
by each of their users. To explore this idea, we have developed
Message In A Bottle, a protocol where any blog post becomes a
potential “drop point” for hidden messages. We have developed
and released a proof-of-concept application of our system, and
demonstrated its feasibility. To block this system, censors are
left with a needle-in-a-haystack problem: Unable to identify what
bears hidden messages, they must block everything, effectively
disconnecting their own network from a large part of the Internet.
This, hopefully, is a cost too high to bear.

Keywords
Censorship Resistance, Deniable Communications, Steganography

1. INTRODUCTION
The revolutionary wave of protests and demonstrations known

as the Arab Spring rose in December 2010 to shake the foundations
of a number of countries (e.g., Tunisia, Libya, and Egypt), and
showed the Internet’s immense power to catalyze social awareness
through the free exchange of ideas. This power is so threatening
to repressive regimes that censorship has become a central point in
their agendas: Regimes have been investing in advanced censoring
technologies [45], and even resorted to a complete isolation from
the global network in critical moments [14]. For example, Pakistan
recently blocked Wikipedia, YouTube, Flickr, and Facebook [2],
and Syria blocked citizen-journalism media sites [53].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’13 Dec. 9-13, 2013, New Orleans, Louisiana USA
Copyright 2013 ACM 978-1-4503-2015-3/13/12 ...$15.00.

To sneak by the censorship, the dissident populations have re-
sorted to technology. A report from Harvard’s Center for Internet
& Society [46] shows that the most popular censorship-avoidance
vectors are web proxies, VPNs, and Tor [17]. These systems share
a common characteristic: They have a limited amount of entry
points. Blocking these entry points, and evading the block, has
become an arms race: Since 2009, China is enumerating and
banning the vast majority of Tor’s bridges [59]. In 2012, Iran
took a more radical approach and started blocking encrypted
traffic [56], a move that Tor countered the same day by deploying
a new kind of traffic camouflaging [55].

In this paper, we take a step back and explore whether it is
possible to design a system with so many available entry points
that it is impervious to blocking, without disconnecting from the
global network.

Let’s generalize the problem at hand with the help of Alice,
a dissident who lives in the oppressed country of Tyria. Alice
wants to establish, for the first time, a confidential communication
with Bob, who lives outside the country. To use any censorship-
resistant protocol, Alice must know something about Bob, and
how to bootstrap the protocol. In the case of anonymizing proxies
or onion-routing/mix networks (e.g., Tor), Alice needs the address
of at least one of the entry points into the network, and Bob’s
address. Also, to achieve confidentiality, Alice needs Bob’s public
key, or something equivalent to that. In protocols that employ
steganography to hide messages in files uploaded to media-hosting
sites (such as Collage [12]) or in network traffic (such as Telex [64]),
Alice must know the location of the first rendezvous point, and
Bob’s public key1.

The fact that Alice needs to know this information inevitably
means that the censor can learn it too (as he might pose as
Alice). Bob cannot avoid this, without having some way to
distinguish Alice from the censor (but this becomes a chicken-
and-egg problem: How did Bob come to know that, since he
never had any confidential communication with Alice before?).
We believe that this initial something that Alice must know is a
fundamental weakness of existing censorship-resistant protocols,
which forms a crack in their resilience to blocking. For example,
this is the root cause of the issues that Tor is facing when trying
to distribute bridge addresses to its users, without exposing these
addresses to the censor [54]. It is because of this crack that China
has been blocking the majority of Tor traffic since 2009 [59]: The
number of entry points is finite, and a determined attacker can

1To be precise, in Telex, Alice does not need to know the precise
location of the proxy running the Telex protocol. However, she
needs to be aware that a Telex proxy will occur somewhere in the
path to the decoy destination. Here, we consider this destination
to be the rendezvous point she must know.

enumerate them by pretending to be Alice.
With Message In A Bottle (miab), we propose a protocol in

which Alice needs to know the least possible about Bob, and how
to bootstrap the protocol. In fact, we will show that it is enough
for Alice to know Bob’s public key, and nothing else. Alice must
know at least Bob’s public key to authenticate him, so that she
can be sure she is not talking to a disguised censor. However,
contrary to systems like Collage and Telex, there is no prearranged
rendezvous point where Alice and Bob must meet.

This may now sound like a needle-in-a-haystack problem: If
neither Alice nor Bob know how to contact the other one, how
can they ever meet? To make this possible, and reasonably fast,
miab exploits one of the mechanisms that search engines employ
to generate real-time results from blog posts and news articles:
blog pings. Using these pings as a broadcast system, Bob gets
covertly notified that a new message from Alice is available, and
where to fetch it from. We will show that, just like a search
engine, Bob can monitor the majority of the blogs published on
the entire Internet with limited resources, and in quasi real-time.
In some sense, every blog becomes a potential meeting point
for Alice and Bob. However, there are over 165 million blogs
online [8], and since a blog can be opened trivially by anybody,
for our practical purposes they constitute an infinite resource.
As a result of one of our experiments (see Section 5.6), we will
show that, to blacklist all the potential miab’s drop points in a
three-months period, the Censor should block at least 40 million
fully qualified domain names, and four million IP addresses (as
we will show, these are conservative estimates). For comparison,
blacklisting a single IP address would block Collage’s support for
Flickr (the only one implemented), and supporting additional
media-hosting sites requires manual intervention for each one.

In miab, Alice will prepare a message for Bob and encrypt it
with his public key. This ciphertext will be steganographically
embedded in some digital photos. Then, Alice will prepare a blog
post about a topic that fits those photos, and publish it, along
with the photos, on a blog of her choosing. Meanwhile, Bob will
be monitoring the stream of posts as they get published. He will
recognize Alice’s post (effectively, the bottle that contains the
proverbial message), and recover the message.

To achieve these properties, the miab protocol imposes sub-
stantial overhead. We do not strive for miab’s performance to
be acceptable for low latency (interactive) communication over
the network (such as web surfing). Instead, we want our users
to communicate past the Censor by sending small delay-tolerant
messages (e.g., emails, articles, tweets). Also, miab can be em-
ployed to exchange the necessary information to bootstrap more
demanding censorship-resistant protocols. These might be more
efficient than miab, at the cost of requiring more data upon
bootstrap (such as Collage, or Telex). We will showcase a few
applications of miab in Section 4.

Our main contributions are:
• A new primitive for censorship-resistant protocols that

requires Alice to have minimal initial knowledge about Bob,
and how to bootstrap the protocol;

• A study of the feasibility of this approach;
• An open-source implementation of a proof-of-concept ap-

plication of miab that lets user tweet anonymously and
deniably on Twitter.

2. THREAT MODEL
The adversary we are facing, Tyria’s Censor, is a country-wide

authority that monitors and interacts with online communications.
His intent is to discover and suppress the spreading of dissident

ideas.
Determining the current and potential capabilities of modern

censors of this kind (e.g., Iran and China) is a difficult task, as the
inner workings of the censoring infrastructure are often kept secret.
However, we can create a reasonable model for our adversary
by observing that, ultimately, the Censor will be constrained by
economic factors. Therefore, we postulate that the censorship we
are facing is influenced by these two factors:

• The censoring infrastructure will be constrained by its cost
and technological effort;

• Over-censoring will have a negative impact on the economy
of the country.

From these factors, we can now devise the capabilities of our
Censor. We choose to do so in a conservative fashion, preferring
to overstate the Censor’s powers than to understate them. We
make this choice also because we understand that censorship is an
arms race, in which the Censor is likely to become more powerful
as technology advances and becomes more pervasive.

We assume that it is in the Censor’s interest to let the general
population benefit from Internet access, because of the social
and economic advantages of connectivity. This is a fundamental
assumption for any censorship-avoidance system: If the country
runs an entirely separate network, there is no way out2.

2.1 The Censor’s Capabilities
As part of his infrastructure, the Censor might deploy multiple

monitoring stations anywhere within his jurisdiction. Through
these stations, he can capture, analyze, modify, disrupt, and store
indefinitely network traffic. In the rest of the world, he will only
be able to harness what is commercially available to him.

The Censor can analyze traffic aggregates to discover outliers
in traffic patterns, and profile encrypted traffic with statistical
attacks on the packets content or timing. Also, he might drill
down to observe the traffic of individual users.

The Censor might issue false TLS certificates with a Certificate
Authority under its control. With them, he might man-in-the-
middle connections with at least one endpoint within his country.

The Censor will have knowledge of any publicly available
censorship-avoidance technology, including miab. In particular,
he might join the system as a user, or run a miab instance to lure
dissidents into communicating with him. Also, he might inject
additional traffic into an existing miab instance to try to confuse
or overwhelm it.

Because the Censor bears some cost from over-blocking, he
will favor blacklisting over whitelisting, banning traffic only when
it deems it suspicious. When possible, the Censor will prefer
traffic disruption over modification, as the cost of deep-packet
inspection and modification is higher than just blocking the
stream. For example, if the Censor suspects that the dissidents are
communicating through messages hidden in videos on YouTube,
he is more likely to block access to the site rather than re–encoding
every downloaded video, as this would impose a high toll on his
computational capabilities. Also, we assume that if the Censor
chooses to alter uncensored suspicious traffic, he will do so in a
manner that the user would not easily notice.

3. DESIGN
In its essence, miab is a system devised to allow Alice, who

lives in a country ruled by an oppressive regime, to communicate
confidentially with Bob, who resides outside the country. Alice

2We are strictly speaking about traditional ways to leak messages
to the Internet through network communication.

does not need to know any information, but Bob’s public key.
In particular, we aim to satisfy these properties for miab:
• Confidentiality: The Censor should not be able to read

the messages exchanged between Alice and Bob.
• Availability: The Censor should not be able to block miab

without incurring unacceptable costs (by indiscriminately
blocking large portions of the Internet).

• Deniability: When confidentiality holds, the Censor should
not be able to distinguish whether Alice is using the system,
or behaving normally.

• Unobtrusive deployment: Deploying a miab instance
should be easy and cheap, so that small organizations or
private citizens with some disposable income (e.g., Bob)
can do it.

We will give a detailed analysis about to which extent we
achieved these properties in Section 6.

The only requirement that Alice must satisfy to use this protocol
is to be able to make a blog post. She can create this post on
any blog hosted (or self-hosted) outside the Censor’s jurisdiction.

3.1 Components
Before explaining the details of the miab protocol, we must

introduce the notion of blog pings, a concept that will play a
crucial role in our system. A blog ping is a message sent from a
blog to a centralized network service (a ping server) to notify the
server of new or updated content. Blog pings were introduced
in October 2001 by Dave Winer, the author of the popular
ping server weblogs.com, and are now a well-established reality.
Over the last ten years, the rising popularity of pings pushed
for the development of a wealth of protocols that compete for
performance and scalability (e.g., FriendFeed’s SUP [31], Google’s
PubSubHubbub [33], and rssCloud [50]).

Search engines use blog pings to efficiently index new content in
real time. Since search engines drive a good part of the traffic on
the Internet, blog writers adopt pings to increase their exposure
and for Search Engine Optimization. Consequently, the vast
majority of blogging platforms support pings, and have them
enabled by default (e.g., Wordpress, Blogger, Tumblr, Drupal).

3.2 The miab Protocol
Our scene opens with Alice, who lives in a country controlled

by the Censor. Alice wants to communicate with Bob, who is
residing outside the country, without the Censor ever knowing
that this communication took place. To do so, Alice sends a
message with the miab protocol, following these steps (also shown
in Figure 1):

1. Alice authors a blog post of arbitrary content. The content
should be selected to be as innocuous as possible.

2. Alice snaps one or more photos to include in the post.
3. Alice uses the miab client software to embed software to

embed a message M into the photos. The message is
hidden using public-key steganography [60] (PKS), with
Bob’s public key. We will discuss the available choices for
the steganographic algorithm in Section 3.4.

4. Alice publishes the blog post, containing the processed
photos. Alice can choose the blog arbitrarily, provided it
supports blog pings. In Section 5.5, we will show that most
of the popular blog engines provide blog pings.

5. The blog emits a ping to some ping servers.
6. Meanwhile, Bob is monitoring some of the ping servers,

looking for steganographic content encrypted with his public
key. Within minutes, he discovers Alice’s post, and decrypts
the message.

Figure 1: Alice sends a message to Bob, using the miab protocol
in its basic form.

7. Bob reads the message, and acts upon its content (more on
this later).

This concludes the miab protocol in its basic form; we will expand
it further in Section 4.

3.3 Distributing The Software Bundle
To use miab, Alice needs a copy of the software, and Bob’s

public key. The key should rarely change, so it can be distributed
with the software. This bundle can be downloaded in clear-
text before the Censor becomes too controlling. Otherwise, it
can be distributed via USB drives, or spam. Also, it could be
published in multiple locations online, encoded in a variety of
formats (e.g., DeCSS code diffusion [1]), so that the Censor cannot
easily fingerprint and block them all. In this case, Alice should
collect several of these bundles and compare them, to mitigate
the possibility that she is using bundles that were disseminated
by the Censor. However, this possibility cannot be ruled out with
certainty. We expect that the Censor will also have a copy of the
software.

Alice’s need for the initial bundle is certainly a shortcoming
of miab. However, distributing the software and establishing a
root of trust is a fundamental problem, with no easy solution,
that affects every related work (e.g., Collage, Tor – see Section 7).
Moreover, miab represents a step toward solving this fundamental
problem, as its bundle need updates only in exceptional cases (e.g.,
Bob’s key has expired), and therefore can be used to bootstrap
other protocols, distributing the rendezvous points. We note that
also Telex has this property, but it needs the collaboration of
ISPs to be deployed, whereas miab does not.

3.4 Choosing The Steganographic Scheme
The choice of an appropriate steganographic scheme is critical

to achieve our confidentiality and deniability goals. Ideally, we
would like to have a perfectly secure stegosystem, which is a
system where the stego object (i.e., the object with an embedded
hidden message) exactly matches the probability distribution of
the cover source (i.e., the object before the embedding). Solutions
to this problem exist [51,63], but they require an exact knowledge
of the probability distribution of the cover source. Unfortunately,
this knowledge is hard to obtain, if not impossible [9], from
real digital media, such as photos. To overcome this setback,
these solutions opt to artificially generate the cover object. More
pragmatic approaches, instead, focus on hiding messages in real
digital media by minimizing perturbations, in the hope that the
image noise will make these alterations appear inconspicuous.

The positive dependence between the fraction of changes in the
cover and their detectability is formalized under the “square root
law of steganography” [27]. Fortunately, miab needs to embed
a very limited payload, consisting only of a few hundred bytes,
which are embedded in cover photos whose size is in the hundreds
of Kbytes.

To minimize our detectability, then, we need to minimize the
alterations made during the embedding, and to curtail our changes
in difficult-to-model areas of the digital media. Among the current
state-of-the-art proposals in this field, we selected, and used in our
experiments, an adaptive LSB-matching steganographic approach
that chooses the location of the pixels to alter with the help
of Syndrome-Trellis Codes (STCs) [25]. LSB-matching, also
called ± embedding, consists in randomly adding ±1 to the
least significant bit of pixels to match the hidden message. LSB-
matching has been shown to be near optimal when only a single
pixel can be utilized [23]. Pure LSB-matching schemes have
been broken [32,47], exploiting an invalid underlying assumption
of LSB-matching, which considers natural image noise to be
independent among pixels. Using STCs, LSB-matching can be
augmented by choosing the pixels in which to embed the message
wisely, minimizing detectable alterations. In particular, we chose
a near-optimal algorithm [26] that minimizes distortions. This
algorithm first associates a cost to each possible pixel alteration,
and then it finds the least costly series of modification needed
to embed the message. Both its space and time complexity are
linear with respect to the size of the cover source.

LSB-matching with STCs is also the approach chosen by
HUGO [48], which is a stegosystem that is optimized to embed
large messages. Although miab does not benefit from HUGO’s
efficient embedding, as its messages are short, this stegosystem
can give us a reference point about the state of the art in the
steganalysis of a system close to ours. This is because HUGO
has been targeted by steganalysis experts from all over the world,
in the first international challenge on steganalysis called “Break
Our Steganographic System” (BOSS [6]). During BOSS, each
participating team competed in accurately classifying a set of
photos from different cameras, where some photos carried a
secret payload of approximately 0.4 bit per pixel (to put this into
perspective, miab’s embedding rate is less than 0.001 bpp). The
winning team, Hugobreakers [30], achieved about 80% accuracy,
with a false positive rate between 10% and 20%, depending on the
digital camera that took the photos. Unfortunately, we cannot
test these detectors against our implementation, because they are
not publicly released. However, for our stegosystem, we consider
it safe to expect a rate of false positives at least over 10-20%. This
is because the messages that we embed are much shorter and the
square root law of steganography applies. If we consider also that,
as we will show in the next section, tens of thousands of photos
are published in blog posts around the world every minute, we
expect that, if our adversary tries to detect stego images in the
blog posts stream, she will be overwhelmed by the sheer number
of false positives.

Finally, we would like to note that the miab protocol is decou-
pled from the particular scheme in use, and swapping schemes
is quite easy. Because of this, a miab implementation can sup-
port multiple PKS schemes, much like the SSL/TLS protocol
does with cipher suites. In this scenario, Alice can pick the
PKS scheme she feels safe to use, and encode her choice into
a pre-determined place in the blog post (e.g., the fist letter of
the title will decide the scheme). Other schemes that we have
been considering are Gibbs constructions [24], and Greenstadt’s
work on an image-steganography scheme that can withstand

re-encoding [34].

4. ACHIEVING TWO-WAY MESSAGING
The miab protocol can be used to achieve two-way communi-

cation in two ways: either by bootstrapping a more demanding
censorship protocol (that requires more than just Bob’s public
key to be initiated), or with a channel-hopping protocol that
establishes rendezvous points in Internet locations chosen at will
by the users.

4.1 Bootstrapping Another Protocol
We can use miab to bootstrap Collage [12], which is a protocol

that uses user-generated content (e.g., photos, tweets) as drop
sites for hidden messages. Differently from the miab approach, in
Collage, the drop sites must be decided upon in advance: These
rendezvous points are the secret that Alice and Bob share. To
put and retrieve the messages from these rendezvous points, the
users of Collage have to perform a series of tasks. For example, if
the drop site is a photo posted on Flickr [28] under the keyword
“flowers,” the sender task will be the series of HTTP requests
required to post a photo with that keyword, and the receiver task
will be composed of requests designed to retrieve the latest photos
with that tag.

To bootstrap a Collage installation, the database of tasks that
Collage employs must be distributed offline. This database needs
to be constantly updated as the Censor reacts and the drop
sites change (both in location and structure). It is, therefore,
crucial that this bootstrap database is up-to-date: Otherwise, the
agreement on the drop points between sender and receiver will
be lost, breaking the communication channel. Once Collage has
been bootstrapped, further updates can be received through the
Collage network. To receive these updates, however, the Collage
client must be connected to the Internet. When the connectivity
is sporadic, the client’s database might become obsolete, and a
new bootstrap round will be necessary.

We believe that miab is a good fit for bootstrapping Collage,
because the only information that Alice must know in order
to request a current copy of the task database is Bob’s public
key. miab could also be used to communicate with a censorship-
resistant micro-blogging service, like #h00t [4], or a privacy-
preserving one, like Hummingbird [16].

4.2 Covert Messaging
Another option to achieve two-way messaging is to extend the

miab protocol to let Bob reply to Alice. To do so, Alice will need
to inform Bob about the next rendezvous point, and about the
steganographic scheme Bob should use in his reply.

If Bob is a human (i.e., he is not running an automated service),
Alice will run the same algorithm presented in Section 3.2, with a
small modification in Step 3. In particular,

• Alice will choose the next rendezvous point R1 (e.g., site_

a.com in Figure 2). As rendezvous point, Alice will choose
the URL of a web page where Bob can post additional
content: for example, a forum, a media-sharing service, or
an online newspaper that lets its users comment the news.
If possible, Alice should indicate a website that she routinely
visits, so that the Censor will not be alarmed when she
visits that URL. This website should be located outside
Tyria, so that the Censor cannot see if Bob is visiting the
site (the censor would need to know Bob’s IP address, but
miab does not prevent this from happening).

• Alice will decide which steganographic scheme S1 Bob
should use to hide his answer. Note that now Alice is

Figure 2: Covert messaging with miab.

not restricted to PKS schemes: She can also indicate a
shared-key scheme, along with a secret password to initialize
the scheme.

• If Alice intends to send additional messages to Bob, she
should also specify an additional rendezvous point, R2

(site_b.com in the Figure), and steganographic scheme S2.
Alice will then append this information to the message M , which
she will then embed in the photos. Following the usual protocol,
Bob will then recover Alice’s message, and obtain R1, R2, S1,
and S2. Bob will then prepare his reply to Alice, and post it
(Point 8 in Figure 2), encoded with S1, on the rendezvous point
R1.

Alice will periodically check R1, looking for Bob’s reply (Point
9 in the same Figure – we will empirically show in Section 5
that this wait is less than ten minutes). Alice could check R1

manually or, if the rendevouz point supports it, by email or RSS
feed. When she finds Bob’s message, she will decode it with S1,
completing the two-way messaging cycle.

If Alice requires any further communication with Bob, she will
post her reply, encoded with S2, on the rendezvous point R2,
which Bob will periodically check. Following the guidelines for
the previous message from Alice, this reply will also contain R3

and S3, if Alice expects an answer from Bob (and, optionally, R4

and S4, if she plans to send additional messages).
If Bob is running an automated service, Alice will also need to

instruct the service on how to reply. To do so, much like a Collage
task, she will add toM the sequence of actions that the automated
service must follow to post a reply (e.g., perform a POST request
to http://site_a.com, with payload comment=ANSWER). Alice
has the option to provide the cover channel for the automated
service’s reply (i.e., she could write a comment relevant to R1, or
an image, and embed it in M). Otherwise, the automated service
will embed the reply into a spam message, which will then post.
Spam messages can be generated (e.g., see [41]), or real spam
messages can be collected from a set of email accounts.

Note that, for the sake of simplicity, in describing this covert
messaging protocol we assumed that Alice choses the rendezvous
points and encryption schemes manually. However, this can be
automated, so that Alice can use the protocol without hassle. In
particular

• miab’s client software can detect the available stegano-
graphic schemes on Alice’s computer, and pick one at

random whenever required
• Alice, with the help of a browser extension, can collect po-

tential rendezvous points while surfing the web in her usual
routine. The extension would observe when Alice makes
POST requests containing files or long strings, without being
authenticated to the website she is interacting with (e.g.,
over clear-text HTTP, or without a Cookie HTTP header)
, and record them as possible rendezvous points. Essentially,
the extension would observe Alice’s browsing, looking for
commenting systems and media-sharing web services.
Once one of these rendezvous point is used in the covert
messaging, the browser extension can collect the answer
automatically, after waiting for the appropriate time for
Bob to answer (see Section 5 for details).

5. IMPLEMENTATION
To demonstrate the feasibility of miab, we have implemented a

proof-of-concept application that can be used to post anonymous
messages on Twitter, circumventing the block on social networks
imposed by Tyria’s Censor.

To provide a more open evaluation, we have published the
code online. The application can be downloaded at http://www.

message-in-a-bottle.us, together with our public key.
We have set up a small cluster of machines that monitors one

of the most popular blog ping servers (webblogs.com), looking
for miab messages (our cluster plays Bob’s part in the algorithm).
When a message is found, its content is posted on Twitter under
the handle @corked_bottle.

Also, the code can be used with a new public/private key-pair
to verify how messages are recovered.

5.1 Blog-Fetching Cluster
We use four servers with Intel Xeon 2.40GHz processors, 4

Gigabytes of RAM, and high-speed Internet connection. The need
for a cluster of machines comes from the additional overhead of
our detailed data collection for this experiment. Without it, miab
can be run on a single machine. We have successfully done so, and
the code published online refers to this second, high performance,
version.

5.2 Ping Server
We use webblogs.com. This server is the oldest ping server of

the web, and receives million of pings every day. For example,
blogs hosted on Google’s blogger.com ping this server by default,
unless the blog owner disables this. The server does not allow
real-time monitoring of pings, but releases a tarball with the latest
pings every five minutes.

5.3 Steganography
For our experiments, we have implemented the stegosystem

described in Section 3.4. To embed a message, first we encrypt
it with RSA using Bob’s public key, then we apply our tool. As
we mentioned in Section 3.4, we can estimate our resilience to
steganography by looking at how effectively the HUGO stegosys-
tem was attacked during the BOSS competition. For the reader’s
convenience, a summary of the results is given in Figure 3. Since
miab’s embedding rate is at least two orders of magnitude smaller
than the one used during BOSS, and that the square root law of
steganography applies, we expect a dramatic decrease of detection
rates, and increase of false positive rates. In particular, a direct
application of this law indicates that we should expect single
digit detection ratios. Unfortunately, we cannot verify this, as
the detection systems used during BOSS have not been release

Figure 3: BOSS false positives, false negatives and accuracy, for
the winning team and all teams combined (by simulating collusion
among teams)

publicly. Even if we consider the detection rates of Figure 3,
the number of false positives detected is likely to overwhelm the
Censor, considering the vast prevalence of clean photos in the
blogs’ stream. Also, Alice can throw the Censor off track by
publishing a few clean images for each stego photo published.

Since our stegosystem does not use a key, the Censor will be
able to extract the hidden encrypted message, if there is any.
If there is none, the Censor will just extract gibberish. If it is
possible to tell the difference between the two kinds of extracted
data, the Censor will break our stegosystem. Since our messages
are encrypted with RSA, they will have high entropy, which is
a feature that can be easily quantified to be used for machine-
learning classification. However, our stegosystem is designed to
select the pixels in which to embed the message preferring noisy,
hard to modify areas of natural photos, which are also highly
entropic. To check if it is likely that the Censor will be able to
use the extracted data to tell apart clean images from the ones
with stego content, we have trained a few classifiers that aim to
do so.

First, we have prepared two datasets. In the first dataset, we
have applied (the decoder part of) our stegosystem to extract
gibberish from 5,000 clean photos downloaded from Flickr [28].
To reach a broad number of photographers, we selected the
photos using Flickr popular tags. In the second dataset, we
have encrypted with RSA 5,000 random 450-bytes messages (this
length is an upper bound for what miab needs). From these
datasets, we extracted features that quantify the entropy of the
strings. In particular, we have calculated the Hamming’s entropy,
the Chi-Square test’s p value, the arithmetic mean of the byte, the
Monte Carlo approximation for π, and the correlation coefficient
between consecutive bytes.

Using these features, we trained and tested, with a 10-fold cross
validation, K-Nearest Neighbor classifiers (with 1 ≤ k ≤ 50), a
Naive Bayes classifier, two neural networks (with one and two
hidden layers), and a Support Vector Machine classifier. Also,
we trained a vote meta-classifier, combining these results. The
precision and recall of the best in precision for each class of
classifiers is shown in Table 1. We attribute the poor performance
of the classifiers to the combination of the shortness of the messages
and the natural and digital noise in the photos, that is empirically
entropic enough to be hardly distinguishable from RSA-encrypted
messages.

5.3.1 Public-key Cryptography
We ship a self-signed X.509 certificate, containing the RSA

public key, with a 2048 bits modulus.

Classifier Precision Recall
RSA Flickr RSA Flickr

K-NN (k = 14) 52.05% 51.37% 41.76% 61.52%
Naive Bayes 50.11% 50.98% 90.48% 9.90%
ANN (2 hidden layers) 50.14% 50.09% 40.36% 59.86%
SVM 48.15% 48.77% 58.52% 38.52%
Vote 82.56% 17.08% 49.89% 49.48%

Table 1: Best classifiers for each class.

Figure 4: Blogs pings received over a period of three months

0 12 24

15

30

60

B
lo

g
 p

o
st

s
(t

h
o
u
sa

n
d
s)

Hour of the day

45

Figure 5: Blog ping received during day one (5 minutes slices)

5.4 Evaluation
miab relies on Bob’s ability to fetch and process all the blog

posts created on the Internet in real time. To prove that this
is feasible, we have done so with our cluster, as well as our
single-machine version of miab.

Over the period of three months (72 days), we have seen
814,667,299 blog posts, as shown in Figure 4. The average
number of posts seen per day is 11,314,823, and the highest
traffic we have experienced is 13,083,878 posts in a day.

During the course of a day, we have found that the rate of blog
posts is quite stable, with an average of 44,146 posts every five
minutes, and a low standard deviation of 3,963 (see Figure 5 for
an example). We observed that approximately half of the blog
posts contain photos. The distribution of the number of photos
per post is shown in Figure 6.

5.4.1 Performance
The ping server we chose releases every five minutes the pings

that it received during that period. To keep up with the ping rate,
we process all the blog posts of one chunk of pings before the
next one is released. Therefore, the maximum latency between

0 10 20

0.5

1.5

B
lo

g
 p

o
st

s
(m

il
li
o
n
s)

Photos per post

2

5 15

1

Figure 6: Number of photos per blog during day one

the publishing of a post with miab content and our tweeting is
ten minutes (five minutes in the ping server’s queue, and another
five before we process the post).

An advantage of the stego algorithm we have chosen is that
it is much faster in extracting potential hidden messages than
embedding them. On average, it takes 0.56 seconds per image to
embed a message, and 0.02 seconds to recover it. In particular,
performing exclusively our steganographic extraction on a 5-
minute pings chunk takes, on average, 2m:51s on a Intel-i7 eight-
core laptop. Performing exclusively the RSA decryption takes
2m:35s. Fetching all the images from the blogs takes an average
of 4m:17s. Since the steganographic test is CPU bound, and
the blogs fetching is I/O bound, the two operations can execute
simultaneously with an acceptable loss in performance: processing
a five-minutes chunk of pings with the full miab, with either
scheme, completes under five minutes on average, with a processor
load under 90%. This is close to the requirements of Tor exit
nodes, which several individuals are running, and it is well in
reach for companies countering censorships, like Twitter.

Depending on the running time and memory requirements of
the PKS scheme Alice and Bob have chosen, a single machine may
not be able to cope with the workload. To solve this issue, Bob
can opt to scale horizontally, adding more machines. Otherwise,
Alice and Bob may agree beforehand that Bob will only fetch and
analyze blog posts whose URL has some particular properties. For
example, they might agree that blog posts with stego messages
will have a URL whose length is even (or odd). In this example,
this agreement would reduce the workload approximately by
a factor of two, and Alice can make sure that Bob will keep
examining her posts by choosing the blog post title accordingly,
since the title is usually part of the URL. Of course, the Censor
will also be aware of this, so this device will reduce the workload
equally for both the Censor and Bob.

The maximum length of the embedded message depends on
the channel and the PKS scheme in use.

In our scheme, we enforce a size limit of 450 bytes, since as the
covert message becomes larger, the chance that the image might
be flagged as suspicious by the Censor also increases.

5.4.2 Scale
miab should cope well with a high volume of hidden messages.

A single machine can accommodate 15-20 million posts per day.
To put this in perspective, if the entire population of Iran would
start blogging daily, Bob would need five more machines. Also,
a large number of useless posts made by miab users should not
affect search engine results, because search engines already deal
with a high volume of spam pings [38].

5.5 Choosing The Right Blog
To send a message through miab, Alice has to publish a

post on a blog that supports pings. Alice might already have

posting privileges on such a blog: In this case, she can just use it.
Otherwise, Alice needs to open one, or be added as an author to
an existing one. It is therefore interesting to see how difficult it is
for Alice to open a blog supporting pings.

In Table 2, we show the four most popular blogging platforms
for the Alexa’s top million websites in February 2012. These
platforms account for more than 85% of all blogs, and they all
support pings.

In Table 3, we show the platform that the 100 most popular
blog chose to use in 2009. Of these, at least 75 support pings.

If the blog Alice has chosen does not support blog pings, Alice
can perform the ping manually, as most ping servers offer this
feature (e.g., http://blogsearch.google.com/ping).

Platform Number of sites (%) Ping support

WordPress 63.49 yes
Joomla! 11.17 yes
Drupal 8.57 yes
Blogger 3.14 yes

Table 2: Blogging platform popularity: Alexa’s top million (source:
builtwith.com [11])

Platform Number of sites Ping support

WordPress 32 yes
TypePad 16 yes
Moveable Type 20 yes
BlogSmith 14 n/a, proprietary
custom made 8 n/a
Drupal 4 yes
Blogger 3 yes
Expression Engine 1 n/a, proprietary
Scoop 1 no
Bricolage 1 no, CMS

Table 3: Blogging platforms: 100 most popular blogs (source:
pingdom.com [49])

5.6 Estimating The Blocking Set
The Censor might attempt to block all blogs by blacklisting

their domain names, or IP addresses. It is essential to miab’s
availability that the blocking set (that is, the set of domains or IP
addresses to block) is large, as this makes the maintenance of a
blacklist impractical (this will be further discussed in Section 6.1).
To estimate the size of the blocking set, we generated three
blacklists from three months of recorded pings.

It can be seen that these blacklists target Fully Qualified
Domain Names (e.g., myblog.blogspot.com., see Figure 7b),
second-level domains (e.g., blogspot.com., see Figure 7a), and
IP addresses3 (see Figure 7c).

5.7 Bypassing The Blacklist
These blacklists are cumbersome in size. For example, accord-

ing to Netcraft, during the time of our experiment, there were
662,959,946 FQDNs running web servers on the Internet [43]. In
our experiment, we would have blacklisted 33,361,754 FQDNs,
which is 5% of the ones found by Netcraft. Blocking second
level domains is also not practical. In our experiment, we black-
listed 1,803,345 of them, which account for 1.4% of the global
domain registrations (which are 140,035,323, according to Do-
mainTools [18]). Note that our blacklists only cover blogs that sent
pings during our experiment. The total numbers will be higher,

3Note that some blogs advertise only their IP address in their
pings: this is why Figure 7c shows a faster trend than Figure 7a.

(a) Blacklist size, when targeting second-level domains

(b) Blacklist size, when targeting fully qualified domain names

(c) Blacklist size, when targeting IP addresses.

Figure 7: Estimating the blacklist size.

Figure 8: Bypassing the blacklist.

as the trend shown in Figures 7b, 7a, and 7c suggests. To better
quantify this, we checked the (hypothetical) blacklists’ coverage
on the pings that were emitted the day after we stopped updating
the blacklists. We found that the blacklist targeting FQNDs had
12% miss ratio, the one targeting second level domains had 11%
miss ratio, and the one targeting IP addresses had 11% miss ratio.

Even if the Censor chooses to pay the price of over-blocking
and enforces these blacklists, Bob and Alice can still communicate
through miab, thanks to a weakness in this blacklisting approach.

Bloggers usually associate multiple domain names/IP addresses
to their blog: on blogger.com, this is configurable in the “Basic
Settings” admin page. These domain names constitute the entry
points to the blog. Blog pings contain only one of these entry
points. Bob only needs one of these entry points to visit the blog.
Instead, the Censor needs each one of the entry points, because
he wants to prevent Alice from accessing her blog. So, Alice can
side-step the blacklist using an entry point not included in her
blog’s pings, which the Censor cannot easily discover.

For example, in Figure 8, Alice can edit her blog at blog.

alice.com, a domain name that never sends pings and, therefore,
is not in the blacklist. Her blog emits pings from the secondary
address alice.blogspot.com. Bob will receive the ping, and
visit the latter address to obtain the miab messages. In turn, the
Censor also sees the ping, and will blacklist the secondary address
in Alice’s country. Alice will be still able to modify her blog
through blog.alice.com, sneaking by the blacklist, and Bob
will be able to visit alice.blogspot.com, because the Censor’s
block does not affect him.

6. SECURITY ANALYSIS
In this section, we discuss miab’s resilience against the attacks

that the Censor might mount to break the security properties
that miab guarantees: availability, deniability, and confidentiality.

Since we lack a formal verification of the security of the stegano-
graphic primitives, and the powers of a real Censor are unknown,
these goals are necessarily best effort.

6.1 Availability
The Censor might prevent Alice from sending messages through

miab. Our main argument against this is that the Censor will be
forced to ban a large part of the web, and he is likely unwilling to
do so because of the pushback from its population and economic
drawbacks. We will now describe in more detail the attacks that
the Censor might devise to limit availability. For this discussion,
we assume that deniability holds: In particular, the Censor cannot
detect content generated with miab.

The Censor could block blogging platforms. In fact, this has
already been attempted: Kazakhstan has been banning blogging
platforms and social networks since 2008 [37]. In 2011, a court
established they contributed to the spread of religious terror-
ism [29]. Despite the block, Kazakh bloggers have moved to
self-hosted or less popular blogging platforms, and continue to
grow in numbers [37]. There are over 165 million blogs on the
Internet [8], and a good part of them are self-hosted, making the
maintenance of a blacklist impractical (see Section 5.6). Even
if the Censor is able to fingerprint blogs and successfully block
each of them, there are other services that generate blog pings,
for example, commenting services (e.g., Disqus, which is installed
on 750,000 websites). Also, for her miab messaging, Alice might
open a blog in favor of the ruling party: The Censor will be
less likely to block that, because it shows that the population is
supporting the regime.

The Censor might also block any domain that emits a ping.

We discussed how to evade suck a blacklist in Section 5.7. Also,
this approach is vulnerable to a denial of service attack: Bob
could forge bogus pings claiming to be any arbitrary domain (blog
pings, just like emails, do not authenticate the sender), forcing
the Censor to add it to the blacklist. Iterating this attack, Bob
can de facto render the blacklist useless. To counter this, the
Censor will have to maintain a whitelist of allowed domains. This
is harmful to the regime, because of the social and economic costs
of over-blocking, and can be easily circumvented (as we discussed
in Section 5.6).

The Censor might want to block pings, or shut down ping
servers. This attack is irrelevant when the blog (or ping server) is
hosted outside the Censor’s jurisdiction.

The Censor might try to prevent Alice to post on any blog.
This requires both the ability to fingerprint a blog, and the
technological power to deeply inspect the network traffic to detect
and block posting. The cost of this attack increases as Alice
will most likely be using a TLS connection (i.e., https://) to
make the post, requiring the Censor to either man-in-the-middle
the connection or perform statistical timing attacks. Also, Alice
can create a post in a variety of ways, for example using client
applications or by email (as many blogging platforms support
that). The Censor therefore has to block all these vectors.

The Censor might try to coerce content hosts to drop miab
content. However, to do so, he needs to identify such content
(when deniability should prevent him from doing so). Also, the
Censor has to drop the content fast: Bob will fetch the blog after
just a few minutes, since blog pings are sent in real time.

The Censor might try to overwhelm miab by creating large
quantities of bogus messages. Bob should be able to provide a fair
service to its users by rate limiting blogs, and ban them when
they exhibit abusive behavior. Since Bob will first inspect the list
of pings, he will avoid fetching blogs that are over their quota or
blacklisted. Also, search engines will fetch the same blog pings
and will analyze and index their content. Since the Censor, to
create a large number of blog posts, will have to either generate
the content automatically or replay content, search engines should
detect his behavior and mark it as spam. Blog ping spam (or
sping) is already a problem that search engines are facing, since
pings are used in Search Engine Optimization campaigns. Because
of this, much research has been invested into detecting this type
of behavior. Bob could leverage that research by querying the
search engine for the reputation of blog or blog posts. Using
a combination of blacklists, rate limitation, and search engines
reputation systems, Bob is likely to thwart this attack.

The Censor might perform traffic analysis to distinguish regular
blog posts from miab ones. However, since the blog post is created
by a human, this is unlikely to be successful.

The Censor might re-encode images to remove any stegano-
graphic content. Since the censor cannot find all the entry points
to the blogs, he must re-encode every image crossing his country’s
borders (not only blogs). Moreover, miab can easily evolve and
hide the ciphertext in other parts of the post (e.g., in the text), or
use a steganographic system that can withstand re-encoding (see
also Section 3.4). For example, a technique to do so is used in the
shared-key steganographic scheme YASS [52], which can survive
a second compression, additive noise, and light filtering. The
steganographic primitive and channel (images, videos, or text)
can be chosen at will, and should be selected when deploying
miab, considering the particular Censor faced.

6.2 Deniability
The Censor might try to identify who is using miab, thus

compromising deniability.
The Censor might try to detect steganography. miab uses

steganography as a primitive, so its deniability relies on a good
steganographic algorithm, and will benefit from any advancement
in steganography. Also, the Censor will need to detect stegano-
graphic content with a very low fraction of false positives, because
of the vast prevalence of clean image in blog posts. For more
details, see in Section 3.4.

The Censor might try to detect anomalous blogging behavior.
Since Alice manually publishes the post, it will be difficult to
detect anomalous behavior in a single post (provided that the
message that Alice composes is innocuous). However, the Censor
might detect an anomaly if the posting frequency is higher than
the other blogs hosted on the same platform. Alice can mitigate
this risk by keeping under control her post rate. Also, Alice
can use a blogging platform that encourages frequent posts with
photos (e.g., a photoblog, like Instagram). Alice might also have
multiple online personas, each of which posts on a different blog.

The Censor might try to run an instance of miab to trick Alice
into communicating with him. This is a limitation common to any
system that relies on a public key to identify the receiving party.
This is mitigated by publishing Bob’s public key in a variety of
formats on the Internet, so that the Censor cannot find them and
block or alter them.

The Censor might try to perform a timing attack, correlating
the effect of the action specified in the miab message (in our
implementation, the posting of a new tweet) with the publishing of
a new post. We can mitigate this by letting the miab user specify
when he wants the aforementioned action to be taken, inserting
random delays and generating decoys (in our implementation,
tweeting a message that was not received).

The Censor might try to perform a replay attack. Let’s suppose
that the Censor suspects that Alice used miab to post a messageM
to Twitter. To confirm his suspects, the Censor would collect blog
posts from Alice, and publish the same posts on a blog platform
under his control. If the same message M is tweeted when the
posts are re-published, the Censor’s suspicion is probably correct.
The Censor can repeat the process to rule out any remaining
doubt. Replay attacks can be thwarted by including a hash of
the URL of the blog post in the message. After receiving the
message, Bob will check that the hashed URL in the message
matches with the one of the post, and will discard the message if
the check fails. Also, Bob could keep a hash of the photo in a
Bloom filter, to avoid reuse.

6.3 Confidentiality
To break confidentiality, the Censor must get access to the

plaintext of the message that Alice sent. The message is encrypted
with a public key, of which only Bob knows the private counterpart.
Assuming that the cryptographic primitive is secure, the Censor
will not be able to read the message. Also, the Censor might run
an instance of miab to trick Alice, as we discussed in the previous
section.

6.4 Unobtrusive Deployment
With our proof-of-concept application, we have demonstrated

that it is possible to run a miab instance on a single modern
machine with a fast domestic Internet connection. We recommend
a 100Mbps connection, such as the one provided by Comcast in
the US, also considering the fluctuations in the speed achievable
at rush hours. Therefore, any private citizen with some disposable
income, and living in a country with a modern offering for Internet
connectivity, can run a miab instance. Moreover, this burden

is sustained only by Bob; Alice has minimal requirements to
participate in the protocol.

7. RELATED WORK
There has been an extensive and ongoing discussion on anony-

mous and censorship-resistant communication. In this section,
we review the main directions of research, highlighting how they
measure against the goals that we have set for miab.

7.1 Anonymization Proxies
The most established way to achieve online anonymity is

through proxies, possibly with encrypted traffic [3,39]. In 2010, a
report from Harvard’s Center for Internet & Society [46] shows
that 7 of the 11 tools with at least 250,000 unique monthly users
are simple web proxies.

These systems focus on hiding the user identities from the
websites they are surfing to. They have a low latency, which
makes web surfing possible (which miab does not). In doing
so, they do not satisfy any of the goals of miab: They can be
blocked, since it is possible to discover the addresses of the proxies
and block them (low availability). Also, even if the traffic is
encrypted, the users cannot deny that they were using the system
(no deniability), and it is possible to mount fingerprinting and
timing attacks to peek into the users’ activity [10,35].

One of the first systems that address deniability is Infranet [20].
Uncensored websites deploying Infranet would discreetly offer
censored content upon receiving HTTP traffic with steganographic
content. Availability is still an issue, since the Censor might
discover and block these websites, so the collaboration of a large
number of uncensored websites becomes essential.

7.2 Mix/Onion Networks
Mix networks (e.g., Mixminion [15]), and Onion networks

(e.g., Tor [17]), focus on anonymity and unlinkability, offering a
network of machines through which users can establish a multi-
hop encrypted tunnel. They also typically have a low latency,
which makes web surfing possible (in contrast with miab). In
some cases, depending on the location of the proxies with respect
to the Censor, it is possible to link sender and receiver [7, 42].
These systems do not typically provide deniability, although Tor
tries to mask its traffic as an SSL connection [57]. The availability
of these systems depends on the difficulty to enumerate their
entry points, and their resistance to flooding [19]. Protecting
the entry nodes has proven to be an arms race: For example,
the original implementation of Tor provided a publicly-accessible
list of addresses. These entry points were blocked in China in
2009 [58]. In response, Tor has implemented bridges [54], which
is a variation on Feamster’s key-space hopping [21]. However,
these bridges have some limitations that can expose the address
of a bridge operator when he is visiting websites through Tor [40].
Also, distributing the bridges’ addresses without exposing them
to the Censor is theoretically impossible (since the Censor could
play Alice’s role, and Tor cannot distinguish one from the other).
However, it might be possible to increase the cost of discovering a
bridge so much that the Censor finds it impractical to enumerate
them. This problem remains very complex and, so far, none of
the approaches attempted has succeeded: Proof of this is the fact
that China has been blocking the vast majority of bridges since
2010, as the metrics published by Tor show [59].

An interesting variation on proxy-based censorship circumven-
tion is described in Fifield et al. [22]. Here, a group of Internet
users run an Adobe Flash application in their web browser. This
application creates a short-lived proxy (in their implementation,

the proxy is for the Tor network), so that these users can con-
tribute a part of their bandwidth to the network. These ephemeral
web proxies lower the barrier to set up a Tor proxy, and their
short lives make their enumeration more cumbersome. However,
a central part of this system is a special service, called the Facili-
tator, whose job is to keep track and distribute proxy addresses.
By sniffing the Facilitator’s traffic, the Censor can learn the
proxy addresses, as they get requested from the clients. The
authors point out that, once the system gets popular, keeping
a blacklist might be cumbersome, because of the sheer number
of available proxies. Also, as the author point out, the Censor
might flood proxy registrations, and exhaust the list of proxies
that the Facilitator keeps. This, also, might be mitigated by sheer
numbers, as the authors point out.

7.3 Anonymous Publishing
Here, the focus is on publishing and browsing content anony-

mously. Freenet [13] and Publius [62] explore the use of peer-to-
peer networks for anonymous publishing. These systems deliver
anonymity and unlinkability, but do not provide deniability or
availability, as the Censor can see where the user is connecting,
and block him.

Another direction that is being explored is to make it difficult
for the Censor to remove content without affecting legitimate
content (Tangler [61]). This system suffers similar pitfalls as
Freenet, although availability of the documents is improved by
the document entanglement.

7.4 Deniable Messaging
Systems for deniable messaging can be split into two categories:

The ones that require no trusted peer outside the country (e.g.,
CoverFS [5], Collage [12]), and the ones that do (e.g., Telex [64]).
CoverFS is a FUSE file system that facilitates deniable file sharing
amongst a group of people. The file system synchronization
happens though messages hidden in photos uploaded to a web
media service (Flickr, in their implementation). As mentioned
by the authors, while CoverFS focuses on practicality, the traffic
patterns could be detected by a powerful Censor. This would
affect its availability and deniability.

Collage, which we already described in Section 4.1, improves
CoverFS’ concept of using user-generated content hosted on
media services to establish covert channels. Collage has higher
availability, as the sites where the hidden messages are left change
over time, and it provides a protocol to synchronize these updates.
As the authors point out, Collage deniability and availability
are challenged when the Censor performs statistical and timing
attacks on traffic. Also, if the Censor records the traffic, he can
join Collage, download the files where the messages are embedded,
and find out from his logs who uploaded them. To join the
Collage network, a user needs to have an up-to-date version of
the tasks database, which contains the rendezvous points. Since
its distribution has to be timely, this is challenging (and can
be solved with miab). Also, without regular updates, the tasks
database can go stale, which requires a new bootstrap.

In Collage, the tasks defining the rendezvous points are gener-
ated manually. Although every media-sharing site can potentially
be used with Collage, generating all these tasks requires substan-
tial work. miab, instead, can use millions of domains out of the
box without human intervention, which makes monitoring more
difficult.

A Censor might also join Collage and disseminate large quan-
tities of bogus messages. Since the burden of finding the right
message is on Collage’s users, they would be forced into fetch-

ing many of the bogus messages, thus exposing themselves to
statistical attacks. This could be mitigated by rate-limiting the
message fetching, but this decision would result in unbounded
delays between the posting of the message and its retrieval, chal-
lenging the availability of the system. An effective solution for
this denial-of-service is to generate a separate task list for any
pair of people that need to communicate with each other. This
can be done using miab as a primitive to disseminate these
databases to the parties, so that they can bootstrap a Collage
session. Once the two parties are exchanging messages, they can
arbitrate the Collage channel they want to employ, depending on
the performance that their communication requires.

Telex is a system that should be deployed by Internet Service
Providers (ISPs) that sympathize with the dissidents. A user
using the Telex system opens a TLS connection to an unblocked
site (that does not participate in the protocol), steganographically
embedding a request in the TLS handshake. When the ISP
discovers the request, it diverts the SSL connection to a blocked
site. While Telex deniability is sound, it can be subject to a
denial of service by the Censor. Also, the Censor can discover
ISPs implement Telex by probing the paths to various points on
the Internet, and prevent the traffic originating from the country
from going through those ISPs. Overall, Telex comes close to
satisfying the goals that we set for miab. However, it requires
the ISP collaboration, which is hard to set up, as the authors
mention. miab, on the other hand, requires minimal resources
(a good Internet connection and a single machine should suffice,
when implemented efficiently), and hence, it can be setup today,
as we demonstrated by hosting our public implementation of this
system.

Finally, we would like to stress that the Censor we are facing
in miab is capable and willing to man-in-the-middle or block
HTTPS connections (e.g., like China [44], and Iran [56] are
doing). If this is not true, there is a simpler solution to our
problem: the usage of a third-party service. For example, Alice
could send a message though one of the many webmail services
hosted outside the censored country (e.g., Gmail) to an address
where an anti-censorship service run by Bob is listening. In fact,
this is one of the channels used to distribute Tor bridges (by
sending an email to bridges@torproject.org). This method
is highly available, because of the great number of free webmail
offerings. However, even if Alice and Bob have a deniable method
of embedding and retrieving messages from ordinarily-looking
emails, the webmail service will have an indisputable proof that
Alice and Bob exchanged something, and the Censor might, at
any point in the future, pressure the webmail service to release
that information to her (e.g., like China did by wire-tapping
Skype [36]). Instead, a steganographic message published in a
broadcast channel, like miab’s, will be out of reach from the
Censor, at least as long as Bob’s private key is kept safe.

8. CONCLUSIONS
We have introduced miab, a deniable protocol for censorship

resistance that works with minimal requirements. miab can be
used as a standalone communication system, or to bootstrap
protocols that achieve higher performance, at the cost of more
demanding requirements. We have demonstrated miab feasibility
with the implementation of a proof-of-concept prototype, and
released its code open-source. The deployment of a miab instance
requires minimal configuration and resources, since it relies on
well-established and popular technologies (blog pings and blogging
platforms). Also, we have shown that miab is resilient to attacks
to its availability, deniability and confidentiality. Although a

powerful Censor might be able to disrupt miab, in doing so he
will suffer a high cost, effectively cutting the population of his
jurisdiction out of a major part of the Internet.

9. ACKNOWLEDGEMENTS
This work was supported in part by the Office of Naval Re-

search (ONR) under grant N000140911042, the Army Research
Office (ARO) under grant W911NF0910553, the National Science
Foundation (NSF) under grants CNS-0845559 and CNS-0905537,
and Secure Business Austria.

10. REFERENCES
[1] Gallery of css descramblers.

http://www.cs.cmu.edu/~dst/DeCSS/Gallery/.
[2] Agence France-Presse. Pakistan blocks Facebook over

Mohammed cartoon.
http://www.google.com/hostednews/afp/article/
ALeqM5iqKZNUdJFQ6c8ctdkUW0C-vktIEA.

[3] Anonymizer. Home page.
http://plone.anonymizer.com/.

[4] Bachrach, D., Nunu, C., Wallach, D., and Wright,
M. #h00t: Censorship resistant microblogging.
arXiv:1109.6874 (2011).

[5] Baliga, A., Kilian, J., and Iftode, L. A web based
covert file system. In Proceedings of the 11th USENIX
workshop on Hot topics in operating systems (2007).

[6] Bas, P., Filler, T., and Pevnỳ, T. “break our
steganographic system”: The ins and outs of organizing boss.
In Information Hiding (2011), Springer, pp. 59–70.

[7] Bauer, K., McCoy, D., Grunwald, D., Kohno, T., and
Sicker, D. Low-resource routing attacks against tor. In
Proceedings of the 2007 ACM workshop on Privacy in
electronic society (2007), ACM, pp. 11–20.

[8] BlogPulse. Report on indexed blogs.
http://goo.gl/SEpDH, 2011.

[9] Böhme, R. Advanced statistical steganalysis.
Springer-Verlag, 2010.

[10] Brumley, D., and Boneh, D. Remote timing attacks are
practical. Computer Networks (2005).

[11] BuiltWith. Content management system distribution.
http://trends.builtwith.com/cms, 2012.

[12] Burnett, S., Feamster, N., and Vempala, S. Chipping
away at censorship firewalls with user-generated content. In
USENIX Security Symposium (2010).

[13] Clarke, I., Sandberg, O., Wiley, B., and Hong, T.
Freenet: A distributed anonymous information storage and
retrieval system. In Designing Privacy Enhancing
Technologies (2001), Springer, pp. 46–66.

[14] CNN. Egyptians brace for friday protests as internet,
messaging disrupted. http://articles.cnn.com/2011-
01-27/world/egypt.protests_1_egyptian-
authorities-muslim-brotherhood-opposition-leader.

[15] Danezis, G., Dingledine, R., and Mathewson, N.
Mixminion: Design of a type iii anonymous remailer
protocol. In Security and Privacy, 2003. Proceedings. 2003
Symposium on (2003), IEEE, pp. 2–15.

[16] De Cristofaro, E., Soriente, C., Tsudik, G., and
Williams, A. Hummingbird: Privacy at the time of twitter.
IEEE Symposium on Security and Privacy (2012).

[17] Dingledine, R., Mathewson, N., and Syverson, P. Tor:
The second-generation onion router. In Proceedings of the
13th conference on USENIX Security Symposium-Volume 13
(2004), USENIX Association, pp. 21–21.

[18] DomainTools. Internet statistic.
http://www.domaintools.com/internet-statistics/.

[19] Evans, N., Dingledine, R., and Grothoff, C. A
practical congestion attack on tor using long paths. In
Proceedings of the 18th conference on USENIX security
symposium (2009), USENIX Association, pp. 33–50.

[20] Feamster, N., Balazinska, M., Harfst, G.,
Balakrishnan, H., and Karger, D. Infranet:
Circumventing web censorship and surveillance. In
Proceedings of the 11th USENIX Security Symposium,
August (2002).

[21] Feamster, N., Balazinska, M., Wang, W.,
Balakrishnan, H., and Karger, D. Thwarting web
censorship with untrusted messenger discovery. In Privacy
Enhancing Technologies (2003), Springer, pp. 125–140.

[22] Fifield, D., Hardison, N., Stark, J., Porras, R.,
Boneh, D., and Tor, S. Evading censorship with
browser-based proxies. Proceedings of the 12th international
conference on Privacy Enhancing Technologies.

[23] Filler, T., and Fridrich, J. Fisher information
determines capacity of ε-secure steganography. In
Information Hiding (2009), Springer, pp. 31–47.

[24] Filler, T., and Fridrich, J. Gibbs Construction in
Steganography. IEEE Transactions on Information
Forensics and Security 5, 4 (Dec. 2010), 705–720.

[25] Filler, T., and Fridrich, J. Design of Adaptive
Steganographic Schemes for Digital Images. Proceedings of
SPIE, Electronic Imaging, Media Watermarking, Security,
and Forensics XIII (Feb. 2011).

[26] Filler, T., Judas, J., and Fridrich, J. Minimizing
embedding impact in steganography using trellis-coded
quantization. IEEE Transactions on Information Forensics
and Security (Feb. 2011).

[27] Filler, T., Ker, A. D., and Fridrich, J. The Square
Root Law of Steganographic Capacity for Markov Covers.
In Proceedings of SPIE, Electronic Imaging, Security and
Forensics of Multimedia Contents XI (2009).

[28] Flickr. Homepage. http://flickr.com.
[29] France-Presse, A. Kazakhstan blocks popular blogging

platforms, 2011.
[30] Fridrich, J., Kodovskỳ, J., Holub, V., and Goljan, M.

Breaking hugo–the process discovery. In Information Hiding
(2011), Springer, pp. 85–101.

[31] FriendFeed. Simple update protocol.
http://code.google.com/p/simpleupdateprotocol/.

[32] Goljan, M., Fridrich, J., and Holotyak, T. New blind
steganalysis and its implications. In Proceedings of SPIE,
Electronic Imaging, Security and Forensics of Multimedia
Contents (2006).

[33] Google. Pubsubhubhub.
http://code.google.com/p/pubsubhubbub/.

[34] Greenstadt, R. Zebrafish: A steganographic system.
Massachussets Institute of Technology (2002).

[35] Hintz, A. Fingerprinting websites using traffic analysis. In
Privacy Enhancing Technologies (2002).

[36] Human Rights Watch. Letter from human rights watch to
skype and skype’s response.
http://www.hrw.org/node/11259/section/19.

[37] Kelly, S., and Cook, S. Freedom on the net. Freedom
House (2011).

[38] Kolari, P. Pings, spings, splogs and the splogosphere: 2007
updates.

[39] Labs, B. The lucent personalized web assistant.
http://www.bell-labs.com/project/lpwa/, 1997.

[40] McLachlan, J., and Hopper, N. On the risks of serving
whenever you surf: vulnerabilities in tor’s blocking resistance
design. In Proceedings of the 8th ACM workshop on Privacy
in the electronic society (2009), ACM, pp. 31–40.

[41] Mimic, S. Homepage. https://spammimic.com.
[42] Murdoch, S., and Danezis, G. Low-cost traffic analysis of

tor. In Security and Privacy, 2005 IEEE Symposium on

(2005), IEEE, pp. 183–195.
[43] Netcraft. May 2012 web server survey.

http://news.netcraft.com/archives/2012/05/02/may-
2012-web-server-survey.html.

[44] Netresec. Forensics of chinese mitm on github.
http://www.netresec.com/?page=Blog&month=2013-

02&post=Forensics-of-Chinese-MITM-on-GitHub.
[45] Noman, H., and York, J. West censoring east: The use of

western technologies by middle east censors, 2010-2011.
[46] Palfrey, J., Roberts, H., York, J., Faris, R., and

Zuckerman, E. 2010 circumvention tool usage report.
[47] Pevny, T., Bas, P., and Fridrich, J. Steganalysis by

subtractive pixel adjacency matrix. information Forensics
and Security, IEEE Transactions on 5, 2 (2010), 215–224.

[48] Pevný, T., Filler, T., and Bas, P. Using
High-Dimensional Image Models to Perform Highly
Undetectable Steganography. 161–177.

[49] Pingdom. The blog platforms of choice among the top 100
blogs. http://royal.pingdom.com/2009/01/15/, 2009.

[50] rssCloud. Homepage. http://rsscloud.org.
[51] Ryabko, B. Y., and Ryabko, D. B. Asymptotically

optimal perfect steganographic systems. Problems of
Information Transmission 45, 2 (2009), 184–190.

[52] Sarkar, A., Solanki, K., and Manjunath, B. Further
study on yass: Steganography based on randomized
embedding to resist blind steganalysis. Proceedings SPIE,
Electronic Imaging, Security, Forensics, Steganography, and
Watermarking of Multimedia Contents (2008).

[53] TechCrunch. Syrian government blocks BambuserâĂŹs
live video of crisis. http:
//eu.techcrunch.com/2012/02/17/syrian-government-
blocks-bambusers-live-video-of-crisis/.

[54] Tor. Bridges.
https://www.torproject.org/docs/bridges.

[55] Tor. Help users in Iran reach the internet.
https://lists.torproject.org/pipermail/tor-
talk/2012-February/023070.html.

[56] Tor. Iran blocks encrypted traffic.
https://blog.torproject.org/blog/iran-partially-
blocks-encrypted-network-traffic.

[57] Tor. Iran blocks Tor; Tor releases same-day fix.
[58] Tor. Tor partially blocked in China.

https://blog.torproject.org/blog/tor-partially-
blocked-china.

[59] Tor. Tor users via bridges from china.
https://metrics.torproject.org/users.html?graph=
bridge-users&start=2010-01-01&end=2012-02-
20&country=cn&dpi=72#bridge-users.

[60] Von Ahn, L., and Hopper, N. Public-key steganography.
In Advances in Cryptology-EUROCRYPT 2004 (2004).

[61] Waldman, M., and Mazieres, D. Tangler: a
censorship-resistant publishing system based on document
entanglements. In ACM conference on Computer and
Communications Security (2001), ACM.

[62] Waldman, M., Rubin, A., and Cranor, L. Publius: A
robust, tamper-evident, censorship-resistant web publishing
system. In USENIX Security Symposium (2000).

[63] Wang, Y., and Moulin, P. Perfectly secure
steganography: Capacity, error exponents, and code
constructions. Information Theory, IEEE Transactions on
54, 6 (2008), 2706–2722.

[64] Wustrow, E., Wolchok, S., Goldberg, I., and
Halderman, J. A. Telex: Anticensorship in the network
infrastructure. In USENIX Security Symposium (2011).

