
Autosonda: Discovering Rules and Triggers of Censorship Devices

Jill Jermyn
Columbia University

Nicholas Weaver
International Computer Science Institute

University of California at Berkeley

Abstract

Using censorship to forbid access to certain content on
the internet is very common in the world today. Some
censorship mechanisms are well-studied, however there
remain a large number of techniques that remain un-
known. Furthermore, many censorship implementations
are dynamic as they attempt to prevent against new cir-
cumvention techniques. Current tools often tell us when
something is censored, but don’t do an automated anal-
ysis of the approach nor provide clues about the rule
sets used by censorship devices. This paper presents
Autosonda, a tool for discovering and studying decision
models of censorship devices. Through network traf-
fic alone, Autosonda fingerprints censorship devices by
discovering their models and mechanisms for how they
enforce rule sets. The strength of Autosonda is demon-
strated in a study that we present of 76 web filters cur-
rently in use in the New York City metropolitan area. In
our study we encounter a great variety of behavior and
implementation techniques for blocking prohibited web
content. Not only does Autosonda help us to find im-
plementation flaws and rule sets, it also allows us to find
circumvention paths for 100% of our test subjects. Being
able to perform this type of detailed analysis automati-
cally and at scale is a large contribution for understand-
ing censorship and how device behavior can be classified.

1 Introduction
Censorship devices control the type of content that can
be accessed, viewed, or published over a network. Cen-
sorship most typically refers to nation-state internet cen-
sorship, where countries or regions of countries set rules
of the censorship devices to prohibit types of content ac-
cessed by citizens within the boundaries of that country’s
networks. It can also be employed through means such
as web proxies, typically by using commercial filtering
software, or even enterprise data leak prevention. Al-
though the extent to which a network is censored differs
on a country or enterprise basis, most censors act based
on characteristics of the network traffic they examine.
These characteristics can be protocol-dependent, such as
packet header fields, or protocol-independent, such as
simply looking for a keyword in a packet’s content. Cen-
sors use these traffic characteristics to make decisions on
how they handle the traffic that they intend to censor, typ-

ically by blocking it, modifying its content, or injecting
packets into the network stream.

Internet censorship is extremely pervasive in the world
today. In 2015 more than 70% of countries employed
some type of censorship [11]. Although censorship is so
common, many people oppose it. According to an Inter-
net Society survey, 83% of people worldwide believe that
access to the internet is considered a basic human right
[12]. As a result, censorship evasion techniques have be-
come very popular among citizens in censored countries.
The Tor anonymity network [3] and encrypted VPN con-
nections are two examples of tools that have been com-
monly used for censorship evasion. In 2014 an estimated
400 million people were using VPNs to circumvent cen-
sorship or increase privacy [17]. Because such tools are
widespread, censorship device rule implementations are
frequently updated to adapt to and prevent these anti-
censorship mechanisms. Once censorship device rules
change, anticensorship tools must be updated to evade
the censors using new techniques. This creates very fre-
quent reactive behavior between censorship rule creators
and engineers of the anticensorship tools.

In order for developers to improve upon their anti-
censorship tools, they must understand something about
how the censorship device makes decisions and how its
rules are implemented. However, developers cannot di-
rectly access the device rule implementation; from their
point of view, the device is just a black box. However,
they can reverse engineer rules by specially crafting traf-
fic and probing the censor to examine its output. Such
approaches have been applied to specific censors, such
as the Great Firewall of China [21], however the large
majority of censorship techniques and how often they
change remain unknown. Existing methods to date for
discovering censorship techniques are mostly manual,
which are time consuming, not scalable, and are not fea-
sible in the long run, given the dynamic nature of censor
implementations. Censor devices could be activated on
a range of behavior, but finding the exact trigger is of-
ten too arduous a task to be done manually at scale. Yet,
such knowledge is necessary for properly analyzing cen-
sorship devices, comparing their models, and designing
evasion techniques. Although there currently exist tools
for discovering when something is censored, we do not
have tools to tell us how the censorship is done and the
details and implementation of the rule enforcement.

In this paper we present Autosonda, a tool used for
automated rule reverse engineering and fingerprinting
of censorship middleboxes. Our solution uncovers the
model and mechanism used by a censor for making de-
cisions on how to handle traffic, as well as identifies the
censor’s approach used to block content that is deemed
prohibited. To identify feature triggers, our tool runs a
series of protocol-aware probe tests at each layer and
then narrows down its search space to uncover how a par-
ticular censor rule is implemented. Our tests are based on
those used in previous manual analysis of censors to un-
derstand their decision making process. The goal of Au-
tosonda is to capture that knowledge into a tool that per-
forms the tests and analysis automatically and at scale.
It can be used not only to create implementation finger-
prints of censors, but to also track how the fingerprints
change over time and compare them with fingerprints of
other devices. The following sections will discuss the ar-
chitecture and implementation of our system and provide
results from our experiments on web filters.
2 Related Work
Discovery of censorship techniques has been the topic
of much recent research, yet there are still many tech-
niques that remain unknown. Tschantz et al. offer a
nice overview of known censorship mechanisms in [18].
Techniques used in Chinese censorship have received
particular attention, such as how China censors Web
accesses [8], Tor [20], Skype [14], the location of its
censoring modules [22], and even how it discovers and
blocks privacy tools [9]. Countries such as Bangladesh,
Bahrain, India, Iran, Malaysia, Russia, Saudi Arabia,
South Korea, Thailand, and Turkey have received some
preliminary analysis in [19]. In [4], Aase et al. extend
the analysis of censorship mechanisms by focusing on
finding motivation, resources, and time elements of cen-
sorship. From an ISP perspective, Clayton studied the
British Telecom CleanFeed blocking system in [7].

Although there has been significant work on discov-
ering censorship mechanisms, the bulk of the techniques
have been performed manually, which is the primary mo-
tivation for our work, and have been targeted to specific
types of censors. The authors of [13] propose an ap-
proach for fingerprinting censorship devices that serves
as a motivation for our work. However, the research was
limited only to the Great Firewall of China and the anal-
ysis was performed manually. We used the results of this
research to validate our results obtained from Autosonda
on the Great Firewall.

Some existing tools similar to Autosonda have been
developed for different purposes. ooniprobe [2] is an app
that measures internet censorship and performance. It
can be used to discover which websites are blocked by a
censor and if there is a system on the network that can
be responsible for censorship or surveillance. However,

Figure 1: Autosonda architecture

it doesn’t focus on finding the exact mechanism that is
used to censor a particular site, for example how Au-
tosonda narrows in on regular expressions used by cen-
sors. The uses of ooniprobe are different than those of
Autosonda, and these tools could be used together to do a
full analysis of where there exists censorship, which sites
are blocked, and how the filtering mechanisms work. Ne-
talyzr [15] runs a series of tests that probe a network for
both measurement and debugging in order to discover a
wide range of properties of users’ internet access.

3 Tool design and implementation
Figure 1 shows the architecture of Autosonda. It consists
of a client device located within a censored country or
behind a filtering agent and a set of custom servers run-
ning on Amazon EC2 [1] outside of the censored region.
The client and server execute a series of tests that craft
traffic for the purpose of bidirectional probing the cen-
sorship device to discover various attributes about its de-
cisions for traffic handling. The client and the server both
log events that are stored either locally or on a database
outside of the censored region. Once the tests are com-
pleted, we do postanalysis of the event logs to determine
the results by comparing the actual events with the ex-
pected events.

The goal of Autosonda is to create an implementation
fingerprint of a censorship device. This involves discov-
ery in three different categories: model, mechanism, and
technique. Model refers to discovery of network traffic
features that the censorship device keys in on. Some ex-
amples are IP destination address and the Host header
field of an HTTP GET request. Autosonda examines
features at each layer of the network stack to determine
which trigger a censor. Because there are an exponential
number of values to test, it is not feasible to discover the
entire censor model. However, it is also not necessary to
discover the entire model in order to create an implemen-
tation fingerprint of a censor. For example, a particular

rule set might include a rule such as “block traffic if byte
8 is 0.” It could potentially take an exponential number of
tries to find such a rule, yet knowledge of it doesn’t nec-
essarily impact a significant amount of client traffic. In-
stead, we aim to discover a subset of the censor’s model
according to which traffic features have been identified
in existing literature, such as [18], as the most impact-
ful. For each of these features, we take protocol layers
and semantics into account. For example, if we specu-
late that TCP port is a feature of interest, we could test
the censor by sending packets with different port num-
bers to see if and how its behavior changes. Another
important aspect of a censor’s model is its maintenance
of state. Autosonda runs a series of tests to determine if
the censor maintains state at all and, if so, at which net-
work layer. For each state that is maintained in a censor,
there is a point when that state expires. Autosonda runs
additional tests to determine the timeout period of a state.

For each feature that triggers a censor, there is a cer-
tain mechanism that is used to look for that feature in
the network traffic. There could be a particular regu-
lar expression implemented in one of the censor’s rules
that tries to match on a field in a packet header. Au-
tosonda tries to uncover the mechanisms used for various
features in a censor’s model by utilizing a fuzzing-like
approach. Fuzzing is a software testing technique that
provides different types of input to a program to test how
it responds. It typically uses unexpected or random data
as input, while Autosonda uses a more protocol-aware
approach for crafting its input data. For different pro-
tocols, Autosonda takes tokens in client messages and
applies fuzzing to the delimiters and values of each of
these tokens. An example of Autosonda’s fuzzing tech-
nique is shown in Figure 2. This example assumes that
the censor is keying in on the ‘GET’ keyword; perhaps it
wants to censor every HTTP GET request that it receives.
Once Autosonda knows that the ‘GET’ keyword is a fea-
ture of interest, it runs a series of tests to determine the
censor’s rule for that keyword. In the example, we start
with a typical ‘GET’ and then try to change the capital-
ization to ‘GeT’ and then the spacing between ‘GET’ and
the forward slash. Discovering the censor’s mechanism
is particularly important because of protocol ambiguity.
There are often nuances in syntax that are not perfectly
specified in protocol specification, leading to ambiguity.
Such ambiguities are difficult for middlebox developers
to handle when accepting and parsing input and often
lead to poorly implemented rules.

Finally, technique refers to the action taken by the cen-
sor to prohibit censored content. In the case of the Great
Firewall, this could be sending a TCP RST packet to the
client that requests forbidden content. It could also be
modification of a packet’s content or dropping of certain
packets once they reach the censor.

Figure 2: Example of a fuzzing approach to determine
the rule implemented to match GET

When creating our set of tests, we made several ini-
tial assumptions. The first is that there exists some form
of censorship on the network and that we have a given
string that triggers a censorship event, most typically a
censored URL. We get this information by testing URLs
that have a high probability of being censored and only
include networks that show signs of censorship. We fur-
ther assume root access on the control servers for our
experiments. However, Autosonda can run two sets of
tests on the client: one with root access and one without.
Therefore, even if it is not possible to have root on the
client device, there is still a substantial amount of censor-
ship device discovery that can be done. These tests could
be useful, for example, in a scenario where the client is
an unrooted smartphone.

Test Sets: Because we focus on web filtering and in-
ternet censorship, Autosonda primarily tests TCP, UDP,
HTTP and DNS protocols. However, functionality can
be extended by simply adding additional tests for other
protocols. As mentioned above, Autosonda starts with a
censored URL and discovers the censor’s model by exe-
cuting a series of tests to find features that are of interest
to the censor. When filtering occurs for a particular do-
main, the censor typically identifies that domain by URL
or IP address. Autosonda first tries to determine which,
or both, of these features the censor looks at. Other types
of filtering, such as with data leak protection, as well as
other types of censorship could also use keywords in data
content as triggers. Although we didn’t have the oppor-
tunity to test Autosonda on these types of filters, its ap-
proach could easily be extended to do so.

4 Experiments and Results
To demonstrate Autosonda’s utility and use it to discover
models of web filtering devices, we performed experi-
ments on 76 censored wifi networks over several months
in 2017 in the New York City metropolitan area. The wifi
networks were all open (not password protected) and lo-
cated in establishments such as banks, community insti-
tutions, clothing stores, grocery stores, home furnishing
stores, restaurants/fast food chains, and medical clinics,
to name a few. For the purpose of our experiments, we
labeled the networks as censored if we were not able to
retrieve content from the number one most popular Adult
category site in Alexa’s top 500 sites by category [5].
The experiments involved connecting a client mobile de-
vice to a wifi network that enforces censorship via web
filtering. The client then ran Autosonda to probe the web
filter with traffic and gather data about its filtering mech-

anism. There were three test servers, located on EC2
in the United States, that our clients corresponded with
over the series of tests. The client and server tests were
implemented in Java and Python, and we used Scapy to
specially craft network traffic. Autosonda’s tests are de-
signed to discover the model, mechanism, and technique
used by a censor only by examining network traffic from
both the client and server. There was no physical ac-
cess or remote direct control of any of these devices or
communication with network system administrators dur-
ing our experiments. We specifically defined the model,
mechanism, and technique of the web filters as follows.

The model of a web filter is characterized by the fea-
ture that triggers the censorship of a URL. For these ex-
periments we focused on two types of triggers: URL and
IP address. We discovered that all of the web filters we
tested censored by maintaining a blacklist of one of these
two characteristics. As discussed in Section 3, mecha-
nism refers to implementation details for how the web
filter performs its censorship. For our experiments, we
considered several characteristics for identifying mecha-
nism. First, we looked at how protocol-specific the im-
plementation of the censor is, for example the port and
protocols it censors. We then looked at how the censor
handles protocol ambiguities such as multiple Host head-
ers in an HTTP request and how it responds to HTTP
GET and DNS fuzzing. How the censor maintains state,
for which protocols, and for how long were also part of
our censor fingerprinting. Finally, we wanted to know if
the censor reassembles IP fragments and TCP segments.

The techniques of web filters are the means by which
the filters perform their censoring. The types of tech-
niques that we observed in the experiments were mod-
ification of HTTP responses and modification of DNS
responses. In addition to identifying the model, mech-
anism, and technique for our 76 censored networks, we
also observed the vendor of each web filter when possi-
ble (through identifying features of network traffic). We
also took note of the percentage of censors whose filter-
ing rules we were able to bypass, which for these exper-
iments was 100%. Overall we found that the approaches
taken by web filters are not robust and are easily break-
able with a slight change in protocol attributes or using a
different protocol to transmit data.

Table 1 shows the web filter vendors we encountered
for each category of device. We were often able to in-
fer the vendors by traffic that we received, such as in
response messages, but there were several filters that did
not give us clues about vendor information (labeled as
unknown). About half of the web filter vendors we ob-
served in the DNS filtering category were OpenDNS.
Norton ConnectSafe and Amazon were about 15% each.
20% of the devices in the Host header filtering category
were Fortinet and 30% were Cisco Meraki.

Device
category

Number
of
devices

Web filter vendor

DNS
filtering 21

OpenDNS, Skydns, Savvis,
Amazon, Fortinet,

Conversant, Norton
Connectsafe

Host
header
filtering

44

SonicWall, AT&T, Juniper,
Fortinet, Cisco Meraki,

ZScaler, Global Technology
Associates, BHI, 12 unknown

Host
header
lookup

11
OpenDNS, Cisco Scansafe,

Squid Proxy, Wayport, 1
unknown

Table 1: Web filter vendors encountered for each cate-
gory of device

4.1 Results
Model and Technique: We divided our 76 web fil-
ters by the primary traffic characteristic with which they
were triggered and their approach to triggering. Au-
tosonda was able to break down the filters into two main
categories and one subcategory: DNS filtering, Host
header filtering, and Host header lookup. 21 of the fil-
ters (27.63%) maintained a DNS blacklist and performed
all of their censorship via DNS (DNS filtering category).
Each of these filters monitored DNS requests and com-
pared the name against a blacklist. If a match was found
in the blacklist, the filter overwrote the DNS response
to direct the HTTP request to a static block page. The
block page is typically maintained by the vendor of the
web filter. This category of filters only censored requests
that contained the URL of a censored webpage. They
did not censor requests containing Host header values
of censored URLs when sent to the destination IP ad-
dress of our servers on EC2. 44 of the 76 web filters
(57.89%) censored based on the HTTP Host header of
a GET request (Host header filtering category). These
filters checked the GET Host header against a blacklist
of URLs to determine if the response should be blocked.
The remaining 11 filters (14.47%) could be classified as
a subcategory of the DNS blacklist category. They cen-
sored by ignoring the destination IP of an HTTP request
and instead doing a DNS lookup of the Host header value
in the HTTP request (Host header lookup category).
Once the filter received a DNS response, it searched for
the returned IP in a blacklist of IP addresses. If found, it
created a new response with source IP of the Host header
URL, wrote content describing that the page is blocked,
and sent this message to the client. Source IP addresses
of responses coming from censored URLs or our EC2
servers were left unmodified by filters in the Host header
filtering category. However, since requests were redi-
rected to static pages with the DNS filtering category,

responses received by our clients were from the source
IP address of the static pages for this category.

Mechanism: To discover implementation details of
our web filters, we ran the tests described above (Section
4). Our tests for understanding how protocol-specific the
filter’s implementation were involved crafting HTTP re-
quests with slight variations in HTTP attributes. Web
filters likely assume that all HTTP requests will be using
TCP on port 80. When we sent exactly the same HTTP
request using UDP, all of our filters allowed the request
and response without any censorship. Thus, the filters
were only examining TCP communications. Although
HTTP requests and responses are only expected to be on
port 80, it is still useful to know that the filters are only
looking at TCP traffic. However, when we sent requests
using TCP on port 9900, a port not typically used with
HTTP, our results differed quite a bit. Most filters did
not care that the requests were not on port 80; they cen-
sored them anyway. Others, 17 out of the 49 filters that
censored requests to our servers, only inspected requests
going to port 80 and allowed those going to 9900 with-
out censoring them. None of our filters expected query
keywords in the URI field of the HTTP GET request and
they all allowed responses from censored URLs if the re-
quest included a query in the URL string [16].

RFC 7230 [10] states that HTTP requests with multi-
ple Host headers should be rejected with a 400 response.
To see if filters properly implemented HTTP, we ran var-
ious tests in which the client device sent an HTTP re-
quest with multiple Host headers and changed the order-
ing of the hosts. These tests yielded interesting results.
For our 55 filters that examined Host header, 26 only
looked at the first Host header, 27 only looked at the last
Host header, and two looked at both. Such poor imple-
mentations can lead to severe security problems, clearly
demonstrated in our experiments with bypassing security
policies, and also with HTTP cache poisoning [6].

We saw a lot of variation among web filter vendors
for how they handle TCP segmentation and IP fragmen-
tation reassembly. Of our 44 filters that were not DNS
censored, eleven did not reassemble TCP segments and
seven different filters did not reassemble IP fragments.
Five filters had short timeout periods for fragments and
segments, just below two seconds, even though the time-
out period of HTTP request state was more than 8.5 sec-
onds for all of the filters. For practicality purposes, we
did not test state expiry for more than 8.5 seconds.

Since filters in the DNS filtering category censor right
at DNS lookups, the mechanism tests for HTTP are not
relevant to devices in this category. However, we did
perform some additional tests for these devices to un-
derstand more about how the filters are implemented.
The first test was a DNS fuzzing approach where we
made DNS lookups for a censored URL and changed

capitalization and domain extensions of the URL. Al-
though capitalization didn’t influence any of the filters,
changing of domain extension, for example from .com
to .org, did manage to return the correct IP address of a
URL that should have been filtered for three of the fil-
ters. As with any of these filtering approaches, the suc-
cess of the approach relies on the robustness of the black-
list, which is difficult and time-consuming to maintain.
Another important attribute that we wanted to discover
with the DNS filtering category is how it handles custom
DNS responses messages. For these tests we created our
own DNS server and forwarded requests for censored do-
mains to the server from our clients. Fourteen of the web
filters modified our DNS responses, while six did not.

The last group of Autosonda’s tests take a fuzzing
approach to HTTP GET requests in order to test the
strength of filters’ regular expression matching. Using
Scapy, we created request messages with slight modifi-
cations to see how the web filters responded for 76 tests.
The tables in Appendix A show a subset of the 76 tests
that we performed in this group, along with the number
of filters that were bypassed with each request. With just
simple modifications, many of the web filters allowed
censored content to bypass their policies. Among all the
filters we see a great deal of variation in behavior. These
results really demonstrate the utility of Autosonda, that
it is able to discern slight variations and find trends in
censor behavior by trying many tests that modify sub-
tle details of traffic. These results give us many clues
about how filters implement their regular expressions.
Note that actual retrieval of prohibited content depends
on the implementation of the server. A server can in-
tentionally be liberal in the formatting of HTTP requests
that it accepts or it can also unintentionally contain bugs
in its rules for parsing requests. Regardless, our goals
were to test the implementation of the filter rather than
the server, so our control servers returned an HTTP 200
response and content for any request it received.

The categories that allowed the most bypasses were
long hostname tests, Host word tests, \r\n tests, and after
Host tests. The results for long hostname tests give us
intuition that most filters do not search entire hostnames
for censored URL substrings, however the Host substring
tests yield mostly censored results. A likely explanation
is that filters are looking at the first or last part of the
hostname to search for a censored URL. When the URL
occurs in the middle of a long string, such as in the long
hostname tests, the filters usually do not find it.

Most filters hardcode the Host word in their regular
expressions, according to the results in Table 5. It also
seems that their regular expressions are rather particular,
since we see a majority of filters bypassed with strings
that change the spacing and characters in and around the
Host word. However, changes in capitalization seem to

be caught by most of the filters, which we can see when
we tried “HoSt”. Filters’ regular expressions just before
Host are also particular. We can see in Table 8 that nearly
all of the filters were bypassed by removing the \r\n and
spacing before Host. Filters are likely using these tokens
as delimiters to split sections of the GET request. Unsur-
prisingly, filters were easily bypassed in our after Host
tests, Table 10. In these request strings we placed the
censored URL in the X-id field and then modified tokens
just after Host. Clearly most of the filters look only at the
Host field for a censored URL and ignore everything af-
terward. Thus, with special implementation of a server,
a client could craft a request by putting a censored URL
after the Host field and bypass the policies of the filter.

Web filter vendors: A very interesting result that we
noticed is the diversity of behavior among web filters of
the same vendor. For example, we observed 13 Cisco
Meraki web filters and found that only two of them con-
sidered both Host fields when multiple Hosts were used
in a request, whereas the other 11 filters only looked at
the last Host. Similarly, two different Meraki filters used
a timeout period of less than two seconds for IP frag-
ments, where the other 11 filters had a timeout of over
8.5 seconds. Some logical explanations for behavior di-
versity are that some of the filters run more updated soft-
ware or perhaps there are differences in customer pref-
erences. Not only did we see subtle variations in imple-
mentation among the same vendors, but we also noticed
completely different approaches taken to filtering by the
same vendors. Fortinet filters, for example, accounted
for eight of our Host header filtering category devices.
These devices solely considered an HTTP request Host
header when making filtering decisions. Yet, we found
two filters also by Fortinet that performed only DNS fil-
tering and completely ignored the HTTP Host field.

Bypassing filtering mechanisms: Our experiments
enabled us to bypass 100% of the web filters we tested.
Although all of the approaches that we took for bypass-
ing were protocol-related, it is also worth mentioning
that since all of the web filters we studied were blacklist-
based and did not do content filtering, data could easily
be transferred through any URL/IP not on the blacklist.
Although Autosonda’s tests did not account for content
filtering, its fuzzing approach could be utilized to handle
these types of implementations.

Since all filters in our DNS filtering category worked
by modifying DNS responses, they were easily bypassed
by sending HTTP GET requests directly to an IP ad-
dress rather than performing a DNS lookup of a URL.
Similarly, HTTP requests made to our servers on EC2
with a censored Host header also successfully returned
responses without modification for the DNS filtering cat-
egory. As mentioned above, sending HTTP requests over
UDP bypassed filters 100% of the time, as did adding

query keywords to the URI field of requests and using
multiple Host headers. Our HTTP request fuzzing ap-
proach also easily bypassed filters for the Host header
filtering category. For 76 different tests, we saw that in-
dividual filters failed to censor up to 65 of those tests for
SonicWall, 60 for Cisco Meraki, 52 for ZScaler, 52 for
Juniper, 38 for AT&T, and up to 51 for unknown vendors.

The web filters on which we ran our experiments were
likely programmed to block access to specific categories
of websites, which is why they keep blacklists of URLs
or IP addresses to block. A blacklist approach is diffi-
cult to maintain, since websites are constantly changing
and content can be moved around to different sites, eas-
ily allowing one to bypass the filter. To even attempt
to keep blacklists up-to-date, they need to be frequently
pushed updates. During our experiments we ran some
additional tests to see how robust the blacklists were for
our test filters. To do this, we downloaded the Alexa top
100 Adult category sites on the web and tried to connect
to them through each filter that blocked the number one
most popular site. Not one of the filters we tested blocked
access to all 100 of the sites, and some blocked as low as
31 sites. Also interesting to see was that different filters
of the same vendor blocked different subsets of sites.

Limitations: Using Autosonda over time to finger-
print sophisticated censorship devices could potentially
lead to a few complications if a censor actively tries to
evade a censorship discovery tool. A censor could block
traffic to or from the EC2 servers or try to fingerprint Au-
tosonda by looking for specific types of tests performed
in sequence. However, Autosonda could be extended to
periodically modify the IP addresses of its servers or to
randomize its testing.

5 Conclusion
Discovering censorship decision models is useful to
find evasion techniques and strengthen implementations.
However, it is difficult to perform the analysis in depth
and at scale. We introduce Autosonda, a tool used for
automated rule reverse engineering and fingerprinting of
censorship middleboxes. Autosonda is used to uncover
the model, mechanism, and technique when access to the
device is only available through network traffic probing.
Through a series of tests across multiple protocols, Au-
tosonda characterizes devices according to their decision
models, techniques for enforcing censorship, and discov-
ers clues about the regular expressions used by these de-
vices for rule enforcement. The value and effectiveness
of our tool is demonstrated by using it in a study of 76
web filters, where we discover a variety of implemen-
tation and decision-making techniques. Autosonda en-
abled us to find methods for bypassing 100% of the fil-
ters we studied and categorize common implementation
flaws and rule sets for popular device vendors.

6 Acknowledgements

This work was supported by NSF CNS-1518918, CNS-
1237265, and CNS-1514509.

References
[1] https://aws.amazon.com/ec2/.

[2] ooniprobe - Measure Internet Censorship & Perfor-
mance. https://ooni.torproject.org/post/

ooni-mobile-app/.

[3] The Tor Project. https://www.torproject.org/.

[4] AASE, N., CRANDALL, J. R., DIAZ, A., KNOCKEL, J., MO-
LINERO, J. O., SAIA, J., WALLACH, D. S., AND ZHU, T.
Whiskey, weed, and wukan on the world wide web: On mea-
suring censors’ resources and motivations. In FOCI (2012).

[5] ALEXA. The top 500 sites on the web by category, 2017. http:
//www.alexa.com/topsites/category/Top/Adult.

[6] CHEN, J., JIANG, J., DUAN, H., WEAVER, N., WAN, T., AND
PAXSON, V. Host of troubles: Multiple host ambiguities in
http implementations. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (2016),
ACM, pp. 1516–1527.

[7] CLAYTON, R. Failures in a hybrid content blocking system.
In International Workshop on Privacy Enhancing Technologies
(2005), Springer, pp. 78–92.

[8] CLAYTON, R., MURDOCH, S. J., AND WATSON, R. N. Ignoring
the great firewall of china. In International Workshop on Privacy
Enhancing Technologies (2006), Springer, pp. 20–35.

[9] ENSAFI, R., FIFIELD, D., WINTER, P., FEAMSTER, N.,
WEAVER, N., AND PAXSON, V. Examining how the great fire-
wall discovers hidden circumvention servers. In Proceedings of
the 2015 ACM Conference on Internet Measurement Conference
(2015), ACM, pp. 445–458.

[10] FIELDING, R., AND RESCHKE, J. Hypertext transfer protocol
(http/1.1): Message syntax and routing. rfc 7230 (proposed stan-
dard), June 2014.

[11] FREEDOM HOUSE. Freedom on the Net 2015, 2015.

[12] INTERNET SOCIETY. Global Internet User Survey, 2012. http:
//www.internetsociety.org/surveyexplorer/.

[13] KHATTAK, S., JAVED, M., ANDERSON, P. D., AND PAXSON,
V. Towards illuminating a censorship monitor’s model to facili-
tate evasion. In Presented as part of the 3rd USENIX Workshop
on Free and Open Communications on the Internet (2013).

[14] KNOCKEL, J., CRANDALL, J. R., AND SAIA, J. Three re-
searchers, five conjectures: An empirical analysis of tom-skype
censorship and surveillance. In FOCI (2011).

[15] KREIBICH, C., WEAVER, N., NECHAEV, B., AND PAXSON,
V. Netalyzr: illuminating the edge network. In Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement
(2010), ACM, pp. 246–259.

[16] LEACH, P. J., BERNERS-LEE, T., MOGUL, J. C., MASIN-
TER, L., FIELDING, R. T., AND GETTYS, J. Hypertext transfer
protocol–http/1.1.

[17] MARCELLO MARI. How Facebook’s Tor service could encour-
age a more open web. The Guardian, December 2014.

[18] TSCHANTZ, M. C., AFROZ, S., PAXSON, V., ET AL. Sok: To-
wards grounding censorship circumvention in empiricism. In Se-
curity and Privacy (SP), 2016 IEEE Symposium on (2016), IEEE,
pp. 914–933.

[19] VERKAMP, J.-P., AND GUPTA, M. Inferring mechanics of web
censorship around the world. In FOCI (2012).

[20] WINTER, P., AND LINDSKOG, S. How china is blocking tor.
arXiv preprint arXiv:1204.0447 (2012).

[21] WINTER, P., AND LINDSKOG, S. How the great firewall of china
is blocking tor. In FOCI (2012).

[22] XU, X., MAO, Z. M., AND HALDERMAN, J. A. Internet cen-
sorship in china: Where does the filtering occur? In International
Conference on Passive and Active Network Measurement (2011),
Springer, pp. 133–142.

A Appendix: HTTP Fuzzing Results

Tables 2-12: Fuzzed HTTP GET request tests and num-
ber of web filters that were bypassed out of the 44 that ex-
amined HTTP request strings (the first %s is replaced by
a censored URL; the second, when present, is replaced
with a test id)

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\n Host:
xxxxxxxxxxxx%sxxxxxxxxxxxxxxxxx\r\nX-

id:%s\r\n\r\n
34

GET / HTTP/1.1\r\nHost:xxxxxxxxxx%sxxxxxxxx
xxxxxxxxxxx\r\nX-id:%s\r\n\r\n 33

GET /
HTTP/1.1\r\nHost:xxxxxxxxxxxxxxxxxxxxxxx

xxxxxxx\r\nX-id:%s\r\n\r\n 35

Table 2: long hostname tests

HTTP GET request
Number of
web filters
bypassed

GeT / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 16
/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 28
/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 29

get / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 20
XXX / HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 24

GE / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 24

Table 3: GET word tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / http/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 18
GET / HTTP/1.\r\nHost: %s\r\nX-id:%s\r\n\r\n 20
GET / HTT/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22

GET / /1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / /1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22

GET / HTTP/ \r\nHost: %s\r\nX-id:%s\r\n\r\n 19
GET / /\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

GET / HtTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 6
GET / /11.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 21

GET / XXXX/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 22

GET / HTTP9\r\nHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

GET / \r\nHost: %s\r\nX-id:%s\r\n\r\n 20
GET / HTTP/9\r\nHost: %s\r\nX-id:%s\r\n\r\n 20

Table 4: HTTP word tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\n%s\r\nX-id:%s\r\n\r\n 38
GET / HTTP/1.1\r\nHost%s\r\nX-id:%s\r\n\r\n 36

GET / HTTP/1.1\r\n Host:
%s\r\nX-id:%s\r\n\r\n 23

GET / HTTP/1.1\r\nXXX:
%s\r\nX-id:%s\r\n\r\n 29

GET / HTTP/1.1\r\nH: %s\r\nX-id:%s\r\n\r\n 38
GET /

HTTP/1.1\r\nHostwww.%s\r\nX-id:%s\r\n\r\n 37

GET / HTTP/1.1\r\nHoSt:
%s\r\nX-id:%s\r\n\r\n 20

GET / HTTP/1.1\r\n %s\r\nX-id:%s\r\n\r\n 38
GET / HTTP/1.1\r\nXXXX:

%s\r\nX-id:%s\r\n\r\n 36

GET / HTTP/1.1\r\n: %s\r\nX-id:%s\r\n\r\n 37
GET / HTTP/1.1\r\nHost

www.%s\r\nX-id:%s\r\n\r\n 37

GET / HTTP/1.1\r\nHost %s\r\nX-id:%s\r\n\r\n 37

Table 5: Host word tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTPx/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 21

GET / HTTP /1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 21

GET / HTTP/ 1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 28

GET / HTTP/1.1x\r\nHost:
%s\r\nX-id:%s\r\n\r\n 18

GET / HTTP/x1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 19

GET / HTTP/1.1 \r\nHost:
%s\r\nX-id:%s\r\n\r\n 16

Table 6: spacing after HTTP tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\nAccept: text/html,

/;q=0.8\r\n\r\n
0

GET / HTTP/1.1\r\nHost: %s\r\nX-
id:%s\r\nAccept:text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8\r\n\r\n 0
GET / HTTP/1.1\r\nHost:

%s\r\nX-id:%s\r\nAccept: text/html\r\n\r\n 0

GET / HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\nAccept:

text/html,application/xhtml+xml,
application/xml;q=0.9,*/*;q=0.8\r\n\r\n 0

GET / HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\nAccept:text/html\r\n\r\n 0

GET / HTTP/1.1\r\nHost: %s\r\nX-
id:%s\r\nAccept:text/html,*/*;q=0.8\r\n\r\n 0

Table 7: Accept tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\rHost: %s\r\nX-id:%s\r\n\r\n 21
GET / HTTP/1.1\nHost: %s\r\nX-id:%s\r\n\r\n 2
GET / HTTP/1.1 Host: %s\r\nX-id:%s\r\n\r\n 36
GET / HTTP/1.1Host: %s\r\nX-id:%s\r\n\r\n 34

Table 8: \r\n tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost: [host without
extension]\r\n\r\n 23

GET / HTTP/1.1\r\nHost:
%s#\r\nX-id:%s\r\n\r\n 20

GET / HTTP/1.1\r\nHost:%s\r\nX-id:%s\r\n\r\n 4
GET /

HTTP/1.1\r\nHost:www.%s\r\nX-id:%s\r\n\r\n 6

GET /
HTTP/1.1\r\nHost:x%s\r\nX-id:%s\r\n\r\n 20

GET / HTTP/1.1\r\nHost:
www.%s\r\nX-id:%s\r\n\r\n 1

GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 1
GET / HTTP/1.1\r\nHost:

www.%s\r\nX-id:%s\r\n\r\n 0

GET / HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 0

Table 9: hostname tests

HTTP GET request
Number of
web filters
bypassed

GET /
HTTP/1.1\r\nHost:.com\r\nX-id:%s\r\n\r\n 36

GET / HTTP/1.1\r\nHost: \r\nX-id:%s\r\n\r\n 29
GET /

HTTP/1.1\r\nHost:a.com\r\nX-id:%s\r\n\r\n 35

GET / HTTP/1.1\r\nHost:\r\nX-id:%s\r\n\r\n 30

Table 10: after Host tests

HTTP GET request
Number of
web filters
bypassed

GET/ HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 26
GET z HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 24

GET ? HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 21

GET HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 26
GET /HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 12
GETHTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 28
GET/HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 27

GET**HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 25

GET /xHTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 13

GET HTTP/1.1\r\nHost: %s\r\nX-id:%s\r\n\r\n 22
GETx/ HTTP/1.1\r\nHost:
%s\r\nX-id:%s\r\n\r\n 29

Table 11: Request-URI tests

HTTP GET request
Number of
web filters
bypassed

GET / HTTP/1.1\r\nHost:[host+host]\r\n\r\n 20
GET / HTTP/1.1\r\nHost: [host+host]\r\n\r\n 22

Table 12: Host substring tests

