
Hiding Amongst the Clouds: A Proposal for Cloud-based Onion Routing

Nicholas Jones, Matvey Arye, Jacopo Cesareo, and Michael J. Freedman
Princeton University

Abstract
Internet censorship and surveillance have made

anonymity tools increasingly critical for free and open
Internet access. Tor, and its associated ecosystem of vol-
unteer traffic relays, provides one of the most secure and
widely-available means for achieving Internet anonymity
today. Unfortunately, Tor has limitations, including poor
performance, inadequate capacity, and a susceptibility
to wholesale blocking. Rather than utilizing a large
number of volunteers (as Tor does), we propose mov-
ing onion-routing services to the “cloud” to leverage the
large capacities, robust connectivity, and economies of
scale inherent to commercial datacenters. This paper de-
scribes Cloud-based Onion Routing (COR), which builds
onion-routed tunnels over multiple anonymity service
providers and through multiple cloud hosting providers,
dividing trust while forcing censors to incur large collat-
eral damage. We discuss the new security policies and
mechanisms needed for such a provider-based ecosys-
tem, and present some preliminary benchmarks. At to-
day’s prices, a user could gain fast, anonymous network
access through COR for only pennies per day.

1 Introduction
Tor is one of the most popular tools for accessing the In-
ternet anonymously. Tor operates by tunneling a user’s
traffic through a series of relays (proxies), allowing such
traffic to appear to originate from its last relay, rather than
the user. Tor relays are hosted by volunteers all over the
world, which is beneficial in providing jurisdictional ar-
bitrage for relayed traffic. Yet, its reliance on volunteers
also results in adverse performance: Many Tor relays of-
fer only consumer-grade ISP connections, which often
have poor “last mile” latency and bandwidth capacity.
Such clients also often have highly asymmetric network
connectivity, which is ill-suited for a relay’s equal use of
upstream and downstream bandwidth. Additionally, Tor
nodes are advertised publicly via Tor directory servers.
While helping to prevent partitioning attacks [6], this
openness makes Tor vulnerable to censorship: Any cen-
soring government can easily enumerate the IP addresses
of all public Tor relays and block them.

Cloud infrastructure is everything that Tor is not: there
are a smaller number of providers, yet they administer
a much larger number of high-quality, high-bandwidth
nodes. While fewer in number, these providers are still
spread over multiple administrative and jurisdictional
boundaries. Further, cloud infrastructure is elastic: One
can incrementally add (or remove) relays to a cloud, sim-
ply by spinning up new virtual machine (VM) instances
in the cloud. This can be particularly effective given the
typical diurnal nature of client demand. This elasticity
also inhibits wholesale blocking. While Tor relays com-
monly use static addresses, clouds allow one to rotate be-
tween IP addresses quickly (either by retiring and spin-
ning up new VMs, or having existing VMs release and
acquire new IPs). A censor is thus left the option of either
blocking all IP prefixes used by the cloud provider—and
causing large collateral damage—or allowing the traffic
to flow untrammeled.

Yet we are faced with a security dilemma: Does adopt-
ing a cloud deployment threaten the very anonymity
we seek? There are already numerous privately-hosted
anonymity solutions (proxies like anonymizer.com, pri-
vate VPNs, etc.). These existing solutions require the
client to fully trust their provider, however. Instead, we
propose a hybrid solution: build a high-quality Tor-based
network on multiple cloud hosting providers. Much like
Tor has a separation of trust between its unknown vol-
unteers, we base security on the assumption that multi-
ple autonomous and known entities involved in an onion-
routed network will not collude.

Fundamentally, COR does not change the basic Tor
protocol. Instead, it proposes a means to establish
Tor-like tunneling in a more market-friendly setting of
anonymity service and cloud hosting providers. Of
course, this raises its own technical challenges and se-
curity concerns. These challenges include how end-
users pay for (or be freely given) access to relays while
preserving privacy, and how clients can discover relays
without being vulnerable to partitioning attacks.

This paper presents an overview of the COR design
and explores the design space of building anonymity ser-
vices using cloud providers. We discuss the new secu-

rity challenges that arise from this setting, as well as the
new opportunities for scalability, robustness, and perfor-
mance. We conclude with preliminary benchmarks from
our early COR prototype.

2 System Overview
2.1 High-Level Design
To establish an anonymous connection in COR, an end-
user iteratively builds an encrypted tunnel through a cir-
cuit of relay nodes, much like in Tor. To create an in-
centive for operating anonymizing relays, however, users
have to “pay” for the right to use COR relays. This
raises a security challenge: If COR users were to pro-
vide payment directly to cloud hosting providers (CHPs),
their billing information could be used to de-anonymize
their Internet access (e.g., the entry CHP could correlate
billing information to client IP, while the exit CHP could
correlate billing information to request plaintext).

We overcome this problem by using a layer of indi-
rection. COR separates the role of operating anonymiz-
ing relays (by so-called anonymity service providers, or
ASPs) from the actual CHPs that manage the infrastruc-
ture. These ASPs rent VMs, run anonymizing relays in
these VMs, and accept cryptographic tokens from con-
necting users in exchange for relaying their traffic. These
tokens have the cryptographic property that it is impos-
sible to link the purchase of a token with the redemption
of the token, preventing ASPs from determining which
user redeemed a particular token (as described in sec-
tion 3.2). We envision that ASPs could even federate to
accept tokens issued by other ASPs. While some prior
work has suggested the use of cloud VMs as Tor re-
lays [8], unlike COR, it did not support the creation of an
economic ecosystem that would allow users to purchase
cloud-based anonymity services securely.

COR’s use is characterized by two phases. First,
clients engage in the process of obtaining tokens and
learning the set of relays in the federation. Second,
clients build an onion-routed circuit by redeeming the to-
kens at the relays of their choice; they then use this cir-
cuit for anonymous communication. This separation is
analogous to the control/data plane separation of other
capabilities-based systems that seek to protect against
denial-of-service attacks [11, 12], in which the data plane
is protected by a capability, while the control plane needs
to be protected by other means (although COR’s focus is
on anonymity, rather than DoS protection).

Given the phases’ different security concerns, COR is
composed of two separate relay networks conceptually:

1. The bootstrapping network allows users to pre-
serve anonymity when starting to use COR. A user can
use this network to ensure IP privacy while acquiring to-
kens, obtaining directory server information, and estab-
lishing an initial circuit. Since a user does not initially

!"#$%

!"#$&

%'#$(

)'*+

,*'-./%-.0/$'*+1*+

/!+2#-,
+*3)*'-$-+%44.!

%'#$5

Figure 1: COR system overview. Users communicate over
an onion-routed tunnel built over servers operated by mul-
tiple Anonymity Service Providers, which are located in the
datacenters of multiple Cloud Hosting Providers.

have tokens, the bootstrapping network does not require
tokens to use its relays. To prevent abuse, however, it is
limited in that it can only be used to access COR direc-
tory and token servers, and not the wider Internet.

2. The data network is a high-bandwidth, low-latency
network through which users are able to anonymously
access the Internet. Having acquired tokens and a list of
relays during the bootstrapping phase, a client can now
build an onion-routed circuit. To extend a circuit to a
new relay, the client provides a valid token to that re-
lay, which grants it temporary access (typically metered
by consumed bandwidth). The user repeats this process
multiple times to build the full circuit.

We illustrate a COR data tunnel in Figure 1, where
the user establishes a circuit through relays managed by
ASP 1 and 2, which includes traversing clouds operated
by CHP A and B. The user’s data is hop-by-hop onion
encrypted along the circuit exactly like in Tor, serving to
anonymize the user from the relays he uses, the clouds he
traverses, and other network eavesdroppers he confronts.

2.2 System Trust and Threat Model
COR’s trust model is necessarily different from Tor’s be-
cause it introduces new roles and relationships into the
system. Within Tor, there are only two roles: end-users
seeking anonymity and relay operators that provide it.1
In COR, two administratively-distinct parties have access
to a relay: the ASP that directly operates it, and the CHP
that has administrative access to the physical machine
(and the virtual machine’s hypervisor). Thus, we need
to discuss the threats posed by both ASPs and CHPs, in
addition to malicious users and censors.

The threat model for ASPs and CHPs is very similar.
While the tunnel’s security relies on the fact that some
of the involved ASPs/CHPs do not collude, individual
malicious ASPs or CHPs may keep detailed logs, packet
traces, or otherwise attempt to de-anonymize users. As
we discuss in Section 2.4, due to the risks of traffic anal-

1We do not focus on the different roles that “guard” or “exit” nodes
play Tor, although we note that first and last COR hops can play similar
roles. We do expect all ASPs to run exit nodes, unlike in Tor.

2

ysis, the same ASP should not appear in multiple, non-
contiguous places within a circuit. Similarly, because
CHPs have administrative control over ASPs’ virtual ma-
chines, a user’s circuit should not use relays that are all
controlled by the same CHP.

End users have limited ability to attack COR. Users
can attempt to perform denial-of-service attacks on the
network. Malicious users can also attempt to alter the
load characteristics of relays to perform side-channel at-
tacks. Due to clouds’ traffic volumes and ASPs’ ability
to spin up new instances when relays become loaded, we
believe these attacks can be made ineffective.

2.3 Censorship Resistance
As in Tor, COR should protect against network level cen-
sors and monitoring eavesdroppers. These adversaries
may be government agencies, ISP monitors, or corpo-
rations wishing to monitor or block traffic. We assume
that such adversaries can monitor an end-user’s traffic
and have the ability to block traffic to specific addresses.
However, there are limits to the power of any such ad-
versary. Traffic monitoring, for example, cannot take
place outside of an organization’s jurisdiction. We an-
ticipate that datacenters in COR will have a large num-
ber of incoming and outgoing connections from multiple
ISPs [13]. This makes timing analysis and measurement
significantly more difficult than in Tor, due to a cloud
datacenter’s number of connections, traffic volume, het-
erogeneous use, and asymmetric routing.

In addition to better network connectivity and dynamic
scaling, cloud infrastructure also inhibits blocking. Some
clouds allow virtual machine instances to switch IP ad-
dresses quickly (e.g., using DHCP and gratuitous ARPs),
while IP addresses can be rotated through in others by
allocating new instances. In both cases, blocked IP ad-
dresses can be retired and new ones adopted. A cen-
sor is thus left with two options: block all IP prefixes
used by the cloud provider, or otherwise allow the traf-
fic to flow mostly untrammeled. This becomes a prob-
lem of collateral damage: Amazon EC2, for example,
hosted over a million instances that share common IP
prefixes in 2010 [9]. Admittedly, a determined adversary
might be able to dynamically track IP addresses within
the cloud and “whitelist” certain services. However, this
would at be be a cat and mouse game of blocking, which
would need to occur on all cloud services simultane-
ously. With the exception of Egypt’s “disconnecting” it-
self from the wider Internet in January 2011—a practice
reversed only a few days later—censors appear hesitant
to enact widespread Internet blocking.

2.4 Building a COR Circuit
In Tor, the relays which a user chooses are picked mostly
at random. However, due to the fact that there exist a

limited number of ASPs and CHPs within COR, addi-
tional care is needed when constructing a COR circuit.
The following properties describe an ideal COR circuit.

1. A COR tunnel has at least two relays within each
datacenter it traverses. This property increases the dif-
ficulty with which COR connections can be monitored
by an adversary with access to the traffic entering and
leaving, but not internal to, the datacenter. If data leaves
the datacenter from a different node than from which it
entered, then such an adversary is relegated to using in-
efficient side-channels to correlate the traffic. Since al-
most all large datacenters are multi-homed [13], it is also
likely that traffic will enter on a different ISP than the
one from which it exits (unlike in Tor). Thus, for an ad-
versary to reliably monitor COR traffic, he would have to
eavesdrop on most ISP connections to each datacenter.

2. The entry and exit ASPs of a COR tunnel dif-
fer. This property ensures that any single compromised
ASP will know limited information about a COR user’s
tunnel. If the tunnel’s first-hop ASP logs information, it
can record the tunnels’ originating IP address, but not the
corresponding request plaintext. Similarly, the exit ASP
can learn the resource being requested, but cannot link
the request to an originating client IP address.

3. The entry and exit CHPs of a COR tunnel differ.
This property, analogous to the previous, protects against
a compromised CHP rather than a compromised ASP.

4. Relays in a COR tunnel belonging to the same
ASP are not separated by a single hop. When a single
ASP’s relays surround the relay of another ASP within
a circuit, the second ASP’s relay adds no additional
anonymity. If the first ASP is malicious, it can relatively
easily correlate the traffic entering and leaving the sec-
ond ASP’s node via the relay’s IP address, thus defeating
the purpose of the extra hop.

2.5 Market costs for COR
In order to motivate the design of the COR system, it is
worthwhile to understand its resource costs compared to
a volunteer network like Tor. By examining Tor’s met-
rics page, we estimate that an upper bound for the daily-
averaged bandwidth consumed by Tor relays during the
spring of 2011 was approximately 900 MB/s. Given
three-hop Tor circuits, with each relay shuttling the same
encrypted bytes from upstream to downstream, this to-
tal translates to an end-user bandwidth demand of 150
MB/s, or approximately 376 TB/month. From this, we
now calculate the approximate cost of running a COR
network with the same bandwidth. For the sake of these
calculations, we will use Amazon EC2’s bandwidth pric-
ing. As of July 2011, Amazon charges nothing for down-
stream traffic and uses a sliding scale for upstream traf-
fic; intra-cloud traffic is free. The first 10TB are billed at
$0.12/GB, the next 40TB at $0.09/GB, the next 100TB

3

1

2
3

DIRECTORY RETRIEVAL
ENCRYPTED TUNNEL

ASP1 Directory ASP2 Directory ASP3 Directory

Figure 2: Directory retrieval through the COR bootstrap-
ping network. Relay colors denote the operating ASP.

at $0.07/GB, and the next 350TB at $0.05/GB. A typi-
cal COR circuit consists of two clouds, each with two
nodes, so there are two upstream connections and two
downstream connections in our circuit. Each connec-
tion experiences 150 MB/s of traffic, so we can estimate
the approximate monthly cost of COR as $61,200 for its
376 TB. This cost would be spread across all ASPs.

Further, bandwidth costs continue to decrease. Since
its launch in 2008, Amazon’s bandwidth costs have de-
creased by over 70% [1]. Finally, cheaper hosting ser-
vices are also available, e.g., some price 10 TB/month
at under $100, leading to per-month costs of $37,000.
That said, smaller hosting providers might not provide
the same elasticity and threat of collateral damage as
their more well-known counterparts.

3 System Design
This section elaborates on some of COR’s design details.
First, we discuss the process through which users con-
tact ASP directory servers to discover relays. Next, we
discuss the properties of COR tokens and their distribu-
tion methods. Finally, we discuss the authentication and
token redemption mechanisms of COR relays.

3.1 Retrieving the COR Directory
Before a user can build a COR circuit across multiple
ASPs’ relays, a user must discover potential relays from
the ASPs’ directories. Directories are responsible for
tracking the available COR nodes for a given ASP. In
Tor, directories are public, and any user can download
the entire directory at any time. This makes the nodes
returned by these directories vulnerable to IP-address-
based blocking by censors.2

2Tor has introduced the notion of more trusted private relays that
are not listed in public directories. Tor still faces the problem of dis-
tributing these lists to “desired” users, yet not to censors, who actively
attempt to discover these relays’ IP addresses. Given that the set of Tor
private relays is still relatively small and fixed—and that distinguishing
between unauthenticated users and censors is difficult—most private
relays have been blocked by some censoring countries [7].

When a user retrieves the COR directory, they do not
receive the entire list of available nodes, but only a sub-
set of the available nodes. Unfortunately, this design
creates new vulnerabilities. Consider the scenario of a
malicious directory server. Since COR directories only
return a small subset of the total number of nodes, a ma-
licious directory server could target an individual user
(or, more specifically, the user’s IP address) and give that
user a uniquely-identifying list of relay nodes. To pre-
vent this kind of partitioning attack, directory retrieval
within COR always occurs through a COR circuit that
hides the user’s true identity by anonymizing access. Ini-
tially, when a user does not have an established COR
circuit in the data network, the user can use the boot-
strapping network to create an anonymizing circuit and
retrieve the directory.

A bootstrapping fetch works as follows: Any user
can contact a directory and ask for a bootstrapping re-
lay without supplying a token. The user adds the given
bootstrap node to his circuit, and then contacts a different
directory through this circuit. This process is repeated
until the user has fully constructed his bootstrapping cir-
cuit. The user thus incrementally builds his circuit. Once
the circuit is complete, the user is able to purchase tokens
or retrieve a directory for the data network.

3.2 COR Tokens
COR tokens provide the means for a user to gain ac-
cess to a relay for some specified duration and/or transfer
size. This is implemented with Chaum’s blinded signa-
ture scheme [4], where a user, when purchasing or other-
wise acquiring a token, sends a blinded random nonce
to the ASP. The ASP then replies with a signature of
the random nonce without ever learning its value. When
redeeming the token, the user sends the signed random
nonce to the ASP, which upon verifying the signature
(and the fact that the nonce was never used before), au-
thorizes the token and adds the nonce to the list of used
nonces. Since each blinded signature can only produce
a valid signature for one nonce, and the ASP keeps a
list of used nonces, it is assured that a token can only
be used once. The user is assured that privacy is pre-
served because it is computationally hard for the ASP to
correlate the blinded nonce it learned when the user ac-
quired the token with the signed nonce sent to it during
token redemption. Previous proposals like XPay [5] and
Par [2] offer more complex solutions than those needed
by COR. XPay deals with micropayments, while Par as-
sumes a single central bank, neither of which applies to
COR. Bitcoin is not appropriate for use as a token be-
cause all transactions are logged and stored within the
Bitcoin network [3]. However, Bitcoin could be used as
a currency for purchasing tokens, much like any other
currency that an ASP chooses to accept.

4

Circuit
R0 → R1 → US1 → US2
US1 → US2 → R0 → R1
R0 → R1 → EU1 → EU2
EU1 → EU2 → R0 → R1

US1 → US2 → R0 → R1 → EU1 → EU2

Table 1: Evaluated COR circuits traversing Rackspace (R),
Amazon EC2 East (US), and EC2 Europe (EU).

Distributing COR tokens while preserving anonymity
presents a challenge in practice. The original work on e-
cash assumed the use of anonymous channels, the very
thing we are trying to build! Using whatever criteria
the ASP deems necessary, tokens may be distributed to
users. However, most ASPs will want to authenticate the
user in some way before granting a user a token. For
example, ASPs may want to authenticate the user’s affil-
iation with an organization for which they seek to pro-
vide free access (using whatever means desired). Alter-
natively, they may want to ensure the user provided pay-
ment. In any case, if the IP address used during token
acquisition is the same IP that will be used when access-
ing COR, the ASP can de-anonymize the user when the
token is redeemed. We can prevent this attack by making
sure that all access to the token server is done through
a COR circuit. If a user does not have access to COR
relays within the data network already—e.g., he is con-
necting to COR for the first time—he can access ASPs
via the bootstrapping network.

3.3 Authenticating with Relays
When a user attempts to connect to a COR relay, the user
must present a COR token to the relay. The relay then
immediately contacts the ASP which issued the token to
check its validity. If the token is accepted, the user gains
access to that relay according to the terms stipulated by
the ASP, with the relay measuring the connection’s ag-
gregate resource use. When the connection is about to
expire or exceeds its approved usage, the user can re-
deem an additional token to keep the circuit alive.

4 Evaluation
Tor performance is one of the major factors inspiring our
work on COR. Thus, our preliminary evaluation consid-
ers the performance of COR vs. Tor. We used two exper-
iments for this comparison: (i) downloading individual
files (via TorPerf) and (ii) downloading entire web sites.
We also evaluate how many concurrent users a single
cloud node can support, to both offer deployment guid-
ance and to justify the assertion that operational costs are
bandwidth dominated.

Our COR prototype is a modified version of Tor
0.2.1.29, allowing us to easily specify arbitrary circuits

through the cloud. For this initial evaluation, we have not
yet implemented cryptographic token exchange within
our prototype. The following results show benchmarks
measured after the connection has been established. We
anticipate that the COR token exchange will add only
modest latency during connection setup.

4.1 Individual File Downloads
To evaluate the performance of COR when download-
ing individual files, we use the Tor-supplied TorPerf [10]
measurement tool. Our COR experiments used five COR
circuits which were statically built across US and Euro-
pean cloud datacenters, as described in Table 1, as well
as five Tor circuits, randomly chosen by Tor. For each
circuit, we started a different client (located on a Prince-
ton server) and downloaded 3 files of size 50 KB, 1 MB,
and 5 MB, repeating each download 100 times. After
each run, we shut down the client before restarting the
experiment on a new circuit. We ensured that Tor did
not switch circuits mid-run by setting its configuration
parameter MaxCircuitDirtiness to 60 minutes. The per-
formance results are shown in Figure 3(left). We can see
that the average COR performance is superior to TOR
for all files and that the best COR circuit of the five has a
median performance that is 7.6× faster than that of Tor.

4.2 Downloading Web pages
We also evaluate the time it took to download an entire
web page (using wget -p to ensure that the page and all
its associated content are downloaded). We downloaded
the home pages of the top 10 Alexa.com domains,3 using
Tor, COR, and a direct Internet connection. The COR
downloads were performed over the same five circuits
given in Table 1, and Tor circuits were restarted at the
same frequency as COR circuits. Each home page down-
load was performed 10 times consecutively per circuit.
For the COR downloads, we tested both a COR relay that
was serving 50 simultaneous connections and a COR re-
lay that was serving a single client. Because we do not
have data describing the load of deployed Tor relays, we
sought to evaluate Tor against both highly loaded and un-
loaded COR instances. It is important to note, however,
that the elastic resource scaling of clouds make it possi-
ble to bring up new COR instances under load. That said,
Figure 3(center) shows that COR is several times faster
than Tor for all sites, even under load, although it is still
slower than direct access for most sites.

4.3 Concurrent Users
Finally, we evaluate the number of concurrent users that
a single relay in the cloud can support while still of-
fering acceptable throughput per client. We evaluated

3We omit results from qq.com due to space constraints and because
its poor performance over all trials do not allow for easy illustration.

5

Figure 3: The left plot shows median file download time using TorPerf, measured between the first and last byte received
of the HTTP response. Error bars illustrate quartile performance. The center plot shows median download times for
a selection of popular websites. Error bars show 90th and 95th percentile times. The right plot shows aggregate COR
bandwith through various types of Amazon EC2 instances.

different “size” nodes from Amazon EC2 for this ex-
periment, which corresponded to differing amounts of
CPU, memory, and I/O resources per size. (In decreas-
ing price are standard large, high cpu medium, standard

small, and micro nodes.) Each circuit was built using two
nodes of the same size and located in the same datacen-
ter. The experiment consisted of using TorPerf to down-
load a 50 MB file from Amazon’s S3 storage service and
evaluating the bandwidth of the transfer. The results are
shown in Figure 3(right). Two of the larger node types
(“m1.large” and “c1.medium”) can easily handle more
than 100 concurrent users, while the cheap “t1.micro”
node struggles to support ten users. One interesting find-
ing is that the larger nodes achieved a maximum of ei-
ther 50 Mbps or 100+ Mbps. We discovered that even
among nodes of the same type, the maximum band-
width differed depending upon which nodes we were as-
signed. We suspect that some nodes within Amazon EC2
may have slightly faster network infrastructure than oth-
ers. Unfortunately, Amazon does not guarantee specific
upstream or downstream bandwidths, although an ASP
could test assigned nodes for particular characteristics.

In summary, an EC2 node costing as low as 17¢ per
hour, plus bandwidth charges, can relay approximately
110 Mbps. This can provide up to 100 concurrent users
an average of 1 Mbps of bandwidth each.

5 Conclusion
COR explores a new direction for low-latency onion-
routing systems: leverage the large capacities, robust
connectivity, and economies of scale inherent to elastic
cloud infrastructures. But COR still avoids trusting any
single entity, as COR users build circuits over multiple
ASPs and through multiple CHPs. In doing so, COR cre-
ates a potential marketplace or exchange for anonymity
services: allowing multiple, independent parties to co-
exist, with each facing little to no capital costs. COR
also introduces new protections against blocking, con-
fronting censors with tough choices: They must either

allow access, engage in a cat-and-mouse game against re-
lays’ transient addresses, or block cloud providers’ entire
prefixes and cause significant collateral damage. COR
does not solve the fundamental bootstrapping problem
inherent to many anonymity systems – users’ initial con-
nections to the COR bootstrapping network are vulner-
able to the same attacks as traditional Tor connections.
We leave this to future work. Preliminary evaluations
demonstrate that COR can be both efficient, high per-
forming, and cost effective. Our ongoing work seeks to
further develop COR’s mechanisms for token acquisition
and exchange, in order to establish an efficient market for
Internet-scale anonymity services.

References
[1] Amazon AWS Forums. https://forums.aws.amazon.com/

ann.jspa?annID=196.
[2] E. Androulaki, M. Raykova, S. Srivatsan, A. Stavrou, and

S. Bellovin. PAR: Payment for anonymous routing. In Proc.

PET, 2008.
[3] Bitcoin Anonymity. https://en.bitcoin.it/wiki/

Anonymity.
[4] D. Chaum. Blind signatures for untraceable payments. In Proc.

CRYPTO, 1982.
[5] Y. Chen, R. Sion, and B. Carbunar. XPay: Practical anonymous

payments for tor routing and other networked services. In Proc.

WPES, 2009.
[6] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion: De-

sign of a Type III anonymous remailer protocol. In Proc. IEEE

Security and Privacy, 2003.
[7] R. Dingledine. Private communication, 2010.
[8] R. Mortier, A. Madhavapeddy, T. Hong, D. Murray, and

M. Schwarzkopf. Using dust clouds to enhance anonymous com-
munication. In Proc. IWSP, 2010.

[9] Recounting EC2 One Year Later. http://www.
jackofallclouds.com/2010/12/recounting-ec2/.

[10] TorPerf. https://metrics.torproject.org/tools.html.
[11] A. Yaar, A. Perrig, and D. Song. Siff: A stateless internet flow

filter to mitigate DDoS flooding attacks. In Proc. IEEE Security

and Privacy, 2004.
[12] X. Yang, D. Wetherall, and T. Anderson. A DoS-limiting Net-

work Architecture. In Proc. SIGCOMM, 2005.
[13] Z. Zhang, M. Zhang, A. Greenberg, Y. C. Hu, R. Mahajan, and

B. Christian. Optimizing cost and performance in online service
provider networks. In Proc. NSDI, 2010.

6

