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ABSTRACT
While DNS tunneling has shown promise as a censorship circum-
vention technique, it is limited by the plaintext nature of the DNS
protocol, which renders it easily detectable to censors. DNS-over-
HTTPS (DoH) [16] resolves this detectability obstacle, by encrypt-
ing the entire DNS protocol inside HTTPS. DoH tunneling shows
promise as a medium for circumvention as its adoption increases in
everyday usage, but it may still be vulnerable to flow-based attacks.
This paper explores the design space of threshold-based attacks and
defences on encrypted DNS tunnels. We identify thresholds separat-
ing tunnel traffic from browser-generated DoH traffic using packet
size, packet rate, and throughput. We further propose modifications
for encrypted DNS tunnels to evade flow-based detection and mea-
sure the reduction in usability. Notably, throughput is decreased by
at least 27x and page load time is increased by at least 23x. However,
despite the cutback in usability, we outline the potential for DNS
tunnels to work in conjunction with, and obfuscate the registration
traffic of, other anti-censorship tools.
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1 INTRODUCTION
In the field of censorship circumvention, DNS tunneling has been
proposed as a covert communication channel (e.g. DNS-sly [2])
and a pluggable transport for Tor (e.g. DNSCatProxy [26]). Two
limitations of DNS tunneling are its low bandwidth due to the
theoretical bounds of the DNS protocol and its lack of encryption,
which exposes communication endpoints. Current implementations
of DNS tunneling using plain UDP DNS, such as Iodine [6] and
dnscat2 [5], are prone to DNS filtering if the identity of the tunneling
server is discovered by the censor.

Opportunities. By encrypting the entire DNS protocol inside
HTTPS, tunneling using DNS-over-HTTPS (DoH) [16] can defend
against traditional DNS circumvention detection techniques that
take advantage of analysing plaintext DNS queries. This becomes
possible when DoH resolvers sit outside of the censored network,
leaving encrypted HTTPS packets between the client and a DoH
resolver as the only traffic that censors can inspect. DoH tunnels
ultimately hide the contents of the query and the location of the tun-
nel server from censors. DoH has been implemented in Chromium
and Firefox. Furthermore, since October 2019, DoH has been en-
abled by default in Firefox for new users in the United States [15].
As DoH is increasingly adopted for non-circumvention usage, the
collateral damage of blocking DoH traffic is also increasing, provid-
ing an opportunity to consider DoH as a means of circumvention.
Furthermore, despite being low-bandwidth, there are real world
instances where DNS tunneling is a valuable solution, such as Iran’s
Internet blackout in November 2019 where Padmanabhan et al. [20]
showed that communication efforts using DNS were possible.

Challenges and Contributions. DoH tunneling for circum-
vention is promising because it leverages the popularity of DoH
servers. This paper evaluates the censorship resistance of a DNS-
over-HTTPS tunnel prototype, dnstt [10], and makes the following
contributions:

• We generate and profile web-based DoH traffic characteris-
tics.

• We propose threshold-based attacks based on DoH traffic
characteristics that require as few as 300 packets to detect
DoH tunneling.

• We show that dnstt’s throughput and page load time de-
crease by 27x and increase by 23x, respectively, when dnstt
is modified to defend against our attacks.
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Our contributions address some of the research gaps highlighted
by Tschantz et al. [21]. Namely, we address the usability impacts
of modifying a DoH tunnel to be more censorship resistant. We
also study attacks that require fewer computing resources to carry
out, focusing on simple threshold-based models rather than more
sophisticated, but expensive machine-learning based models.

2 RELATEDWORKS
Flow-Based Attacks. Ellens et al. [7] developed a methodology to
detect the presence of DNS tunneling by combining flow informa-
tion with statistical methods. Analysis showed an increase in bytes
per flow when DNS tunneling was active, as well as an increase
in the average number of bytes per packet over a time interval.
We build on these observations to develop attacks that identify
individual flows presenting circumvention behaviour using dnstt.
Note also that while the above observations were made on DNS
UDP flows, our experiments are conducted on TLS flows.

Payload andTrafficAnalyses. Farnham andAtlasis [8] showed
that DNS tunneling can be detected using payload analysis and traf-
fic analysis techniques. The former focuses on attributes of a single
DNS request, while the latter analyzes attributes observed over
multiple requests. They showcase detection techniques covered in
past research and suggest using both payload analysis and traffic
analysis techniques as defense in depth to detect DNS tunneling.

Machine Learning Models.Wang et al. [24] found that a
decision-tree trained using entropy-based and packet-heading fea-
tures performs well when detecting flows generated by Meek, a
circumvention tool that tunnels traffic over HTTPS connections to
popular cloud load balancers.

Vekshin et al. [22] produced two machine learning models. The
first model was able to detect DoH flows amongst other HTTPS
flows with 99.9% accuracy. The second model was able to identify
which DoH client was used between Chrome, Cloudflared, and
Firefox. The models used traffic flows and per-packet-information
as inputs to generate their classifications. For the DoH classifier,
session duration and average inter-packet delay were the two most
important parameters. For the client classifier, the most important
parameter was the variance of incoming packet sizes.

MontazeriShatoori et al. [19] developed a two-layer machine
learning model to detect DoH tunnels. The first layer of the model
separates DoH traffic from non-DoH traffic, and the second layer
identifies DoH tunneling. Our approach differs in that we adopt
a simple threshold-based attack, focusing only on DoH traffic by
isolating flows going to and from DoH resolvers. Moreover, while
MontazeriShatoori et al. test their model on flows generated by
Iodine, DNS2TCP, and DNScat2, we focus on traffic generated by
dnstt.

TLS Fingerprinting. Censors can block encrypted censorship
circumvention tools such as Tor by identifying their unique TLS
fingerprints based on TLS Client Hello message metadata [1]. De-
spite using HTTPS to encrypt its data, DoH tunnels could still be
distinguished from normal browsers using DoH through a TLS
fingerprinting attack. Frolov and Wustrow’s application https://
tlsfingerprint.io/ analyzes TLS fingerprint rarity within the Uni-
versity of Colorado’s network. When dnstt was compiled with
golang version go1.15.7 darwin/amd64, this application detected

that dnstt’s Client Hello messages came from the Go-http-client/1.1
package and was seen in less than 0.01% of all the fingerprints it
had inspected.1 Censors could likely detect dnstt by inspecting TLS
sessions communicating with DoH resolvers and filtering for this
rare fingerprint. To address this vulnerability, we modified dnstt’s
client [23] to mimic common TLS fingerprints using Frolov and
Wustrow’s library, uTLS [13]. Although important, further experi-
ments and discussions about this change are beyond the scope of
this paper.

3 DNSTT OVERVIEW
DoH vs DoT. DNS-over-HTTPS (DoH) [16] and DNS-over-TLS
(DoT) [18] are the two standards for encrypted DNS. Böttger et
al. [4] performed an empirical study of the performance of DoH
compared to UDP DNS and DoT. Despite more header overhead
with HTTP/2, they found that the resolution time of DoH is similar
to DoT when factoring in delayed queries. Böttger et al. argued
that the increased security of DoH compared to the minimal per-
formance costs may be why DoH has gained more popularity over
DoT. Moreover, DoH is harder to block by default as it operates
over the same port as general HTTPS traffic, whereas DoT operates
on its own port. As such, this paper focuses on circumvention using
DoH instead instead of DoT.

DoH Tunneling. dnstt [10] is an encrypted DNS tunnel pro-
totype built by Fifield to demonstrate the use of a separate reli-
ability layer inside a circumvention transport [11]. DNS tunnels
use recursive DNS resolvers as proxies to transfer data between a
client and a server. For instance, a client that sends the DNS query
DATA.example.com is effectively sending the message DATA to
the server at example.com. For DoH tunneling, dnstt runs a local
proxy on the client’s machine that accepts TCP connections and
encodes them into DoH requests. A DoH request is handled by a
third-party DoH resolver (e.g., CloudFlare’s resolver at 1.1.1.1
or Google’s resolver at 8.8.8.8) outside of the censor’s region of
control, which forwards the DNS request to a dnstt server. The
dnstt server decodes the DNS request back to the original TCP
request and forwards it to the intended TCP address. A response
then travels back through the tunnel as a TXT response to a DNS
request, to be decoded by the dnstt client. Since censors can see
only the encrypted DoH packets being sent to a DoH resolver, the
final destination of the packet, the tunnel server, is hidden from
censors.

Turbo Tunnel. Turbo Tunnel [11], an interior session and re-
liability design pattern, works independently from the obfuscator
of censorship circumvention tools. In many systems, the obfus-
cation layer provides both blocking resistance and user session
management. This presents a challenge, as TCP connection-based
tools must restart their session from scratch if the underlying TCP
connection is attacked. In DNS tunnel-based systems, packets may
be dropped or re-ordered while being transported over UDP, so a
variety of reliability schemes have been developed to handle this un-
reliability. DoH faces both of these problems: it uses a TCP/TLS con-
nection up to the first recursive DoH resolver, after which queries
are converted to UDP-based DNS. By implementing a Turbo Tunnel

1https://tlsfingerprint.io/id/a91c0644c199823d
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Table 1: Distinguishing traffic characteristics between normal DoH traffic and dnstt traffic data distribution

Traffic Characteristic Direction Threshold (T) % normal DoH windows > T % dnstt windows > T

Avg. Payload Length Bidirection 120 B 2.0 65
Avg. Payload Length Incoming 176 B 1.0 55
Avg. Payload Length Outgoing 70 B 1.0 56

Packet Rate Bidirection 1, 010 packets/s 0.1 69
Packet Rate Incoming 616 packets/s 0.1 68
Packet Rate Outgoing 393 packets/s 0.1 70
Throughput Bidirection 68, 148 B/s 0.1 73
Throughput Incoming 42, 909 B/s 0.1 73
Throughput Outgoing 24, 265 B/s 0.1 72

design, any disruptions to these outer transport layers are inde-
pendent from the persistent end-to-end inner session layer of a
connecting client.

4 DOH TRAFFIC CHARACTERISTICS
To determine potential vulnerabilities from using DoH [16] tunnel-
ing, we profiled both circumventor and non-circumventor traffic.
The non-circumventor dataset represents a user that uses DoH
purely for DNS requests while the circumventor dataset represents
a user that uses dnstt for DoH tunneling.

Traffic Generation. We were unable to compile a dataset of
DoH traffic captured from real users, due to the anonymization of
IP addresses in public HTTPS datasets. As such, we generated a
non-circumventor dataset for study. As DoH is a low bandwidth
protocol, we are interested in profiling a non-circumventor that
generates a heavy amount of DoH traffic. Heavy DoH traffic is
more likely to resemble circumventor traffic, allowing us to obtain
a higher resolution of the threshold between circumventor and non-
circumventor traffic.We generated the non-circumventor dataset by
visiting the Alexa2 Global Top 250 websites and performing packet
captures. HTTPS packets were captured by applying a filter for port
443 and DoH packets were identified by filtering for IP addresses
associated with the Google DoH resolver (8.8.8.8 and 8.8.4.4). We
randomly divided the websites into groups of five for each packet
capture (pcap) to achieve greater variance in our dataset and to
generate longer DoH sessions. Our Selenium script uses geckodriver
v0.29.0, and launches Firefox with DoH enabled using the Google
DoH resolver. The script visits each website in the group of five
sequentially, waiting for the performanceTiming.responseEnd3 signal
from the browser between each visit that indicates the end of the
network transfer. Since this signal occurs before the website is
fully loaded, the rate at which each of the 5 websites is visited is
quicker than regular user browsing, leading to a dataset with a
heavier amount of DoH traffic. The DNS cache is cleared and a
new browser session is started after each pcap is generated. Each
pcap contains on average 1-2 DoH sessions, since a Firefox instance
reuses the same DoH sessions to service all of its DNS requests. We
repeated this script ten times, generating a total of 500 pcaps, for a
non-circumventor dataset of size 242MB.

2https://www.alexa.com/
3https://www.w3.org/TR/navigation-timing/#sec-window.performance-attribute

We generated a circumventor dataset using the same script, ex-
cept we visit only one website per pcap, and configure Selenium
Firefox to use a HTTP proxy with a local instance of the dnstt
client. A dnstt server was hosted on Amazon Lightsail in Montreal,
Canada, with 512MB RAM and 1 vCPU. The server acted as an
authoritative resolver with a 15 byte domain name. Relative to the
long DNS queries produced by dnstt, the length of this domain is
quite short, and does not impact results analyzing TCP payload
lengths. A dnstt client was separately hosted on Amazon Lightsail
in Montreal, Canada, with 4GB RAM and 2 vCPUs. The client used
the same Google DoH resolver as the non-circumventor dataset
to communicate with the server. We ran our script twice for the
Alexa Global Top 250 websites, generating a total of 500 pcaps for
the circumventor dataset, totalling 5.7GB in size.

DistinguishingTrafficCharacteristics. For our analysis, each
pcap file has its packets split per session, defined by a unique com-
bination of source IP address, source port, destination IP address,
and destination port. Each session was analyzed by incoming, out-
going, and bidirectional traffic over 0.5 second tumbling windows.
We chose tumbling windows because they are a relatively cheap
and simple solution for keeping state at a large scale. As Tschantz
et al. [21] point out, while some (e.g. [3]) believe that the Great Fire-
wall might be employing sophisticated methods such as machine
learning, there has not yet been a rigorous study showing machine
learning techniques being used in practice. This suggests that it is
still important to study cheap, simple solutions that censors might
employ.

As censors want to minimize collateral damage while also lim-
iting the opportunity for DoH tunneling, we searched for traffic
characteristics and scores that correspond to a high percentile in
normal DoH data distribution, but a low percentile in dnstt DoH
data distribution. These scores can be used as an approximation
for maximum value thresholds to detect circumvention. We tested
three traffic characteristics. Avg. Payload Length tracks the average
length, in bytes, of TCP payload data for non-empty packets in a
window. Packet Rate tracks the total number of packets detected,
divided by the total time elapsed since the beginning of the current
window. Throughput tracks the total bytes of payload data, divided
by the total time elapsed since the beginning of the current window.
For packet rate and throughput, we tested scores that correspond
to a percentile between 99 and 100 in normal DoH data distribu-
tion, in increments of 0.05%. To select the best threshold, we start
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Table 2: Attack performance on Alexa 251-500 dataset, before dnstt modifications

Technique Direction Threshold Accuracy Recall Precision Packets before Detection

Avg. Payload Length Bidirection 120 B 0.88 0.99 0.80 2, 000 ± 5, 000
Avg. Payload Length Incoming 175 B 0.90 0.99 0.83 2, 000 ± 3, 000
Avg. Payload Length Outgoing 70 B 0.86 0.89 0.81 600 ± 5, 000

Packet Rate Bidirection 1,100 packets/s 0.94 1.00 0.88 4, 000 ± 1, 000
Packet Rate Incoming 620 packets/s 0.90 1.00 0.82 2, 000 ± 600
Packet Rate Outgoing 400 packets/s 0.85 1.00 0.75 1, 000 ± 300
Throughput Bidirection 69,000 B/s 0.91 1.00 0.84 800 ± 200
Throughput Incoming 43,000 B/s 0.86 1.00 0.77 400 ± 100
Throughput Outgoing 25,000 B/s 0.93 1.00 0.87 300 ± 100

Table 3: Attack performance on Alexa 251-500 dataset, after dnstt modifications

Technique Direction Threshold Accuracy Recall Precision Packets before Detection

Avg. Payload Length Bidirection 120 B 0.44 0.00 0.00 N/A
Avg. Payload Length Incoming 175 B 0.44 0.00 0.00 N/A
Avg. Payload Length Outgoing 70 B 0.56 0.25 0.56 10 ± 40

Packet Rate Bidirection 1,100 packets/s 0.94 1.00 0.88 2, 000 ± 1, 000
Packet Rate Incoming 620 packets/s 0.90 1.00 0.83 1, 200 ± 900
Packet Rate Outgoing 400 packets/s 0.85 1.00 0.76 700 ± 400
Throughput Bidirection 69,000 B/s 0.91 1.00 0.84 1, 100 ± 300
Throughput Incoming 43,000 B/s 0.86 1.00 0.77 600 ± 200
Throughput Outgoing 25,000 B/s 0.93 1.00 0.88 500 ± 100

with the threshold for the 100th percentile and we decrement the
percentile (i.e. increase collateral damage) only if the increase in
dnstt windows above this new threshold is ≥ 5%. In other words,
we assume there are at least 100x more non-circumventors than
circumventors and that a censor will not increase collateral damage
unless at least an equal number of circumventors is affected. For
average payload length, we manually picked thresholds by testing
scores that correspond to a percentile between 90 and 100 in normal
DoH data distribution, in increments of 1%.

Dataset Results and Analysis. Table 1 summarizes the traffic
characteristics tested, the threshold identified for each character-
istic, and the percentage of normal DoH and dnstt windows from
the distribution that were above this threshold. In general, average
payload length, packet rate, and throughput are higher in dnstt
windows than normal DoH windows. Our results match Ellens et
al. [7]’s observations on DNS flows. This is expected as more data
are transferred when tunneling webpages than in genuine DoH
requests and dnstt optimizes for maximum throughput by default.

A limitation of our analysis presented in Table 1 is that each win-
dow is given equal weight in our data distribution and long sessions
that contribute more windows can skew the data distribution. As
network traffic is inherently noisy and highly variable, our method
still offers an adequate approximation for distinguishing between
normal DoH traffic and DoH tunneling traffic. The percentages in
Table 1 are an initial exploration into the differences between dnstt
and regular DoH traffic. We explore the feasibility of turning these
characteristics into realistic attacks in Section 5.

5 CIRCUMVENTION DETECTION
ACCURACY

Using the session characteristics from Section 4, we developed
threshold-based attacks to detect DoH tunneling.

Attack Descriptions. An attack tracks traffic characteristics
for each session, updating them each 0.5 second tumbling window.
As before, a session is defined by a unique combination of source IP
address, source port, destination IP address, and destination port. As
soon as a characteristic of a session exceeds the threshold defined
by an attack, the session is labelled as circumvention and can be
blocked. The thresholds chosen for each attack are based on Table 1,
which seek to minimize the amount of DoH traffic present above
the threshold. Performance metrics are obtained by comparing the
attack’s labelling against the ground truth.

Attack Results and Analysis. In order to prevent over-fitted
results, we generated a second dataset using the method described
in Section 4, this time visiting the Alexa Global Top 251-500 web-
sites. The non-circumventor DoH dataset totalled 269MB, while
the circumventor dnstt dataset totalled 7.2GB. Table 2 shows the
performance metrics of each attack and the number of packets
analysed before correctly detecting a dnstt session. In total, attacks
were carried out over 1, 146 bidirectional sessions, 1, 100 incoming
sessions, and 1, 113 outgoing sessions. Accuracy, recall, and preci-
sion are calculated using standard statistical classification methods.
Recall is a measure of detection effectiveness, while precision is
a measure of collateral damage. Other than the average payload
length attack, all attacks had a 1.0 recall rate. That is, all dnstt ses-
sions were correctly identified. The throughput attack for outgoing
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Figure 1: ECDF Throughput

packets needed the fewest number of packets on average before
detecting circumvention. In terms of precision, the packet rate at-
tack for bidirectional sessions, as well as the throughput attack for
outgoing sessions performed similarly well. In practice, censors
might be more interested in maximizing the precision of their at-
tacks than maximizing the recall. Since our normal DoH dataset
was generated with a high-traffic user in mind, real-world DoH
datasets are expected to have much lighter traffic characteristics
than the thresholds studied here. That is, precision is expected to
increase with a real-world dataset.

dnstt Traffic Shaping. We modified dnstt to shape its traffic
to resemble normal DoH traffic characteristics, to evade the attacks
presented above. The dnstt server’s effective MTU was set to 100
bytes and the overall packet rate was lowered to 500 packets/s.
We changed the server’s MTU rather than the client’s MTU since
the server’s packets were often more than 1, 000 bytes larger than
the average sizes observed in our DoH dataset. With our modifi-
cations, packets can never be sent more frequently or have larger
sizes than the limits that we specified. This can open up new at-
tack options as the shape of the generated traffic will have clear
features. Houmansadr et al. [17] highlight the importance of elim-
inating distinguishing patterns in packet sizes and packets rates
to properly be unobservable when imitating a protocol. Therefore,
when designing packet size limitations and rate limitations into
DoH tunneling tools, there should an element of randomness when
converging around a desired limit.

Attack Results After Modifications. We generated a circum-
vention dataset for the above modified version of dnstt, visiting the
Alexa 251-500 sites using the same method described in Section 4
to produce 28GB of pcap files. This included 1, 169 bidirectional
sessions, 1, 123 incoming sessions, and 1, 136 outgoing sessions.
Table 3 shows the performance of our attacks on this dataset. The
modified dnstt sessions managed to evade detection on the average
payload length attack, for the bidirectional and incoming attacks.
Recall and precision were significantly decreased for the outgoing
direction as well. For packet rate and throughput attacks, our rate
limiting was insufficient to evade detection.

Figure 2: ECDF Page Load

6 USABILITY AFTER MODIFICATIONS
We explore the performance impact of traffic shaping on dnstt [10]
to resemble the normal DoH [16] traffic characteristics described
in Section 5.

Usability Experiment. To study the performance impact on
dnstt when it transmits smaller packets at a lower rate, we modified
the MTU and packet rate of dnstt, then compared download perfor-
mance of the modified dnstt with the original version. Specifically,
we compared the page load time and throughput. As mentioned in
Section 5, the packet rate was set to 500 packets/s and the server’s
effective MTU was set to 100 bytes. Both the original and modified
versions of dnstt load 100 websites from Cisco’s Top 1 Million Um-
brella Popularity List4 using phantomas5, a performance library
that we modified to proxy headless Chromium traffic using dnstt.
Each website was loaded 15 times and the throughput and page
load time were recorded for each. The dnstt server and client were
hosted on the same servers described in Section 4, located in Mon-
treal, Canada. We used Google’s DoH resolver, which has the fastest
performance, based on Fifield’s dnstt download speed tests.6

Usability Results and Analysis. Figure 1 shows the ECDF of
throughput for unmodified dnstt and modified dnstt. The modified
version of dnstt has a maximum throughput of around 25 bytes/ms,
while the original version of dnstt can reach throughput of up to
1124 bytes/ms. In fact, with the unmodified version of dnstt, more
than 85% of the sites had higher throughput than 25 bytes/ms. Thus,
dnstt’s throughput is decreased 27x after modifications. Our perfor-
mance results for unmodified dnstt are faster than those reported
by Fifield’s performance tests7, most likely because Fifield’s experi-
ments were over a trans-Pacific link. Figure 2 shows the ECDF of
page load time for unmodified dnstt and modified dnstt. All the
sites could be loaded with the original version of dnstt in under
36 seconds, and on average, a site could be loaded in under 3 ± 3
seconds. However, the modified version of dnstt can take as long as
7minutes to load a website, with 69± 71 seconds being the average
page load time. Only about 20% of sites could be loaded with the

4https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
5https://www.npmjs.com/package/phantomas
6https://www.bamsoftware.com/software/dnstt/performance.html
7https://www.bamsoftware.com/software/dnstt/performance.html

41

https://s3-us-west-1.amazonaws.com/umbrella-static/index.html
https://www.npmjs.com/package/phantomas
https://www.bamsoftware.com/software/dnstt/performance.html
https://www.bamsoftware.com/software/dnstt/performance.html


FOCI ’21, August 27, 2021, Virtual Event, USA Carmen Kwan, Paul Janiszewski, Shela Qiu, Cathy Wang, and Cecylia Bocovich

modified version of dnstt in 36 seconds, the maximum amount of
time it takes any site to load with the original version of dnstt.
dnstt’s page load time is increased 23x after modifications.

Despite the drastic decrease in throughput for our traffic shaping
defences, this highly censorship-resistant version of dnstt has a po-
tential use in combination with other anti-censorship tools. Many
tools such as Snowflake [9, 14], TapDance [25], and Conjure [12]
require a registration or bootstrapping step to connect clients with
circumvention proxies. These registration phases require very little
bandwidth (e.g., in the case of Snowflake the exchange of WebRTC
session description information), but need to be difficult to detect
and block. As such, ourmodifications to dnstt present a strong candi-
date for obfuscating the registration traffic of other anti-censorship
tools.

7 CONCLUSION
dnstt [10] is a prototype of DoH [16] tunneling for censorship
circumvention. We conducted an initial exploration of the traffic
characteristics of normal DoH traffic outlined in Table 1, and used
these characteristics to explore the effectiveness of threshold-based
attacks. We found that dnstt sessions can be detected with up to
100% accuracy using throughput and packet rate attacks, and the
collateral damage is as low as 12% on a high-traffic DoH dataset.
A significant next step would be to perform these attacks on real
DoH users’s traffic, to obtain a more accurate picture of the collat-
eral damage that would occur in a censored region. Furthermore,
we implemented defences for these threshold-based attacks and
found that defending against the average payload length attack
received the greatest decrease in performance, while the packet
rate and throughput attacks continued to perform well. This sug-
gests that stronger rate limiting is required if dnstt were to mimic
non-circumventor traffic. Finally, we measured the usability impact
of our defences on dnstt and found that the throughput is decreased
by at least 27x and the page load time is increased by at least 23x.
While dnstt’s usability is reduced to defend against our threshold
attacks, this modified version of dnstt can be paired with other
circumvention tools that require a censor-resistant bootstrapping
step. Repeating our experiments while running dnstt with DoT [18]
to compare with the results from running dnstt with DoH is an
interesting direction for future work.
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