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ABSTRACT
In many parts of the world, censors are continuously increasing
their capacity to fingerprint, identify, and block censorship resis-
tance tools to maintain control over what can and can not be ac-
cessed over the Internet. In response, traffic replacement, which
involves co-opting a steady stream of uncensored overt traffic to
serve as a perfect cover for censored covert content, has been devel-
oped in an effort to provide undetectable access to the open Internet
for those in censored regions. Despite the promise of this technique,
creating a suitable stream of uncensored overt traffic that is high
throughput, fingerprint and identification resistant, and does not
overburden the user to generate, is an underexplored area that is
critical to traffic replacement’s success.

To address this, we propose OUStralopithecus (OUStral for short),
a web-based Overt User Simulator (OUS) that browses the web
as a human would in order to avoid being detected by a censor.
We implement OUStral as a Python library that can be added to
an existing traffic-replacement system. To evaluate OUStral we
connect it to an existing traffic replacement system, Slitheen, that
replaces media data such as images. Additionally, we implement
WebM video replacement for Slitheen to demonstrate the high
throughput that OUStral is able to provide. We show that OUStral
evades being detected as a bot by state-of-the-art bot detection
software while providing a high-throughput overt data channel for
covert data replacement.

CCS CONCEPTS
• Social and professional topics → Technology and censor-
ship; • Security and privacy→ Privacy-preserving protocols.
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1 INTRODUCTION
There has been an increased effort by censors to quash dissent [56].
While tools to circumvent censorship do exist, they are not always
effective or easily deployable, and in some cases, due to these short-
comings, the use of anti-censorship and privacy-preserving tools
has resulted in severe punishment for users [12, 17].

Censors have responded to advances in censorship-circumvention
techniqueswith their own increasingly powerful methods to control
Internet access, such as DNS manipulation [4, 48, 51] and IP address
filtering [2, 24]. Prior studies examining censors’ behaviours have
found such practices as systematically probing [23] and performing
reconnaissance [27] to block censorship circumvention proxies,
and using deep packet inspection to distinguish censorship circum-
vention traffic [63]. Iterating on techniques that disguise both user
traffic itself and the endpoints used for censorship circumvention
is directly motivated by such findings.

Tunneling-based censorship-circumvention systems are a promis-
ing way forward in the cat-and-mouse game between censors and
censorship resistors. Tunnelling-based censorship circumvention
tools [5, 10, 26, 40] leverage popular deployed protocols to tunnel
censored covert traffic to the client within an uncensored overt pro-
tocol, making the technique resistant to adversaries monitoring
lower-level traffic. However these systems still struggle to per-
fectly conceal the patterns of the underlying, covert traffic [31]
and have likewise struggled to generate high-throughput overt
traffic that is replaceable yet undetectable by a censor. Traffic re-
placement [7, 9, 10, 50] is a newer technique that replaces traffic
generated through actual use of the overt protocol in a byte-for-
byte manner. This creates a high-bandwidth channel that maintains
the shape of streaming or video conferencing sessions.

In order for traffic replacement to work, there needs to be a
method of generating replaceable, overt traffic in which to tunnel
the covert traffic. Some existing techniques to generate replaceable
overt content use live or pre-recorded audio and video calls [5,
7] from users at each endpoint. This technique puts the onus on
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the users to generate overt content, which is not an ideal user
experience. Other systems use simple programmable scripts with
headless browsers to automate browsing websites for replaceable
content [8, 10, 50]. However, these implementations have not been
evaluated for their ability to evade detection, meaning that it is
unknown if a censor could simply detect and then block them to
stop the flow of replaceable overt content.

We present OUStralopithecus (OUStral for short),1 a new tech-
nique to generate replacable overt content that uses an Overt User
Simulator (OUS), a term borrowed from the traffic-replacement
system Slitheen [10], to automate the process of overt content gen-
eration while providing resistance to detection by a censor. OUStral
is suited to browser-based tunnelling protocols, and provides a
high-throughput covert channel. OUStral adopts a technique from
the world of HCI known as an impersonator bot [67], which aims
to browse the Internet exactly as a real human user would in order
to evade bot-detection software. Since recent work in bot detection
has shown that distinguishing bot-generated traffic from human-
generated traffic is still a difficult task [32, 41], OUStral wields im-
personator bots’ ability to evade bot detectors as a defence against
censors. Though it is unclear how closely a censor’s behaviour
would mirror that of a bot detector, being indistinguishable from a
common human user is desirable for several reasons. Being deemed
“human-like” increases the ease of browsing the Internet and de-
creases the probability that the OUS’ traffic would be flagged as
anomalous bot traffic. By using impersonator-bot-style browsing,
OUStral both evades detection by a censor and generates sufficient
replaceable overt traffic to make the user experience of accessing
covert data with a traffic replacing censorship systems much better
than in prior work. We implement OUStral as a Python library that
can be imported into existing projects. We then connect OUStral to
Slitheen, and tunnel covert traffic over WebM video to demonstrate
the effectiveness of our design.

In this paper, we expand on previous work in the censorship
circumvention space by designing techniques for web-browsing-
based overt user simulation that make accesses to decoy sites look
like real user behaviour. In addition to providing a novel approach
for overt content generation, we also demonstrate that traffic tun-
nelling using video protocols provides high bandwidth and low
overhead while not varying from the overt site’s true traffic pattern.
Our contributions can be summarized as follows:

• We design OUStral, a web-based Overt User Simulator
to generate replaceable human-like traffic based on previous
results from studying real user behaviour and evading bot
detection.

• We evaluate the performance of OUStral by connect-
ing it to Slitheen, a traffic-replacement-based censorship-
circumvention system that is capable of replacing images.
Additionally, we implement WebM video replacement in
Slitheen to further demonstrate the throughput and low
overhead of OUStral.

• We evaluate OUStral’s ability to evade detection by run-
ning it against state-of-the-art bot detection software.

1OUStralopithicus is a pun of Australopithicus, a close ancestral relative of humans,
harkening to the human-like behaviour of our system.

2 BACKGROUND
Though Internet censorship takes many forms, this work addresses
a subset of censorship known as Internet filtering, in which ac-
cess to content is selectively controlled by an adversary capable
of monitoring and blocking traffic that passes through their area
of influence. Through a combination of measurement studies, user
reports, and metrics of the usage of censorship circumvention sys-
tems, we know that censors not only target websites and services
with content deemed objectionable, but also censorship circumven-
tion tools themselves [27, 59]. This happens through domain name
or IP address blocking [2, 4, 24, 48, 51], but also through the use
of more advanced deep-packet inspection techniques by looking
for and blocking traffic with identifiable features of circumvention
tools (i.e., fingerprints) [18, 25, 30, 59, 63].

2.1 Media-based Covert Channels
To reduce the threat of fingerprinting and blocking via traffic anal-
ysis, many censorship circumvention tools modify traffic patterns
through a layer of traffic obfuscation. Different techniques include
making traffic completely unidentifiable [3, 19, 64], mimicking al-
lowed protocols [21, 47], and tunnelling traffic through allowed
systems and protocols [5, 10, 26, 40]. While each technique has its
own weaknesses and proposed attacks [31, 36, 62], we focus on
methods that tunnel censorship resistance traffic through existing,
unblocked protocols. Protocols that transport censorship resistance
traffic are often referred to as covert channels, with the protocol
itself termed overt traffic and the tunnelled data covert traffic.

Since many Internet protocols are too essential for a censor
to block, they make ideal candidates for tunnelling censorship
circumvention traffic. DNS, TLS, HTTP, and Voice-over-IP all lend
themselves well to tunnelling because they are commonly used or
can transmit a large amount of covert content. However, the key
to success lies in producing tunnelled traffic that a censor can not
detect, whether through identifying characteristics in packet size,
traffic shape, and so on. Geddes et al. [31] found that mismatches
between the traffic characteristics of the visible tunnel protocol and
the censorship circumvention traffic can allow a censor to reliably
detect the deviation from the intended use of the covert protocol.

Although tunnelling over DNS provides low throughput, its ubiq-
uity, frequent usage, and structure make it difficult to filter as long
as the tunnelled data is properly encoded as realistic responses to
DNS requests. Akbar et al. [1] propose DNS-sly, which is capable
of disguising a small amount of traffic in the responses of a coop-
erating DNS server without the use of an encrypted tunnel and
is suitable for circumvention systems that require low-bandwidth
registration channels for bootstrapping.

Web-based video and streaming services such as Voice-over-
IP (VoIP) and YouTube, on the other hand, offer a highly flexible,
high-throughput tunnel for circumvention traffic. FreeWave [38],
CovertCast [46], DeltaShaper [5], and Protozoa [7] all tunnel traffic
over video and audio channels. However, suppressing the identify-
ing patterns of the tunnelled traffic in these systems is difficult [31].
While FreeWave and CovertCast do little to hide the patterns of tun-
nelled traffic, DeltaShaper offers users a tunable trade-off between
throughput and censorship resistance by embedding tunnelled traf-
fic in carrier frames obtained from pre-recorded Skype calls or the



webcam as the user browses [5]. In subsequent work, Barradas et
al. [6] show that both DeltaShaper and CovertCast are vulnerable
to identification by a machine learning capable adversary able to
distinguish traffic based on packet lengths among other features.
Protozoa, the most recent proposal for a multi-media covert chan-
nel, replaces collected ambient video and audio data from a client
and proxy user with covert traffic to maintain the shape of normal
WebRTC traffic and thwart these state-of-the-art ML attacks.

Traffic replacement, the method of replacing generated overt
traffic byte-by-byte with covert traffic, is a stegonagraphic tech-
nique [43] that has roots in image steganography; for example,
the least significant bits of pixels in an image are replaced with a
covert message in a way that does not affect the visual look of an
image, passing without detection by an unsuspecting adversary.
While steganographic methods can be detected by an adversary
knowledgeable about the technique, recent work in the censorship
resistance space that replaces traffic in encrypted channels can
resist detection even by adversaries that actively look for it. Slith-
een [9–11] first proposed the byte-for-byte replacement of images
and later video and audio frames of web-browsing sessions. Water-
fall [50] expanded on this technique with asymmetric deployment
improvements and throughput optimizations. More recently, Proto-
zoa [7] used this technique to replace the media data of WebRTC
steams [7]. Protozoa reports the highest throughput yet for a traffic
replacement system and even outperforms less secure media-based
covert channels.

2.2 Replacable Traffic Generation and Bot
Detection

Though traffic replacement systems require a constant stream of
replaceable overt traffic, the designs of these systems tend to focus
exclusively on covert traffic concealment rather than the method
of overt traffic generation. Ensuring that the generated overt traffic
is also resistant to blocking by a censor is a largely unexplored and
often overlooked topic. Ideally, replaceable overt content generation
requires minimal involvement from the user, acting as a background
process that the user need not interact with. Additionally, care
must be taken to avoid implementations that may create network
traffic patterns that can be flagged and blocked by a censor looking
to choke the flow of replaceable overt content to a censorship-
circumvention system.

Traffic replacement systems in prior work have generated overt
traffic in a variety of ways. DeltaShaper [5] and Protozoa [7] rely on
video calls made on popular communication platforms. This traffic
provides a reasonable bandwidth but decreases usability somwhat
as the process is not automated and requires a user to either save
recorded video calls or use the system while engaged in a video call.
A user may reasonably be wary of using real-time video while using
censorship circumvention systems, despite these systems replacing
generated video data with covert data.

Waterfall’s solution to user-friendly overt content generation is
to use PhantomJS, a scriptable headless browser, to load a website
every second [50]. While this approach addresses the need for
overt content generation to not involve the user, the traffic patterns
generated are easily recognizable and therefore risk being blocked
by a censor.

Slitheen [10] and a recent iteration Slitheen++ [8] both use an
Overt User Simulator (OUS) to generate replaceable content while
browsing the Internet. Though the term OUS was introduced in
Slitheen, the functionality of the OUS itself was not particularly
concerned with simulating a user. Instead it uses a headless browser
(PhantomJS) to make multiple simultaneous overt requests that can
be tagged to indicate requests for covert connections and traffic
replacement. Identifying that Slitheen’s OUS may be recognizable
by censors, Birtel and Rossow [8] aimed to make Slitheen’s OUS
more realistic as one of Slitheen++’s improvements on the original
Slitheen design. To do this, they introduce a webcrawler into the
OUS that browses within a domain and adds thinking time between
requests, which they note negatively impacts the throughput. Both
the original Slitheen OUS and the Slitheen++ OUS meet the require-
ments of minimal user involvement and high bandwith. Though
Slitheen++ does indeed improve upon Slitheen in terms of recog-
nizability, neither system is capable of avoiding being detected by
state-of-the-art bot detection software as we show in Section 5.2.1.

As Houmansadr et al. [36] point out, minor inconsistencies in
imitations of common protocols are observable by censors, mak-
ing imitation a fundamentally flawed approach to unobservability.
When designing an overt traffic generating tool, it is important to
consider several details along the network stack, as well as typi-
cal human browsing behaviour, to prevent being distinguishable
from other traffic. As an example, PhantomJS, which was originally
developed for automating web page interaction [35], was used to
drive overt traffic generation for several prior censorship circum-
vention systems [8, 10, 50]. However, the use of PhantomJS can be
easily distinguished from browsers like Firefox or Chrome that a
typical human users might use; moreover, active development on
the browser has been suspended as of 2018 and users have moved
away from it entirely.

Guo et al. [32] make some early observations on bot detection
at lower network layers (network and transport) that replicate the
capabilities of a censor in our scheme; that is, the application data
is hidden by encryption and only lower level traffic is accessible
for analysis. Guo et al. find that the most effective features for
identifying bots involve differentiating Linux users from other OS
users along with packet features (sizes and timings). Therefore,
an implementation of an OUS that crawls the Internet to gener-
ate replaceable overt content should be flexible enough to run on
different operating systems.

Recent work onweb bot detection at the application layer utilizes
machine learning techniques to distinguish bots from regular users
based on significant features like click behaviour, time on pages,
and the depth of a requested page [33, 41, 53, 54, 58]. However,
using impersonator bots, introduced by Yang et al. [67], that lever-
age human web-browsing characteristics such as dwell time and
navigation within a site to impersonate human behaviour, make
distinguishing such bots from human users difficult at the applica-
tion layer—Iliou et al. [41] find that the more web traffic looks like
a normal user, the more difficult it is to detect.

This demonstrates the importance of considering human-like
behaviour all along the network stack when developing a tool to
generate human-like traffic and avoid detection. Both the typical



usage and current state of tools must be taken into account and com-
monly used versions of tools (as opposed to close approximations
or imitations) should be used wherever possible.

2.3 Deployment architectures
An overt-content generation scheme needs to be supported by a
system that is capable of replacing the traffic that is generated.
As we describe in Section 3, OUStral is decoupled from whatever
traffic replacement system it is connected to; however, deployment
strategies for both OUStral (or OUStral-like systems) and the traffic
generation system must be considered.

Perhaps the most important consideration when deploying an
overt content-generation system is that it must be deployed in such
a way that it can support a variety of protocols that can be used to
tunnel traffic. If the overt content generation system is deployed too
far down in the stack, it risks excluding perfectly viable protocols
and hindering itself in the event that a censor decides to block a
certain protocol. Another aspect to consider is that it should be
decoupled from the traffic-replacement system for ease of mainte-
nance and so that it can be easily run without user interference.
With these considerations in mind, generating overt content in a
web browser addresses both the need to support many protocols
while also limiting user interaction since browsers can be easily
automated. The ease of connecting a traffic-replacement system to
a web-browser based overt content generator depends on the ar-
chitecture of the traffic-replacement system. However, as we show
in Section 3, it can be as simple as a one-line change to connect an
overt content generator to an existing traffic-replacement system.

In addition to the inclusion of an OUS, the traffic replacement
system itself must itself be deployed. Traffic replacement requires
two vantage points at the covert channel, to insert and extract
tunnelled data in each direction. There are two main architectures
seen in existing work: an end-to-end deployment architecture that
uses hooks in the overt protocol software to replace generated
overt data before it is encrypted on each end, and an end-to-middle
deployment that intercepts the encrypted covert channel en route
between the client and an unsuspecting third party.

Protozoa [7] uses an end-to-end deployment architecture with
hooks in the WebRTC software implementation that replace video
and audio data after they are packetized into frames, but before they
are encrypted and sent on the wire. As a result, the traffic maintains
the shape of a regular video call but contains covert traffic in the
place of captured video and audio frames. An advantage of this
deployment model is the simplicity granted by control over the
ecosystem. Both endpoints run the same software with the same
hooks, eliminating the need for state machines. End-to-end censor-
ship resistance systems are also quite easy to deploy. In the case
of Protozoa, WebRTC makes deployment even easier by allowing
proxies to be run on home networks behind NATs and firewalls.
The deployment requirements are very similar to Snowflake [34],
a WebRTC-based censorship resistance system that has grown to
over 9000 participant proxies in 2021 run by volunteers through a
WebExtension in their browser.2 The downside of an end-to-end
deployment is that users need to be told which endpoints to con-
nect to, and any information that a regular user of a censorship

2https://metrics.torproject.org/collector.html#snowflake-stats

resistance system can find out can also be discovered by a censor.
Censors can then block these endpoints and prevent or significantly
degrade the use of the system. However, with the potential to sup-
port millions of proxies, the limits of enumeration have yet to be
tested.

Slitheen and Waterfall are both decoy routing (also known as
refraction networking) systems [8, 10, 22, 37, 44, 50, 57, 65, 66]
that envision an end-to-middle deployment where clients make
steganographically tagged connections to non-participant websites
that are intercepted by routers in the middle of the network. These
decoy routing “relay stations” perform an intentional man-in-the-
middle and process traffic packet-by-packet, decrypting TLS records
and replacing their contents with covert traffic. The decoy routing
model has a theoretical advantage to censorship resistance over
end-to-end systems by forcing censors to block large swaths of
the Internet, as they have to block all websites that route through
the deployed relay station. Work on optimizing the placement of
decoy routers aims to increase this collateral damage to a high
enough percentage of the Internet to make the blockage of decoy
routing infeasible, while also minimizing the required number of
deployments [13, 39, 49].

A known disadvantage of decoy routing systems is that they are
difficult to deploy. They require deployment at ISP-owned routers
that exist between censored users and popular third-party websites.
The only two currently deployed decoy routing systems were de-
signed specifically for maximum deployability, and have features
that preclude the traffic replacement techniques used by Waterfall
and Slitheen. TapDance [65] was the first widely deployed decoy
routing system [28, 60], and has supported up to 559,000 users as a
transport for the popular VPN service Psiphon [52]. TapDance does
not perform in-line blocking to avoid violating the Terms of Service
of most ISPs; that is, traffic that passes from a client to a third-party
site through a TapDance relay station is not diverted, dropped, or
held for processing but rather allowed to pass unmodified to its
destination. Covert traffic is copied to the covert destination and
tricks are used to delay the third party site from terminating the
connection. Conjure [29] further improves the deployability of de-
coy routing by directing clients to unused IP address space as their
overt destination rather than making connections to unsuspecting
third parties.

3 OUSTRAL
Censorship circumvention systems that rely on embedding, tun-
nelling, or traffic replacement face the problem of generating real-
istic overt traffic that, from a censor’s perspective, looks believably
like a real user. The generation method must be undetectable by an
adversary who has access to network-level monitoring capabilities;
otherwise it risks being blocked or used as evidence to persecute
users. To address this problem we created OUStral, an automated
overt user simulator and overt content generator. OUStral is de-
signed to be part of the client-side software in a censorship circum-
vention system and is available as an open-source library that can
be incorporated into existing censorship circumvention systems.3
OUStral is implemented as a bot that instructs a browser to create
many connections using the tunnel protocol (in this case HTTPS).

3Oustral is available at https://gitlab.com/oustral/oustral.

https://metrics.torproject.org/collector.html#snowflake-stats


Figure 1:WhenOUStral is run, a usermode is selected via the
command line. OUStral uses Selenium to connect to Slifox,
a modified version of Firefox. OUStral can then use Slifox
to browse the Internet in human-like manner to generate
replaceable overt content.

It navigates the web by mimicking human browsing behaviour,
therefore evading detection by a censor looking for identifying
traffic patterns. While previous work [10, 11, 50] showed how to
perform per-connection shaping of traffic flows corresponding to in-
dividual HTTPS connections, we additionally address the question
of inter-connection shaping: producing realistic patterns of HTTPS
connections.

We design OUStral to simulate human-like web browsing while
bearing in mind that 1) its behaviour should be sufficiently human-
like so as not to be flagged by bot-detection software, and 2) it must
generate enough replaceable overt content for the user to be able
to read covert content. To inform the design and implementation
of the “human-ness” of OUStral, we look to studies of how users
browse the Internet and impersonator bots [67] that imitate human
browsing behaviour.

Human browsing behaviours have been examined in a num-
ber of studies. Von der Weth and Hauswirth [61] find that human
users perform a variety of different actions (browsing actions) while
browsing the Internet. They measured the frequencies of each of
these browsing actions and found that 45.1% of actions were clicks
on links and 33% were navigations to new websites. Liu et al. [45]
found that user dwell time on sites (i.e., a user reading a web page
or watching a video) followed a Weibull distribution. A study of
Firefox users by Dubroy and Balakrishnan [20] found that per 100
actions, users had on average about four tabs open, that 45% of
tabs were only selected once, and 77.7% of switches away from
the current tab were to tabs that had already been viewed. Im-
personator bots [67], developed by Yang et al., leverage the two
main characteristics of web browsing: dwell time (the time a user
spends looking at a page without clicking on a link), and naviga-
tion between and within sites. Since we want OUStral to evade
detection by appearing to be human, we make use of these previous
works indicating that human-generated web traffic tends to follow
predictable distributions [45, 67].

We implemented OUStral using Selenium [55], a browser au-
tomation tool that has all the necessary capabilities to mimic how a

Figure 2: The OUStral state machine.

human would use a web browser. We used the Python version of Se-
lenium 4.3 and configured Selenium to have a common user-agent
(the most recent version of Firefox at the time of the experiments)
so that a censor would not immediately know it was a bot. OUStral
connects to a censorship circumvention system via Selenium’s Web-
Driver module that allows for the specification of which browser
binary to use (this setup is a one-line change) while browsing the
web. OUStral navigates between a list of overt websites (such as
news and social sites) that are not filtered by the censor, and alter-
nates between making a browsing action (opening a tab, clicking
on a link, navigating to a new site, etc.) and dwelling on a page to
simulate a user reading the page. In Figure 1 we show the inter-
action between OUStral and Slifox, a modified version of Firefox
(see Section 4.2) that we used for our implementation and testing,
though Selenium can be easily configured to use a wide variety
of browsers. Were OUStral to be widely adopted and used in real
deployments, it should of course allow overt sites to opt out of being
navigated in the manner of TapDance [65]. Sites opting out would
add an entry to their robots.txt file, which would be periodically
checked by the censorship resistance system software maintainers
(but not by OUStral itself, lest that check reveal it is itself an OUS
rather than a human user).

Since OUStral is implemented using Selenium and a browser, it
does not limit the protocols that can be used to tunnel covert traffic,
meaning that it is compatible with any browser-based censorship
circumvention system that uses traffic replacement.

3.1 Behaviour
OUStral’s behaviour has been carefully designed to implement
findings from prior work on human browsing behaviour. The first
action OUStral takes is to randomly select an overt site and navigate
to the home page of that site as a starting point, as shown in Figure 2.
Once the first request is completed, OUStral alternates between
dwelling and one of many browsing actions based on those studied
by Von derWeth and Hauswirth [61]. The possible browsing actions
OUStral can select are: clicking on an internal link, navigating to
a new site via the URL bar, returning to a previously visited page,
waiting for a download to complete, and not taking an action. We
also added the ability to open a new tab per a user study by Dubroy



Table 1: A sample from the OUStral logs showing the brows-
ing actions made by OUStral during a browsing session us-
ing the single-tab user mode.

Next action: new_addr
Navigating to https://...
Dwelling for 7.077051533814314
Navigating within site ...
Dwelling for 3.6133869493285653

and Balakrishnan [20] that investigated tab usage patterns among
Mozilla Firefox users and found that tab switching was among the
most frequent navigation mechanisms. OUStral determines which
browsing action to take probabilistically using the random.choice
method in Python’s numpy library; this method has an optional
parameter that sets the relative probabilities that each item in the
list is chosen. The probability of each action is based on the work
of Von der Weth and Hauswirth as discussed above. The probability
that a new tab is opened was implemented in the same way, using
the findings in Dubroy and Balakrishnan’s [20] study of Mozilla
Firefox users. The probabilities of each browsing action are displayed
in Figure 2.

When OUStral’s next selected action is to click on an internal
link, OUStral compiles a list of all the links on the site with the
same domain as the current site, then randomly selects a link in
that list to click on. Sample logs from a browsing session are shown
in Table 1.

Prior work by Liu et al. [45] found that dwell times in browsing
behaviour followed a Weibull distribution. Using these results, we
implemented our dwell time action to follow a Weibull distribution
by choosing a scale (λ) of 30 seconds and a shape (k) of 0.75.

OUStral does not simulate the duration of a browsing session.
This is because OUStral is run simultaneously as a user browses
covert content in another browser, meaning that the overt content
browsing session length is the same as the covert content browsing
session length. Since the covert content browsing session is already
in the control of a human user, the overt browsing session length
already meets the requirement of being human-like.

3.2 User Modes
Evidently, how people browse the Internet varies widely from per-
son to person and we do not claim that our implementation of
an OUS can perfectly mimic all the different ways people browse.
Therefore, we implemented OUStral to use user modes that are eas-
ily tunable and customizable to variations in browsing behaviour.
We implemented three user modes (shown in Figure 1): single-tab,
background-tab, and video-only.

Both the single-tab and the background-tab modes use the same
base behaviour implementation, that is, dwelling and performing
one of several browing actions as described in the previous section.
The difference between these two modes is that the background-tab
mode also opens an additional tab with a YouTube video running
in the background at startup. That video continues to play while,
in another tab, OUStral continues to browse.

The video-only mode is distinct from both the single-tab and
background-tab modes as it only browses YouTube to watch videos

rather than following the same dwelling and browsing actions
behaviour to navigate to new sites and follow links within a domain.
Instead in the video-only mode OUStral begins by navigating to
the YouTube home page, then selects a video to watch. OUStral
polls the page to determine when the video has finished playing
by determining if the “end-mode” css class is present on the video
div. When the video is finished playing, OUStral dwells, and then
chooses a link to another video in the recommended bar, then clicks
on that link. The video-onlymode has a repeating cycle of: watching
a video, dwelling, selecting a recommended video, watching the
new video, etc., until the browsing session is complete.

In order to diversify and meet the needs of different censored
regions, more user modes tailored to specific circumstances can
easily be added.

3.3 Evading Detection
Detecting bots is of interest to many different actors on the In-
ternet, and so many server-side machine learning and rule-based
techniques have been developed for larger-scale detection of bot
traffic [67]. Since bot detection is a well-established field, it is not
unreasonable to assume that a censor has many different tools at
their disposal to detect bot-based overt traffic generation techniques
and our implementation must take that into account.

OUStral is an open-source project, meaning that it must be as-
sumed that a censor has perfect knowledge of its behaviour. How-
ever, since OUStral’s behaviour is probabilistic and is configured to
use probabilities in line with a human’s browsing behaviour, should
a censor attempt to detect OUStral by looking for those probabilities
in traffic patterns, OUStral’s traffic will be lost in a sea of legiti-
mately human traffic. We also note that a censor would have to
observe OUStral’s traffic for an amount of time significantly longer
than a browsing session to accurately determine the probabilities
at which actions are occurring.

OUStral’s design is flexible, with several tunable parameters
meaning that the similarities across deployments can be minimized.
We also leave the design sufficiently open such that other user
modes may easily be added to suit many different situations. The
distribution used to determine dwell time, the probabilities of each
browsing action, and the user mode used to browse, can all be tuned
either in the code itself or by command-line arguments. It is easy to
change which browser OUStral uses by either using the drivers that
come with Selenium or to specify which binary Selenium should
use, meaning that the OUS can be easily configured to use browsers
such as Slifox (our modified version of Firefox).

It is important to note that there are considerations to be taken
when deploying OUStral to ensure that it does not easily tip off a
censor. For example, in an updated report by cybersecurity firm
Imperva [42] that was referenced by Guo et al. [32], Amazon was
found to be the most common bot-originating ISP in 2020, with
Chrome being the most common browser used by bots. Addition-
ally, Imperva recommended blocking traffic from easily accessible
hosting and proxy services such as Host Europe GMBH and Digital
Ocean and for versions of Chrome, Firefox, and Safari browsers
that are three years beyond End of Life. For browser versions two
years beyond End of Life, CAPTCHAs are recommended. OUStral
should therefore be used with recent versions of popular browsers.
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Figure 3: Our specific implementation of OUStral using
Slitheen [10]. OUStral navigates to an overt site using our
Slifox browser to establish a TLS session between Slifox and
the overt site. The Slitheen relay monitors encrypted traf-
fic to and from the client, looking for TLS sessions stegano-
graphically tagged to its own public key. The Slitheen relay
station receives upstream proxy data from the client in an
X-Slitheen header of a valid HTTP GET request to the overt
site. Once the station has relayed the upstream data to the
covert site, it stores the downstream responses in a queue.
The received overt data from video or audio streams is then
replaced with the queued data. The now concealed covert
data is returned to the client and then forwarded by Slifox
to the SOCKS frontend. The censor only sees the TLS hand-
shake and encrypted traffic to and from the overt site.

OUStral also has the advantage over the bots considered in this
report that it naturally runs on end-users’ personal machines, and
not in cloud-based hosting environments.

Finally, we note that future work on OUStral should refrain
from implementing interaction with forms, logins, or credentials
as this risks getting OUStral flagged for credential stuffing or other
malicious activity.

Work by Guo et al. [32] focuses on distinguishing malicious
CloudBots, such as those that Imperva identify as making up the
bulk of malicious bots on the Internet, from human users using
Machine Learning to analyze raw traffic. Lower-level traffic features
that Guo et al. found to be most useful for distinction are primarily
features that distinguish Linux operating systems from others such
as maximum segment size, TCP window size, and time to live.
OUStral is able to avoid many of the features Guo et al. [32] identify
by simply using a personal machine with an operating system other
than Linux.

We provide an overview of the details of our specific imple-
mentation, indicating the process by which Slitheen replaces overt
content generated by OUStral, in Figure 3.

4 WEB VIDEO STREAMING AS A COVERT
CHANNEL

In this section, we discuss the traffic replacement method we used
for testing our video-based OUStral user modes. We adopt a decoy
routing architecture for this work, but overt user simulators and

video-based covert channels can also be used in end-to-end deploy-
ment scenarios, as recently demonstrated by Protozoa [7]. We detail
our implementation of WebM traffic replacement for Slitheen that
was necessary to turn web-based video and audio streams into the
covert channel used by OUStral. Our method is based on the exten-
sion of Slitheen that applies a more generalized traffic replacement
method to the protocols and container formats embedded in HTTP
responses [9].

4.1 Traffic Replacement Overview
The original Slitheen [10] design uses a traffic replacement module
that parses HTTP and replaces the contents of leaf resources, as
determined by the Content-Type header of the HTTP response,
with covert data. A leaf resource is any HTTP resource that can be
replaced with covert data without affecting the pattern of network
traffic that a browser loading the decoy site would normally pro-
duce. For example, HTML resources typically contain references to
embedded images, style sheets, and scripts that the browser loads
by making additional HTTP requests. If this resource is replaced
with covert data, the browser would not make those additional net-
work requests and would produce different network traffic patterns
than a regular visit to the site. HTML is not a leaf resource, but
resources like images can be safely replaced because they will not
cause the browser parsing it to produce new network traffic.

The state machine of the replacement module in the original
Slitheen was relatively simple and only parsed the HTTP and TLS
data of decrypted packets. However, video and audio streams are
more complex than that paper suggests. In a typical web streaming
session, the client does not download the entire video in one request.
Instead, the client loads and plays the first part of the video before
requesting additional video data. Data that has been received by
the client but not yet played is colloquially referred to as the buffer
and buffering behaviour varies depending on the video playback
engine. If the video resource were replaced in its entirety, most
video playback engines would fail, preventing requests for future
parts of the video. These video resources contain data that the
browser needs to produce further network traffic in order to remain
true to the traffic patterns of a regular video streaming session.

Video resources still contain a large amount of leaf data: video
and audio frames that would normally just be output in the form
of graphics and sound to the user, which potentially provides us
with a high-bandwidth channel. Bocovich [9] describes a more
general method for finding and replacing leaf data; we can treat
the container formats used to transmit video and audio resources
as protocols, find the parts of these protocols that can be safely
replaced, and update the state machine at the relay station to parse
the container format and replace only leaf data with covert traffic.

4.2 Replacing WebM Resources
Our implementation of traffic replacement for video and audio
resources involves three parts:

(1) identifying the leaf data in the resource type we would like
to use as a covert channel,

(2) extending the TLS and HTTP state machine to parse and
identify the leaf content in these resources as they pass
through the relay station, and



(3) modifying the client browser software we use to load decoy
sites to extract the covert content and pass it to the user
through a local SOCKS connection.

There are multiple different container formats for transmitting
video and audio content. We decided to focus on WebM4 due to
its open-source specification and increased use by popular video
streaming sites. TheWebM container protocol is a sub-specification
of Matroshka5 in which containers are composed of various levels
of sub-containers, the elements of which are defined in no partic-
ular order. Container elements begin with a header that indicates
the element ID and size, followed by the element data. Some ele-
ments contain meta information about the resource such as track
numbers, timestamps, and seeking pointers. The leaf data in the
WebM container format are elements that contain encoded video
and audio frames. These are located in what are called Simple Block
elements (element ID 0xa3), inside the main Cluster container of
the WebM resource.

Figure 4 shows the state machine we used to replace leaf WebM
data. Because WebM exists inside of HTTP resources which are
encrypted with TLS, the final state machine we use is a composition
of the machine shown and the TLS/HTTP state machine given in
the original Slitheen paper [10]. Because Slitheen is restricted to
only being able to parse and operate on data within a single packet
boundary, we sometimes miss resources due to packets arriving
out of order at the relay station. To signal which resources have
been replaced, we modify the element ID to 0xef, an ID not used
by existing Matroshka container elements.

On the client side, we modify Slitheen to use a version of Firefox
we call Slifox6 as the browser it uses to load overt content. The
decision to modify Firefox rather than another browser was moti-
vated by ease of maintenance given that Firefox is an open source
project. In addition to the necessary changes to NSS (Mozilla’s TLS
implementation) to implement decoy routing capabilities, Slifox
has a modified version of WebM’s processing code that extracts
covert data from container elements with ID 0xef. However, we
found that more work was needed to allow the playblack engine
to continue processing and requesting more resources. Popular
video streaming sites (such as YouTube) often ship their own video
playback engines with the video resource as JavaScript resources.
The JavaScript handles some processing of the video and audio
frames and the requests for more buffered data. Feeding our man-
gled, covert-data filled frames to the engine caused it fail and stop
loading more video content. To solve this, we instead performed
another replacement at the client to feed blank stub keyframes to
playback engine to prevent errors. This is a technique also used by
Barradas et al. [7].

The original PhantomJS OUS implemented in Slitheen was con-
nected to Slifox to drive overt content generation. We replaced the
PhantomJS OUS with OUStral by configuring OUStral to use the
Slifox binary to browse the Internet. This change is an improve-
ment because PhantomJS is no longer supported or widely used
and as we show in Section 5, PhantomJS is easily detectable by bot
detection software.

4https://www.WebMproject.org/
5https://www.matroska.org/technical/specs/index.html
6Slifox is a portmanteau of Slitheen and Firefox.

Figure 4: A state machine of theWebM protocol. The shaded
green box indicates a state inwhich the replacementmodule
can replace overt data with censorship resistance traffic.

Our replacement of video and audio frames in web streaming
sessions allowed us to tap in to a very high-bandwidth channel
that OUStral already supported given that it supports any protocol
that it encounters while browsing. We provide the results of our
overhead and throughput experiments in the next section.

5 EVALUATION
5.1 Experimentation platform
We conducted several experiments on OUStral to evaluate its ability
to evade detection and to measure how much replaceable overt
traffic it is capable of generating. We also evaluated our video
and audio replacement improvements, described in Section 4, to
measure the overhead and bandwidth available for censorship-
resistant traffic. We ran these experiments using a test environment
of two networked Docker containers built with Ubuntu 18.04 LTS
images and run on a machine with 4 CPU cores and 16GB of RAM.

Our test environment emulates a typical decoy routing deploy-
ment scenario in which client traffic passes through a decoy routing
relay station deployed on a router in the middle of the network.
The client container runs a SOCKS proxy connected to Slifox and
OUStral and exposes port 1080 to the local machine. To send and
receive covert traffic, processes on the local machine would then
use 127.0.0.1:1080 as a SOCKS proxy. The client container is net-
worked to the relay station container using veth pairs, so that all
client traffic to and from the outside Internet is sent through the
relay container. We illustrate our experimental setup in Figure 5.

5.2 Evaluation of OUStral
5.2.1 Detection and Evasion. There are two places that OUStral
could be detected: by a censor observing traffic between the relay
station and the client, and by the websites that OUStral is browsing.
We wish to measure how detectable the traffic generated by OUStral
is as being generated by a bot. To separate out the effects of the
traffic replacement scheme attached to OUStral, for the purposes
of this section, we disable the relay station container, and allow
the bot detector (as would be used by the end website or a similar
detector by the censor) to view the traffic directly output by the
client container, as it would in a real deployment.

https://www.WebMproject.org/
https://www.matroska.org/technical/specs/index.html


Figure 5: The experimental setup of our throughput exper-
iments. We run the client and relay code separately in two
different Docker containers. Traffic to and from the client
is routed through veth0, such that is passes through the re-
lay station on its way to and from the outside Internet. This
mimics a decoy routing deployment. The user can then con-
nect to the client software on port 1080 to tunnel censorship-
resistant traffic, similar to a normal SOCKS proxy.

We compare our implementation of a human-like OUS to three
existing overt content generation schemes (Slitheen, Waterfall, and
Slitheen++) in addition to an actual human browsing the Internet.
The original implementation of an OUS in Slitheen used a modified
version of PhantomJS [35], a now discontinued scriptable headless
browser, and naively reloaded the same site over and over with
no crawling or human-like behaviour. Waterfall [50] uses vanilla
PhantomJS as the framework for its OUS as well. The Waterfall
OUS also only loaded a single site, but it waits one second between
page refreshes. Slitheen++ extended the original Slitheen OUS by
implementing “Think Time”, which we refer to as dwell time in our
implementation of OUStral.

We determine if OUStral risks being blocked (and therefore block-
ing the flow of replaceable overt content) by the sites that it is
browsing, or by the censor. We emphasize that OUStral is not a bot
that attacks the websites it browses. OUStral does not perform cre-
dential stuffing, denial of service, or other attacks that would harm
the website or its operators. However, OUStral could be blocked by
a website as part of the website’s protection mechanisms that use
machine learning to determine wether or not it is a bot. Due to the
general unavailibility of data sets of human browsing behaviour,
we used Cloudflare’s Bot Detection Software [16] to determine if
OUStral could be blocked by the sites it browses, since Cloudflare
does have access to such data, upon which it can train its system.
Cloudflare’s Bot Detection system uses machine learning, rulesets,
and heuristics to determine if traffic is human or bot generated and
provides information about the “human-ness” of each request to a
website to the website operator. For each request, a score from 1
to 99 is assigned to that request, 1 being certainly bot-generated
and 99 being certainly human-generated [15, 16]. CloudFlare rec-
ommends blocking any traffic with a score of at most 30 [14]. We
chose to use Cloudflare’s machine-learning based detection over
deploying our own machine-learning evaluation due to the quality
of data that Cloudflare is able to access.
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Figure 6: A CDF of the Cloudflare Bot Management scores
assigned to Slitheen-generated (red, dot line) and Waterfall-
generated (green, dashed line) which overlap since both had
consistent bot scores of 1, Slitheen++-generated (purple, dot
dashed line), human-generated (blue, long dash line), and
OUStral-generated (black, solid line) requests to the testweb-
sites.

Unlike a typical adversarial censor that would only have access to
the encrypted TLS traffic to analyze, Cloudflare’s Bot Management
system has access to the HTTP queries, responses, and headers
inside the TLS connection, making it a more powerful bot detector
than a censor could typically use to monitor OUStral traffic. We
posit therefore that a censor attempting to detect OUStral would be
less powerful in detecting non-human traffic than Cloudflare’s Bot
Management system. Since we are unable to test OUStral against
a real censor, the intent of this evaluation using Cloudflare is to
sanity check that OUStral cannot be detected by a commonly used
tool that approximates a censor’s capabilities.

We deployed Cloudflare’s Bot Management system in front of
our own mirrors of popular news sites and several subreddits. We
listed the mirrored sites as available overt sites for OUStral to use
and logged the bot scores in the request logs for each of the sites.

The CDF in Figure 6 shows the results of running our OUS-
tral implementation, Waterfall, Slitheen, Slitheen++, and human-
generated requests against Cloudflare’s Bot Management system.
Cloudflare rejects any connection that does not use TLS 1.3, so we
also implemented a simple client-side proxy for the systems that
used PhantomJS in order to force a TLS version upgrade. Without
forcing the version upgrade, connections from PhantomJS were
outright rejected by Cloudflare and were not assigned a score. We
note that Waterfall, Slitheen, and Slitheen++ all have a much lower
than “human” bot score. We expect that the PhantomJS headers are
seldomly seen by Cloudflare’s Bot Management system and thus
requests made through PhantomJS are immediately flagged as likely
bots. Importantly though, Slitheen++, which also used PhantomJS,
performed far better than both Waterfall and Slitheen by using
some simple implementations of human-like browsing, namely
user agent randomization and a brief pause between requests; i.e.,
“think time”.



Asmentioned above, we ran OUStral unconnected to the Slitheen
relay station container, using Selenium’s driver for Firefox 70.0.1
(the most recent Firefox release at the time of the experiment) in
the client Docker container (described in Section 5.1). We used the
single-tab user mode since we did not have access to any cloned
YouTube videos for the other user modes. During a multi-hour
browsing session, OUStral generated 471 requests. In order to com-
pare OUStral’s scores to that of a real human, we generated 470
requests by navigating the cloned sites manually, browsing the
websites as we would normally. Note that the human-generated
scores were not generated as part of a large user study; therefore,
they only serve as a reference point and not novel research about
users’ browsing behaviour.

While there are differences between the human-generated scores
and the OUS-generated scores, as shown in Figure 6, all of OUStral’s
scores were consistently greater than the recommended cut-off
point (30) [14] and are therefore far out of the range that would
alert a website operator (who unlike the censor has visibility into the
unencrypted HTTP session) of non-human traffic. As mentioned
above, a censor would be even less likely to detect OUStral as
non-human traffic to overt sites. Additionally, given that OUStral
contains tunable elements such as the amount of dwell time, links
clicked, user mode, and list of browsable sites, future work could
look towards optimizing these scores for identification as human.

Given our results, and that Cloudflare’s advanced Bot Manage-
ment system with insight into the HTTPS stream is unable to flag
our OUStral-generated traffic as generated by a bot, we argue that
a censor, with a more limited view of the stream would have even
more difficulty detecting our OUStral-generated traffic as being
unnatural.

5.2.2 Throughput. Tomeasure the overall throughput of censorship-
resistant traffic generated by OUStral, we instrumented our imple-
mentation of Slitheen to report the total bytes of received, replace-
able data for each of OUStral’s user modes. We calculate the average
throughput of our system in each mode to be the total number of
replaceable bytes received divided by the total time that bytes were
recorded for each run at the Slitheen relay.

First we used Slitheen’s relay station instrumentation to mea-
sure the throughput of OUStral using the single-tab user mode.
The results are shown in Figure 7. We ran ten 10-minute browsing
sessions and had OUStral crawl the same cloned sites used in Sec-
tion 5.2.1. Though these sites could contain WebM videos as well
as other image data (JPG, PNG, etc.), we purposely avoided WebM
streams for these measurements to distinguish throughput from
the video-only mode. We found that OUStral’s dwell times caused
burstiness and that long dwell times had a significant effect on the
amount of overt data OUStral was capable of generating. The mean
throughput for OUStral in single-tab mode was 117.1 kbps with a
maximum reported throughput of 164.1 kbps and a mininmum of
64.6 kbps.

We then took ten measurements for a duration of ten minutes
each of OUStral streaming videos using its video only user mode.
The video only user mode navigates to YouTube’s home page, ran-
domly selects a video to stream and then plays the video until
the end before navigating to the next video. We provide a step
function that show the total bytes received over time for all ten

Figure 7: A step function of the throughput received by re-
placing leaf content while running the OUS in single-tab
mode.

Figure 8: A step function of the overt channel throughput
achieved using OUStral’s video only user mode. This plot
shows the replaceable bytes received (in MB) over time for
ten runs of OUStral using the video only usermode. For each
run, the video onlymode used the Slifox browser to navigate
to YouTube. It randomly selected a video from the YouTube
homepage and navigated to a different random video once
the video had finished playing. Each run initiated with a dif-
ferent video and followed a unique browsing path.

runs in Figure 8. The mean throughput for OUStral in video-only
user mode was 581.7 kbps with a maximum reported throughput
of 2023.3 kbps (2.0Mbps) and a mininmum of 78.2 kbps. There is
an extremely large amount of variance in our bandwidth measure-
ments. This is unsurprising given that Figure 8 shows the highly
variable amount of wait time while the video playback engine of
Slifox waits to buffer more content.

There is a significant amount of variation between different overt
video streams. We note that video streams with more frequent
requests for more video data, and therefore shorter buffer times, are
better for censorship-resistant traffic that requires multiple network
round trips between the user and the covert site.



Figure 9: A step function of the overt channel throughput
achieved using OUStral’s background video user mode. This
plot shows the replaceable bytes received (in MB) over time
for ten runs of OUStral using the background video only
user mode. For each run, the background video mode used
the Slifox browser to navigate to a 10 minute YouTube video
while performing browser actions in a separate tab(s).

Although we achieve reasonable overall throughput, the bytes
received are bursty, and there are long periods during which the
client receives no downstream data. This is due to both the time
required to choose and start a new video as well as the buffering
behaviour of pre-recorded video streams in which the client will
load a large amount of content in a buffer, and then play back that
video before loading more content.

We finally run OUStral with the background video mode, which
has OUStral open a tab to a YouTube video and leave it to play while
performing one of the browser actions in another (or several other)
tabs. We took ten measurements for a duration of ten minutes each
of OUStral using its background video user mode. We had OUStral
navigate to and play the same long video in the background tab
and then perform browser actions simultaneously in a separate
tab(s). We would expect this to achieve a combined throughput
of the video-only and single-tab measurements and indeed we
see shorter periods of buffer time than in the video-only mode in
Figure 9, which shows the total bytes received over time for all ten
runs of the background video user mode. The mean throughput
for OUStral in the background-video user mode was 721.6 kbps
with a maximum reported throughput of 1528 kbps (1.5Mbps) and
a minimum of 144.4 kbps.

We hypothesize that using livestreams as the background video
would significantly reduce the buffering time still present in our
background video mode results, but as the majority of livestreamed
content utilizes MPEG-4 or MPEG-TS format, rather than theWebM
format, we save the analysis of livestreamed video tunnels for future
work.

We also note that there is a significant loss in throughput specific
to our Slitheen implementation due to the difficulties of parsing
on packet boundaries at a decoy routing relay station that would
not occur in an end-to-end deployment model such as that used by
DeltaShaper [5] or Protozoa [7].

5.3 Improved Traffic Replacement Metrics
To create a baseline for our OUStral evaluation and to show what is
possible given our WebM video and audio stream implementation
for Slitheen, we additionally measured the overhead of our system.
We measure the overhead as the amount of overt traffic that is
needed to support Slitheen’s covert streams. For reference, we
compare our overall measurements of our Slitheen implementation
using OUStral to the current state of the art traffic replacement
systems and find that our results are comparable.

5.3.1 Overhead. In order to take full advantage of OUStral, we
implemented WebM video replacement in Slitheen. To give an idea
of the impact of adding a video channel to an existing censorship
circumvention system, we measured the overhead of WebM video
replacement in Slitheen. We calculate the overhead of our system to
be the ratio of the total traffic received by the client to the amount
of tunnelled covert traffic received. The overhead of our system
is necessarily strictly larger than one, as preserving the illusion
of the client’s regular use of video streaming services requires
that we replace only leaf data, and not the other data, headers, or
metadata needed by the protocol. Our goal is to minimize this over-
head as much as possible, both to improve the user experience of
censorship-resistant browsing, and to minimize the number of de-
coy connections needed to provide a sufficient amount of tunnelled
bandwidth.

We performed 100 ten-minute browsing sessions using OUS-
tral. For each connection we measured the bytes of leaf data and
compared that to the total number of bytes received by the client:

overhead =
total bytes received

covert throughput

We found that the mean overhead was 4.7 (±1.6), meaning that for
every byte of tunnelled traffic the user receives 4.7 bytes of total
traffic. We note that we compute the overhead pessimistically: in
our overhead calculations, the total bytes received includes TCP/IP
headers, retransmits, etc., sent to the client while the covert traf-
fic only includes traffic that Slitheen was able to replace at the
application layer.

Adding WebM replacement to Slitheen had very low overhead
compared with other similar tunnelling systems that provide de-
fences against sophisticated traffic analysis attacks. Our comparison
in Section 5.3.2 shows that overhead in our systems is lower than
the original Slitheen system. At the same time, we maintain Slith-
een’s strong defences against detection. The overhead of our video
streaming web browsing traffic is a vast improvement over the over-
head presented of Slitheen [10]; by replacing just image resources,
the mean overhead was about 20 (± 50) times the throughput with
the large variance caused by the different ratios of image content
to total content provided by each overt site. Thus, by moving from
only replacing the images of overt sites to replacing the video and
audio frames of streamed video content, we provide 4 times as much
covert data as the original Slitheen system for the same amount of
overt data.

We suspect that the overhead produced by our system can be
reduced further through investigations into the leaf data of video
and audio resources. Our replacement was very conservative and
it is possible that much of the video streaming metadata can be



Table 2: A comparison of the overhead induced by existing systems that use protocol appropriation for censorship resistance.
We measure overhead as the bytes of total traffic divided by the bytes of censorship resistance traffic. Some measurements
were not reported in previous work and so receive an “Unknown” with a qualitative evaluation based on reported system
descriptions.

System Protocol Overhead Throughput Traffic Shaping

DeltaShaper [5] VoIP 2 7 kbps  
Slitheen [10] HTTPS 20 Unknown (low)  
Waterfall [50] HTTP/HTTPS Unknown (low) Unknown (high)  
Slitheen + OUStral (This work) WebM 4.7 up to 2.2Mbps  
Protozoa [7] WebRTC Unknown (low) up to 1.4Mbps  
Conjure [29] HTTPS Unknown (low) 100Mbps #

safely replaced with covert content while maintaining the same
overt traffic patterns. We leave a further reduction of the overhead
to future work.

By adding a video replacement channel to Slitheen, we were
able to take full advantage of OUStral’s ability to support video
channels while maintaining a low overhead, maintaining Slitheen’s
strong defences, and generating a large amount of replaceable overt
content.

5.3.2 Comparison to existing systems. Table 2 provides a compari-
son of the work we did to extend Slitheen’s traffic replacement for
our OUStral evaluation (i.e., implementing WebM traffic replace-
ment) to other recently proposed censorship circumvention systems
that use tunnelling methods. We note that while our overhead and
bandwidth measurements could be improved with optimizations
in what constitutes leaf data, our implementation does perform far
better compared to Slitheen [10] and DeltaShaper [5]. Our method
also defends against an adversary capable of performing traffic
analysis without making assumptions about the computational re-
strictions of censors which means that our system will continue to
be secure in the future as machine learning techniques for network
classification improve.

At an average throughput of 581 kbps and achieving up to 2.2Mbps
we provide high throughput comparative to previous tunnelling
systems that perform some kind of traffic shaping to hide traffic
patterns (i.e., DeltaShaper [5], Slitheen [10]).

In addition to throughput, we provide inter-connection shap-
ing both due to the use of a web browser that loads all resources
associated with an overt site and our work on overt user simu-
lation. Waterfall [50] is another system in the decoy routing and
tunnelling space that uses the same basic replacement technique
as Slitheen but claims higher throughput and lower overhead due
to the replacement of non-leaf, but cached resources. Although
they do not provide measurements on their exact throughput, we
suspect that our improvements would still outperform Waterfall as
video and audio resources cannot be cached and if they are replaced
as a whole, the video metadata will be overwritten and the playback
engine will fail to request more buffer. Our method provides not
only more throughput but also prevents identifiable traffic patterns
in the dynamic resource request patterns of video streaming sites.

The results of our experiments show that our system is well
suited for censorship-resistant traffic that requires a large amount

of downstream bandwidth but minimal back-and-forth communica-
tion between the user and the covert site compared with the current
state of the art. We perform very well compared to existing systems
in loading large covert sites over time.

Protozoa [7] reports a maximum throughput of 1.4Mbps as well
as much improved latency. OUStral has only been implemented to
support web browsing traffic and so is incompatible with systems
like Protozoa that require video and audio frames to mimic a video
call. An interesting direction for future research would look to
making OUStral more versatile so that it could seamlessly integrate
with Protozoa-like systems.

6 CONCLUSION
In this paper we presented OUStralopithicus (OUStral for short),
an Overt User Simulator that generates human-like overt traffic
for traffic-replacing censorship resistant tunnelling systems. We
further demonstrate that such a tool can be used in tandem with
high-throughput protocols such asWebM in order to provide strong
resistance to traffic analysis attacks.

We find that combining traffic replacement with popular high-
throughput protocol implementations and overt user simulation
is an effective technique for hiding both the censored traffic and a
user’s participation in the system itself. We provide not only shap-
ing for each outbound flow from the client, but also inter-connection
shaping to defend against censors that evaluate a client’s traffic
over time for suspicious behaviour. By carefully selecting which
protocols to use for traffic replacement, we leverage a censor’s un-
willingness to block an entire protocol and provide a way to tunnel
covert traffic to users even as censorship activity becomes bolder.

Our results show that our method of user simulation to gener-
ate overt traffic tunnel traffic successfully evades sophisticated bot
detection infrastructure and therefore can appear as a human user
operating within the censor’s bounds. In combination, we believe
that traffic replacement and overt user simulation can give cen-
sorship resistors the upper hand in the fight for a free and open
Internet.
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