
Pryde: A Modular Generalizable Workflow for Uncovering
Evasion Attacks Against Stateful Firewall Deployments

Soo-Jin Moon†⋆, Milind Srivastava†⋆, Yves Bieri§, Ruben Martins†, Vyas Sekar†
†Carnegie Mellon University, §Compass Security

Abstract—Stateful firewalls (SFW) play a critical role in secur-
ing our network infrastructure. Incorrect implementation of
the intended stateful semantics can lead to evasion opportuni-
ties, even if firewall rules are configured correctly. Uncovering
these opportunities is challenging due to the (1) black-box and
proprietary nature of firewalls; (2) diversity of deployments;
and (3) complex stateful semantics. To tackle these challenges,
we present Pryde. Pryde uses a modular model-guided workflow
that generalizes across black-box firewall implementations and
deployment-specific settings to generate evasion attacks. Pryde
infers a behavioral model of the stateful firewall in the presence
of potentially non-TCP-compliant packet sequences. It uses this
model in conjunction with attacker capabilities and victim
behavior to synthesize custom evasion attacks. Using Pryde,
we identify more than 6,000 unique attacks against 4 popular
firewalls and 4 host networking stacks, many of which cannot
be uncovered by prior work on censorship circumvention and
black-box fuzzing.

Index Terms—network security, stateful firewalls, evasion at-
tacks, black-box modeling, TCP

1. Introduction

“Well, let’s just say I know a little girl who can
walk through walls.” – Charles Xavier [1]

Stateful firewalls (SFWs) play a critical role in securing
network infrastructure across enterprise [2], industrial [3],
and cloud networks [4], [5]. Unlike simple access control
lists, SFWs track individual TCP connections to determine
which packets are forwarded. For instance, a canonical
policy is to allow packets only on connections that have
been previously established by hosts inside the network.

Semantic errors in the SFW implementation open the
door for external attackers to evade the SFW and attack
internal hosts. For instance, some SFW implementations
incorrectly process specific packet sequences (e.g., a SYN
followed by an ACK followed by a RST) and forward
malicious traffic to the internal network even when a con-
nection has not been established by an internal host; thus
evading the SFW. More generally, there could be many such
semantic errors in an SFW implementation that introduce
vulnerabilities. Such errors fall outside the scope of prior

. * These authors contributed equally to this work.

work on firewall rule checking [6], [7], [8] as evasion can
occur even if rules are correctly configured.

Given the diversity of SFW implementations and de-
ployments, operators need tools to automatically uncover
semantic vulnerabilities, satisfying two key requirements:
• Generalizable across black-box SFWs implementations:

Many SFW implementations are proprietary and acquired
as closed packages (e.g., hardware boxes, closed VMs or
containers). There is no access to code or internal details.
Thus, we can only assume black-box access to firewalls
and prior work on firewall code analysis (e.g., [9], [10])
does not apply.

• Generalizable across deployments: The configurations
and capabilities of various network hosts impact the se-
curity posture of the deployment. For e.g., attackers con-
trolling an internal host could use it to spoof packets, or
a victim stack with a legacy OS could accept malformed
TCP packet sequences. Thus, we need a framework to
handle the diversity of deployments and attacker capa-
bilities, in reasoning about potential SFW evasion oppor-
tunities. This rules out prior work on protocol fuzzers
(e.g., [11], [12]), automata learning (e.g., [13], [14]), and
censorship circumvention (e.g., [15], [16]) that assume a
fixed deployment.

Given such a framework, operators can use the findings
to work with vendors and take appropriate measures. For
instance, they can update firewall versions or configurations
to quarantine devices, block specific packet sequences, or
drop spoofed packets.

Building such a framework entails addressing fundamen-
tal state-space explosion challenges [17] across multiple di-
mensions including the complexity of SFW implementations
and the large space of input packet sequences. Together,
with the diversity of attack capabilities and victim stack
implementations, uncovering evasion attacks is challenging.
We elaborate on this in §2.

To tackle these challenges, we design Pryde1: a modular
model-guided workflow to generate evasion attacks. We
explicitly decouple SFW- and deployment-specific sources
of state-space complexity to reduce the search space. Given
the diversity of an attacker’s downstream goals (e.g., lat-
eral movement, remote code execution), Pryde supports the
flexibility to define attack success criteria such as sending a

1. The name Pryde is inspired by the Marvel superhero Kitty Pryde who
can walk through walls [1].

malicious payload to a victim vs. receiving an ACK to sent
malicious data. Our design contributions include:
• A scalable black-box model inference approach to reason

about the behavior of stateful firewalls that considers non-
compliant TCP packet sequences relevant for evasion.

• A practical and extensible model-guided workflow to
specify deployment scenarios and SFW models in a
model checker [18]. We design compact SMT represen-
tations and refinement heuristics to efficiently uncover
semantically-distinct attacks.

Findings: We evaluate Pryde against 4 popular SFWs2

(anonymized as FW-1 to FW-4) and 4 victim stacks. Our
choice of SFWs includes 3 commercial-grade vendors (2
available from the AWS EC2 marketplace [19]) and a pop-
ular open-source vendor. Our choice of victim stacks (§6) is
representative of real-world vulnerabilities (e.g., [20], [21]).
Our key findings are:
• Pryde generates >6,000 successful and unique evasion

attacks, 2-3 orders of magnitude higher than black-box
fuzzing and censorship circumvention algorithms [15]
(Finding 1).

• Pryde’s generalizable workflow generates successful at-
tacks customized to a firewall and deployment setting, as
attacks don’t translate well across different settings (Find-
ing 7). Pryde finds attacks against diverse firewalls and
victims, with and without insider threats (details in §3.1),
and against multiple attacker success criteria (Figure 3).

• Pryde helped uncover many counter-intuitive and subtle
firewall-specific behaviors leading to successful evasion
(as well as resilience). For instance, we discovered that
FW-3 forwards ACKs before a TCP handshake is even
initiated; a behavior that led to subtle attack patterns
(Finding 4). In another example, FW-1 actively spoofs
RSTs in response to unwanted packets, to thwart many
attacks (Finding 3).

Vendor disclosure: We have disclosed our findings through
multiple iterations of Pryde to all 4 vendors. We shared
video demos of the attacks and scripts for reproducing them.
All vendors acknowledged our initial report. FW-1 and FW-
4 vendors asked to replicate our study on newer versions
and we found successful attacks against them as well. FW-
3 vendors mentioned that later firewall releases enabled
stricter checks by default, which might thwart our attacks3.
However, we found successful attacks even with the checks
enabled (more details in Appendix A).

2. Background and motivation

In this section, we provide background on stateful net-
work firewalls and their typical deployment. Then, we moti-
vate the need for uncovering evasion and discuss why prior
work is ineffective in our problem setting.

2. Due to the sensitive nature of the findings and vendor conversations,
we anonymize these vendor names.

3. This check was enabled after our first disclosure in Sep 2020.

Internal Network

(VLAN1)

External Network

(WAN)

FW-2
(commercial)

LAN WAN: allowed
All others: blocked

Internal Network

(VLAN2)

Host-1: Attacker

Host-2: Critical server

Host-3: Compromised device

(a) Network setup showing an external attacker (Host-1),
a stateful firewall (FW-2), a critical server (Host-2), and a
compromised IoT device (Host-3). Host-3 cannot observe or
talk to Host-2.

Host-2
(Server)

Host-3
(IoT device) FW-2

Host-1
(Attacker)

[S, 10000, 0]
[S, 30000, 0]

[SA, 830, 30001]

[SA, 30003, 833]

[R, 833, 0]

[DATA, 30001:30006, 831]

[A, 0, 30006]

[A, 0, 831]

[A, 0, 30006]

FW-2 forwards
attacker DATA
to Host-2
Host-2 responds
with an ACK

(b) An attack uncovered by Pryde shown as a timing diagram.
This diagram shows an exchange of packets between different
hosts across FW-2, with the format [TCP flags, seq, ack].

Figure 1: Motivating attack scenario showing that an
internal host can accept malicious data sent by an ex-
ternal attacker even with a correctly configured firewall

2.1. Background on stateful firewalls

Stateful firewalls (SFWs) are critical to blocking un-
wanted access to protected networks from untrusted network
segments. In this work, we consider an SFW operating at
the network layer. An SFW decides to drop or forward a
network packet based on the 5-tuple defining a connection,
(src-ip, src-port, dst-ip, dst-port, protocol), and the config-
ured rules. Typically, an SFW is configured with rules of
the form: {interface, 5-tuple}→action where interface refers
to the network interface where incoming TCP packets are
captured. The SFW tracks TCP connection states and uses
the configured rules to determine the actions to take.

A common configuration is to drop packets from a less
trusted network segment that do not belong to a connection
already initiated and established by an internal host [22].
For instance, we can allow internal hosts to initiate a
connection to cmu.edu and also allow the return “data”
packets from cmu.edu to arrive at the host that initiated the
connection. However, other unsolicited TCP packets from
cmu.edu should be dropped. This logic is the “stateful”
part; where the SFW needs to check if a packet belongs to
an existing connection. To this end, the SFW logic considers

TCP/IP header fields such as source/destination IPs and
ports, TCP flags, and sequence/acknowledgement numbers.
For instance, it may check whether a given TCP packet has
seq/ack numbers set within an expected window. Based on
this stateful logic, the packet will be forwarded or dropped.

2.2. Motivating scenario

We now describe a motivating scenario using a subtle
attack we uncovered using Pryde. The attack demonstrates
how an attacker can evade SFWs and attack an internal host
even if best practices are followed.

Consider the setting in Figure 1a with 3 hosts and a com-
mercial firewall FW-2 (anonymized). Host-1 is an external
attacker. Host-2 is an internal server behind FW-2 that is
running Ubuntu 11.04. Host-3 is a low-security IoT device
that has been compromised out of band [23] (details in §3.1).
The network operator follows best practices and separates
critical servers, like Host-2, from low-security hosts, like
Host-3, using network segmentation (e.g., VLANs). Thus,
Host-3 cannot observe or communicate with Host-2. To
protect internal hosts like Host-2, FW-2’s rules are set up to
only allow TCP connections from internal hosts and drop
all other packets (e.g., from Host-1).

Figure 1b shows an evasion attack uncovered by Pryde.
Each vertical line represents a host. An arrow between 2
hosts is a TCP packet represented in the format [flags,
seq, ack]. The attack starts with the compromised Host-3
spoofing a SYN packet as Host-2’s and sending it to Host-1.
The spoofed SYN punches a hole in FW-2, allowing Host-
1 to send packets to Host-2. Despite Host-2’s RST, Host-
1’s packets evade FW-2’s protections and ultimately attack
Host-2.

Figure 1b shows one attack using a specific SFW and
network setting. More generally, we want to help network
operators reason about evasion scenarios across different
SFWs, victims, and attacker capabilities. Taken together, we
need generalizability along two key dimensions:
• Black-box SFWs implementations: Different SFW vendors

have critical differences in their stateful connection track-
ing logic that can, in turn, lead to subtle and distinct
evasion attacks.

• Deployment specifics: Attackers may have different capa-
bilities such as sending arbitrary packets to the firewall or
colluding with a weak insider that is capable of spoofing.
Further, some victim hosts may be more accepting of
malformed packet sequences than others.

2.3. Related work and limitations

Prior work on firewall testing, censorship circumvention,
code analysis, protocol fuzzing, and automata learning is
insufficient in meeting our requirements (Table 1).

Firewall rule testing: Many tools test the correctness of
SFW configurations (e.g., [6], [7], [8]). However, they only
focus on verifying the rule-sets and cannot uncover semantic
attacks on SFW implementations. They cannot uncover the
attack in Figure 1 as FW-2’s rules are configured correctly.

Generalizable across
blackbox SFWs

Generalizable across
deployments

Firewall rule testing [6], [7] G# #
Censorship circumvention
[15], [16] #

Source code analysis [9], [10] H# #
Protocol fuzzers [11], [12] #
Automata learning
[14], [26], [27], [13] #

Pryde
G#: Generalizable but require whitebox access to SFW rules
H#: Generalizable but require whitebox access to SFW/end-host code

TABLE 1: Comparing Pryde against prior work in
satisfying two key requirements.

Censorship circumvention: Censorship circumvention
tools can create packets to punch “holes” in censors [15],
[16]. While successful against censors, there are two fun-
damental issues. First, they only uncover shallow evasion
sequences and do not systematically explore the attack
space to achieve semantic coverage. For instance, the attack
sequence given in Figure 1b exercises different states of
FW-2 to achieve evasion. Second, these tools cannot be
customized to diverse deployment settings with many di-
mensions such as SFW, victim implementation, and attacker
capabilities. Finding 1 shows how state-of-the-art tools [15]
are ineffective in our problem setting.

Source code analysis: Many tools use the end host’s source
code or instrumented binary to uncover evasion attacks
against the end host itself [9], [10] or a NIDS [24]. An-
alyzing the SFW’s code to generate evasion attacks against
it is infeasible in a black-box setting4. While SymTCP [24]
does not access the NIDS’ code, it and other works do not
account for different deployments (such as Host-3 being an
insider threat).

Protocol fuzzers: Protocol fuzzers [11], [12], [25] perform
stateful analysis on network protocols to find semantic er-
rors. However, they only consider simple client-server mod-
els and do not model deployments with multiple network
segments or SFWs that forward and drop packets. These
fuzzers cannot analyze deployments in the presence of an
insider (e.g., Host-3 in Figure 1a) or model packets entering
an SFW from multiple interfaces.

Automata learning and model checking: There are prior
efforts to analyze protocol implementations [14], [26] and
check them for non-compliance [27], [13]. For e.g., BLED-
iff [13] focuses on differences in BLE protocol implemen-
tations using black-box model inference techniques. These
works focus on an orthogonal problem and do not capture
the behavior of a system in the presence of attack packets.
They also do not model deployments (such as one with
insiders) and thus, cannot be used to generate deployment-
aware evasion attacks. For e.g., given the setup in Figure 1a,
these tools would not be able to reason about leveraging the
compromised Host-3 to evade FW-2.

4. 3 out of the 4 firewalls we test are closed source.

Internal Network (LAN) External Network (WAN)

VICTIM

VLAN (CLASSIFIED)

INSIDER
(Optional)

FIREWALL

Cannot observe

or send packets

to victim

ATTACKER

Can send spoofed packets 
to external hosts

Can send any packets

to internal hosts

A back channel (i.e., insider
knows the packet an attacker
receives/sends and vice versa)

Block external access unless connection
ESTABLISHED from an internal host

Figure 2: Deployment model with the attacker, victim,
stateful firewall, and (optional) insider in a network.

3. Overview

We begin by scoping our problem and discussing the
design space of options. We show why strawman solutions
are intractable and give an overview of our design choices.
We then discuss Pryde’s end-to-end workflow.

3.1. Problem Setup and Threat Model
Figure 2 generalizes the problem setup from Figure 1a.

We consider an SFW that aims to protect a victim from
an attacker. The victim can implement any network stack.
The attacker and the victim interact in the (physical or
virtual) network by sending TCP packets. We also consider
an optional compromised internal host (insider).

Attacker goal: Given a deployment and an SFW configured
to drop traffic on unsolicited connections from an untrusted
host, the attacker’s goal is to evade the SFW and send a
DATA packet (TCP packet with a malicious payload) to
the seemingly unreachable victim. The notion of the victim
accepting a DATA packet is dependent on the downstream
goal. If the attacker’s goal is to only evade the firewall,
any DATA packet reaching the victim would count as a
successful attack even if the victim responds with a RST.
If the attacker has a stronger goal of attacking the victim,
say using a buffer overflow or Heartbleed [28], acceptance
means that the victim needs to respond to the received
DATA packet with an ACK.

Pryde is flexible and admits different attack success
criteria. As a concrete starting point, we consider 3 success
criteria with progressively stringent requirements (Figure 3):
• (S1) Victim receives DATA: Firewall forwards DATA

from the attacker to the victim.
• (S2) Victim sends ACK: Firewall forwards attacker

DATA to the victim and the victim responds with an ACK.
• (S3) Attacker receives ACK: Firewall forwards attacker

DATA to the victim, the victim responds with an ACK
and the firewall forwards this ACK to the attacker.

The attacks that Pryde uncovers can be building blocks
to enable future attacks such as lateral movement, remote
code execution, and data exfiltration. These tasks are outside
the scope of this paper. Given that S1 is a necessary step for
S2 and S3 (which are stricter criteria), we primarily focus
on S2 and S3 in our evaluation (§6).

V I SFW A
[DATA]

S1: Victim receives
DATA

V I SFW A
[DATA]

[A]

S2: Victim sends
ACK

V I SFW A
[DATA]

[A]

S3: Attacker re-
ceives ACK

Figure 3: Pryde supports flexible attack success criteria.

Attacker capabilities and constraints: The attacker can
craft and send any TCP packets to internal hosts (Figure 2).
However, the SFW, based on its own logic, determines the
action to take (e.g., drop, forward, send another packet) on
the packet.

We assume that the attacker does not know the SFW
rules but knows the SFW vendor and version. This can
be obtained by fingerprinting techniques from prior work
such as banner grabbing [29]. The attacker has no visibility
into the SFW implementation or code but has offline black-
box access, e.g. by obtaining a virtual SFW appliance [19].
The attacker does not know the victim’s implementation and
cannot control or observe the victim’s actions.
Victim: The victim is an end host or IoT device running
an OS that could be susceptible to attacks. For instance,
there are multiple CVEs [30] for the Linux 2.6 kernel used
in many IoT devices (e.g., smart TV [20]) and networking
hardware (e.g., Cisco, Asus, Netgear routers [21]). In our
evaluation (§6), we consider 4 diverse victim stacks popular
in consumer IoT devices [31], [32].
Insider: Optionally, the attacker may collude with a weak
insider in the internal network, that cannot directly attack the
victim. The insider is in an isolated network segment (e.g.,
a separate VLAN). It cannot observe the victim’s behavior
and communication with the victim is explicitly blocked
via network segmentation. It has limited capabilities such as
spoofing the source of TCP packets. Spoofing is a reasonable
capability as deployments may not enable source address
validation by default5 even across VLANs [33], [34].

A concrete example of an insider is a compromised
IoT device residing in a different network segment [35],
[36] from the victim. Attack campaigns like Mirai [37] and
multiple reports on spear-phishing [38], [39], [40], [41] and
breaches in IoT networks [42], [23], [43], [44] show the
prevalence of insider threats.

3.2. High-level ideas

We present the space of design options (Figure 4) and
our high-level ideas here. We discuss detailed design choices
in subsequent sections (§4 - §5.2).

Deployment aware vs. agnostic: Given an SFW, there are
two approaches to generate evasion attacks. A deployment-
agnostic approach focuses only on the behavior of the
SFW to try and generate attacks, ignoring the behavior of

5. FW-3 vendors acknowledged that this check was disabled by default
and would remain disabled for fear of breaking existing deployments!

Blackbox SFW Evasion attack→

(2) Modular

(1) Deployment-agnostic (1) Deployment-aware

(2) Monolithic

(3) Model-free (3) Model-guided

(3a) SFW SFW Model→

(4a) SFW Model + Deployment Symbolic attack→ (4b) Symbolic Attack Concrete Attack→

(3b) SFW Model + Deployment Attack→

SFW + Deployment Attack→

(model inference) (attack generation)

(symbolic attack generation) (concrete attack generation)

Figure 4: Design space taxonomy and Pryde’s design
choices highlighted with green boxes in this taxonomy.

other hosts in the deployment. Strawman examples of this
include fuzzing [11], [12], [25] and prior work on censorship
circumvention [15], [16]. For instance, one could use a
Finite State Machine (FSM) model of an SFW and attempt
to craft attacks that drive the SFW to a vulnerable state.
Censorship circumvention works use genetic algorithms to
craft strategies to evade censors. However, these approaches
cannot reason about the behavior of other hosts or con-
straints imposed by the network. They are ineffective at
generating attacks that can evade an SFW and attack an
internal host (refer to Finding 1). Thus, we argue for a
deployment-aware approach in designing Pryde.

Modular vs. monolithic: Within deployment-aware ap-
proaches, a monolithic approach takes a bird’s eye view
and reasons about the entire deployment (with all hosts and
network constraints) as a whole. An example of such an
approach is stateless deployment-aware fuzzing (Finding 1
compares Pryde to this). A monolithic approach is neither
scalable nor extensible as assumptions about the deployment
and victim implementations may change over time. For
instance, introducing a second insider or changing the attack
success criteria in Figure 2 would require us to re-run the
entire workflow for each possible scenario. Instead, we use a
modular approach where we decouple reasoning about the
SFW, from the deployment setting and attacker capabilities.
§3.4 discusses how this modular workflow allows Pryde
to generalize to different SFWs, deployments, and success
criteria.

Model guided vs. model free: Given an SFW and a
deployment, there are two natural approaches to generate
evasion attacks – model-guided and model-free. Model-free
approaches leverage techniques like fuzzing or genetic algo-
rithms and do not learn an explicit model of the hosts in a
deployment. Evasion attacks require triggering specific state
transitions in the SFW and thus require carefully crafted
TCP packet sequences. We argue for a model-guided ap-
proach where we learn a sufficiently-precise model of the
SFW’s stateful semantics (§4). We reason about this in
conjunction with a model of the deployment to uncover
evasion attacks that exploit deep semantic errors (§5).

3.3. Pryde’s workflow

Figure 5 provides an overview of Pryde’s modular work-
flow with three steps.

Symbolic
Attack

Generator

Concrete
Attack

Generator

Concrete
evasion
attacks

Symbolic
attacksSFW

Model
Inference

SFW
model

Black-box
SFW

appliance

Deployment
model

§4 §5.1 §5.2

Figure 5: High-level workflow of Pryde.

SFW Model Inference (§4): Given a black-box SFW
appliance, this module outputs an FSM model. Our key
contribution here over prior work Alembic [45] is creating
a model inference workflow targeted to evasion scenarios
such as reasoning about out-of-window TCP packets.

We decouple Pryde’s attack generation into the follow-
ing two modules to ensure scalability and extensibility.

Symbolic Attack Generator (§5.1): This module reasons
about the interactions of the SFW and other hosts in the
network to output evasion attacks. The key contribution
here is in succinctly encoding these interactions using SMT
constraints atop Z3 [18]. We delay binding of TCP seq/ack
fields to the Concrete Attack Generator. This allows us to
reason about the semantics of the SFW and the deployment
without considering the large space of seq/ack numbers, thus
making analysis scalable. Each outputted symbolic attack is
a sequence of a sender (si) and a symbolic packet (σi).

Concrete Attack Generator (§5.2): This module binds
concrete seq/ack values to each symbolic packet and out-
puts concrete TCP packet sequences. It uses the generated
symbolic attacks and an ensemble of strategies to synthe-
size evasion attacks with concrete seq/ack numbers (i.e.,
σi with concrete seq/ack values). To apply strategies, we
devise simple heuristics to reason about the relationships
between packets’ seq/ack numbers, which include both TCP-
compliant and non-TCP-compliant semantics.

Our modular approach is extensible to future deploy-
ments and reduces the need for running the entire workflow
for a new scenario. Consider an operator who wants to
generate evasion attacks for a given SFW in n different
deployments. Instead of running the entire workflow n
times, the operator can run Model Inference once and re-
use the inferred SFW model for each of the n deployments.
Similarly, if an operator wants to try a new strategy (defined
in §5.2) in the Concrete Attack Generator, they do not have
to re-run Model Inference or the Symbolic Attack Generator.

3.4. How an operator would use Pryde

To use Pryde, an operator needs to set up the firewall
appliance and provide these inputs: (1) network configura-
tion; (2) deployment model; (3) attacker goal; and (4) (op-
tional) approximate victim model. These inputs are typically
already available or easy to obtain.

Figure 6 shows examples of these inputs and where they
are used in Pryde’s workflow. (1) The network configuration
specifies the IPs of the firewall interfaces and various sub-
nets. (2) The deployment model specifies the hosts present
in the network, their capabilities (e.g., spoofing), and their

∃t |output(Attacker, DATA, t)
∧ forward(SFW, DATA, t)

Attacker Victim Insider
net: ext int-vlan1 int-vlan2
src: [Attacker] [Victim] [Insider, Victim]
dst: [Victim] [Attacker] [Attacker]

(1) Network configuration

(2) Deployment model

(3) Attacker goal

(4) Victim model

Infiltrate SFW with DATA
Infiltrate SFW with DATA + Attack host
Exfiltrate DATA through SFW

(3a) SMT constraint:

(3b) Success criteria:

Attacker, SFW, Victim
Attacker, SFW, Victim, Insider
Custom

Custom

Contiki OS
TTYLinux
Ubuntu 16.04
Custom

SFW Internal IP
SFW External IP
Internal network
External network

Symbolic
Attack

Generator

Concrete
Attack

Generator

Concrete
evasion
attacks

SFW
Model

Inference
§4 §5.1 §5.2

(1) (2), (3a), (4) (3b)

s0 s1

s2

S / SA

A / {}R / RA

DA / A

Figure 6: Interface to configure and run Pryde.

constraints (e.g., can the insider talk to the victim). (3) The
attacker goal has 2 parts: (3a) an SMT constraint used during
symbolic attack generation as a goal, and (3b) an observable
success criteria used to classify attacks as successful when
validating them on a live testbed. For instance, the SMT
constraint could represent the goal that the attacker must
send a DATA packet at timestep t which is forwarded by
the firewall. The observable success criteria could be one
from Figure 3. (4) The victim model is an approximate low-
fidelity Mealy machine6, used to guide the exploration of
the attack space. If unspecified, Pryde uses a default victim
model which accepts all packets.

Pryde’s workflow is generalizable and does not depend
on a specific firewall or deployment. Given a firewall and the
attacker’s goal, Pryde runs automatically and outputs attacks
that evade the given firewall. By changing the inputs, an op-
erator can use Pryde to reason about different deployments.
An operator can reason about a different firewall binary or
configuration using the Model Inference module (§4) They
can reason about evasion with multiple insiders by modify-
ing the deployment model and running the Symbolic Attack
Generator (§ 5.1) They can also use Pryde to reason about
other attacker goals, such as data exfiltration, by changing
the SMT constraint and observable success criteria.

Pryde’s modular approach reduces the need for running
the entire workflow for a new scenario. Consider an operator
who wants to generate evasion attacks for a given SFW
in n different deployments. Instead of running the entire
workflow n times, the operator can run Model Inference
once and re-use the inferred SFW model for each of the n
deployments. Similarly, if an operator wants to try a new
strategy (defined in §5.2) in the Concrete Attack Generator,
they do not have to re-run Model Inference or the Symbolic
Attack Generator. We discuss the details of Pryde’s modular
generalizable design in §4 and §5.

4. Evasion-Aware Model Inference
Given the SFW binary, our aim is to generate a black-

box model to reason about evasion scenarios. Prior work on
black-box model inference [45] only considers benign TCP-
compliant scenarios and cannot reason about SFW behavior
with non-TCP-compliant packets, which are crucial for eva-
sion. If we only considered TCP compliance, we would not

6. A Mealy machine is an FSM where the output depends on the input
and the current FSM state

L*, SeqRW
SFW appliance

Σ

*Σ

Σ+Σ1Σ+Σ2Σ+Σ3

Alembic

Naive strawman

Pryde’s model
inference

…

. . .

Handles

TCP-non-

compliance Tractable

FSM
TCP-compliant

alphabet

Universal

alphabet including 

non-TCP-compliant
packets

Ensemble of 
alphabets
including 
non-TCP-
compliant
packets

Ensemble of

small FSMs

Large FSM

L*, SeqRW

L*, SeqRW

SFW appliance

SFW appliance

Figure 7: Overview of prior work Alembic [45], a naive
strawman, and Pryde’s model inference module.

s0
SYN

s1

s2 s3

SYN-ACK

ACK

. . .

FIN

Input Alphabet (Σ) SFW Model
SYN

SYN-ACK

SYN-ACK

ACK ACK

FINFIN

. . .(SYN from LAN)

(SYN-ACK from LAN)

(SYN-ACK from WAN)

(ACK from LAN, 
ACK from WAN)
(FIN from LAN, 
FIN from WAN)

Figure 8: Example of an input alphabet and SFW model.

uncover the type of attack described in §2.2, where a SYN
packet spoofed by the insider and a SYN-ACK sent by the
attacker led to the attacker sending DATA to the victim.

We begin by providing background on prior work and
discuss why strawman extensions could make model infer-
ence intractable. We then present our key insights to solve
this problem. Figure 7 provides an overview of prior work
Alembic [45], a strawman, and our approach.

4.1. Prior work and limitations

An SFW’s behavior can be represented as an FSM [46],
[45]. Prior work Alembic [45] extends classical black-box
FSM inference techniques (L* [47]) to model stateful net-
work functions. Alembic takes 2 inputs: an SFW binary
and an input alphabet (Σ) describing packets of interest
(e.g., SYN from host A to B). Alembic’s output is a Mealy
machine where transitions between states are based on sym-
bolic representations of TCP packets.

Figure 8 shows an example input alphabet (Σ) and an
inferred SFW model. Σ specifies packets of interest used
to infer the model – SYN from LAN to WAN, and SYN-
ACK, ACK and FIN in both directions. The directions of the
arrows represent packet source/destination networks. The
SFW model represents its behavior when it receives a packet
of interest. For e.g., if the SFW is in state s0 and receives
a SYN from the LAN, it forwards the SYN (denoted by a
green check mark) and transitions to state s1. If the SFW is
in state s2 and receives a FIN from the WAN, it drops the
packet (denoted by a red X) and transitions to state s0.

Alembic uses the L* algorithm to adaptively construct
packet sequences of varying lengths using the symbols in
the input alphabet (Σ). Packet sequences are played against

the SFW and the SFW’s output is used to update the estimate
of its model. This process repeats until the model converges
or a specified timeout is reached.

Alembic considers two types of input alphabets: (1)
ΣSetup

Alembic that includes connection setup packets (SYN
from LAN, SYN-ACK from WAN, ACK from LAN and
WAN, DATA from WAN); and (2) ΣTeardown

Alembic which in-
cludes connection teardown packets; RST, RST-ACK,
FIN, FIN-ACK in both directions.7 We define ΣAlembic=
ΣSetup

Alembic ∪ΣTeardown
Alembic . Alembic needs to convert a sequence

of symbolic packets (from Σ*) to TCP packets, which entails
setting seq/ack numbers for each packet. Exploring the
entire 264 space of seq/ack numbers makes model inference
intractable. Alembic restricts these values to adhere to TCP
semantics. Consider a candidate packet sequence of length 2
generated by L*: SYN from LAN to WAN and SYN-ACK
from WAN to LAN. If the SFW forwards the SYN to the
WAN, the WAN host sets its SYN-ACK’s ack based on the
received SYN’s seq. More generally, the seq/ack of packets
may be dynamically modified based on previous packets
observed by a host. We refer to this dynamic modification
of seq/ack values as SeqRW(seq = X) (short for Sequence
Re-Writing) where X is the initial seq value.

Limitations in our context: Alembic [45] was designed
to handle non-adversarial TCP-compliant traffic. Our abla-
tion study in Finding 5 shows that Alembic’s models are
ineffective at generating evasion attacks. This is due to two
fundamental limitations:
• Input alphabet: Alembic’s alphabet set (ΣAlembic) only

includes TCP-compliant packets. This alphabet is not
expressive enough to consider evasion which requires non-
TCP-compliant packets; such as out-of-window seq/ack
numbers or packets that deviate from the TCP handshake
protocol. To reason about evasion, we need to model both
TCP-compliant and non-TCP-compliant traffic and their
interactions. This creates new scalability challenges as it
increases the packet header space and the space of packet
sequences to consider for model inference.

• Rewriting logic: Alembic’s SeqRW assumes TCP compli-
ance. Reusing this logic for non-TCP-compliant packets
defeats the purpose of considering these packets. That is,
even with an input alphabet expressive enough to capture
evasion scenarios, this logic would not generate an SFW
model that leads to evasion attacks (such as the example in
§2.2). Hence, we need to extend the SeqRW logic while
still avoiding state-space explosion caused due to the large
space of concrete seq/ack values.

Next, we discuss our contributions to (1) extend the input
alphabet to handle non-TCP-compliant traffic (§4.2); and (2)
extend the rewriting logic to be more flexible (§4.3).

4.2. Evasion-aware input alphabet selection

A strawman solution is to consider a universal alphabet
containing all possible combinations of seq/ack, TCP flags,

7. These are referred to as correct-seq in the Alembic paper [45].

SeqRW(seq=X)

SYN

. . .

ΣdirℕℂΣAlembic

ΣEvasion = ΣAlembic ∪ Σdirℕℂ

SeqRW(seq=X)

Σdir,rand
ℕℂΣAlembic

ΣEvasion = ΣAlembic ∪ Σdir,rand
ℕℂ

SeqRW(seq=X)

Σdir,conn
ℕℂΣAlembic

ΣEvasion = ΣAlembic ∪ Σdir,conn
ℕℂ

SeqRW(seq=Y)

Interference from
Reverse Direction

Reverse Direction +
Out-Of-Window Packets

Reverse Direction + Out-Of-Window
Packets that form a connection

SYN SYN

.
SYNSYNSYN

Figure 9: Rewriting logic to handle ΣEvasion with non-
compliant set (ΣNC).

and IP/port values. Unfortunately, this results in an explosion
in the alphabet size and makes model inference intractable.

Key insight: Rather than learning a “large” model for all
possible non-compliant scenarios, our insight is to decom-
pose the problem and design an ensemble of independent Σs
where each Σ relates to a potential type of non-compliance.
Given this ensemble of Σs, we can infer an ensemble of
SFW models, where each model can be used to guide the
generation of evasion attacks. Our approach naturally lends
itself to an extensible way to reason about evasion. We intro-
duce ΣEvasion to consider the potential interference of TCP
states from non-compliant input alphabets. This involves
reasoning about the interaction between the TCP-compliant
packets, ΣAlembic, and non-TCP-compliant packets, ΣNC;
i.e., ΣEvasion = ΣAlembic ∪ ΣNC.

Scenarios for TCP non-compliance: We discuss these
input alphabet templates below:
1) Flipped direction (Σdir

NC): These TCP 3-way handshake
packets have flipped directions only (e.g., SYN from the
WAN). The seq and ack numbers are not out-of-window.

2) Flipped direction and random seq/ack numbers
(Σdir,rand

NC): These packets have flipped directions and
are out of window (with seq/ack randomly initialized).

3) Flipped direction and in-window amongst themselves
(Σdir,conn

NC): This case is similar to the previous case ex-
cept the out-of-window packets form a TCP connection
amongst themselves.

4) Out-of-window only (Σrand
NC): These packets have the

same direction but are out-of-window (seq/ack randomly
initialized).8

For ΣAlembic, we consider both ΣSetup
Alembic and ΣSetup

Alembic∪
ΣTeardown

Alembic . For ΣNC, we consider each of the 4 templates
given above and a null set (as a baseline). We combine each
of the 2 ΣAlembic with each of the 5 ΣNC to get 10 input
alphabets for each SFW. Alembic assumes that the under-
lying model is deterministic and fails to converge if this is
not the case.9 While using an ensemble of independent Σs
may result in some missed evasion opportunities compared
to using a universal Σ, this is a pragmatic trade-off. We
sacrifice completeness for soundness and tractability, similar
to many large-scale testing and verification systems [17].

8. Alembic considers this alphabet too (referred to as combined-seq)
but this alphabet does not yield any attacks. Refer to Finding 5.

9. We do not consider alphabets for which convergence is not reached.

4.3. Evasion-aware rewriting logic

A strawman solution is to reuse Alembic’s seq/ack
rewriting logic, which rewrites all seq/ack numbers in
ΣAlembic to adhere to exact TCP semantics. However, this
prevents us from finding attacks that involve the firewall and
victim accepting out-of-window packets. Another strawman
solution is to allow all possible values. However, this makes
model inference intractable.

Key insight: Our insight is to exploit the semantic structure
per non-compliant Σ and customize the rewriting logic
independently for each group (Figure 9). For e.g., in Σdir

NC,
seq/ack of all packets in ΣAlembic and Σdir

NC are rewritten
to adhere to TCP semantics (first column of Figure 9). For
Σdir,rand

NC (reverse direction and random seq/ack), packets in
ΣAlembic are subject to SeqRW(X) and packets in Σdir,rand

NC
are initialized randomly and not re-written.

Our modified implementation of the Alembic algorithm
tracks which alphabet each packet belongs to and decides
the appropriate rewriting logic to be applied. Our extensions
to the input alphabets and SeqRW allow Pryde to generalize
to diverse SFWs, SFW configurations, and evasion oppor-
tunities. For instance, an operator can add or modify the
input alphabets to capture the behavior of the SFW under
a different setting. Finding 5 evaluates the importance of
Pryde’s extensions in discovering attacks.

5. Extensible Evasion Attack Generator

Given the inferred SFW model from §4, the goal is
to generate evasion attacks where the attacker evades the
SFW as defined by the user-specified success criteria (§3.1).
Attack generation can be done in a deployment-agnostic or
deployment-aware manner (§3.2).

Deployment-agnostic approaches focus solely on the
SFW behavior. A strawman example is model-guided
fuzzing, which generates packet sequences to force the SFW
to a vulnerable state (e.g., states where the SFW forwards
DATA inadvertently). This approach ignores the capabilities
and constraints of other hosts in the deployment. We show
the ineffectiveness of such an approach in Finding 1 and
discuss its role in an ablation study of Pryde in Finding 5.

We design Pryde’s attack generation framework to be
deployment aware. A strawman deployment-aware workflow
would search the large space of interactions amongst various
hosts in the deployment and directly generate concrete TCP
attacks. However, this approach does not scale. Therefore,
we decouple attack generation (refer §3.3) into 2 stages:
(1) the Symbolic Attack Generator (§5.1) reasons about
the interactions of the hosts on the network to generate
symbolic attacks; and (2) the Concrete Attack Generator
(§5.2) uses these symbolic attacks to synthesize concrete
evasion attacks.

5.1. Symbolic Attack Generator
Strawman solution: A strawman solution is to naively
encode the SFW and the deployment model into a model

…

(x ∨ y) ∧ z = = True
(x ∧ a) ∨ b = = True

…

(a ∨ z) ∧ c = = False
(x ∧ a) ∨ b = = True

…

(z ∨ c) ∧ b = = False
(b ∧ c) ∨ x = = False

Network

facts

Firewall

model

SMT
solver

Victim

model

SMT constraints

Symbolic
attacks

VICTIM

INSIDER

Symbolic Attack Generator

Figure 10: Overview of Symbolic Attack Generator.

checker (like Z3 [18]) and output all paths that satisfy
the attack requirement. However, this method outputs many
semantically-identical packet sequences that provide no ad-
ditional value to the operator using Pryde.

Key insights: We use two main ideas (Figure 10) to tackle
this problem. Firstly, we encode the SFW and deployment
model using SMT constraints. This allows us to achieve
semantic coverage over the space of all possible attacks
using an SMT solver. Secondly, we introduce constraints to
make SMT solving tractable and to identify semantically-
distinct symbolic attacks. Our contribution is a practical
encoding of the SFW and deployment model to identify
semantically-distinct symbolic attacks using an SMT solver.
While we represent these using Z3 [18] (§6), these could be
extended to other model checking tools.

Inputs and outputs: The input is an inferred SFW model
and a deployment model. The deployment model includes
the attacker model with its capabilities and constraints (such
as an insider), an optional victim model representing its
network behavior, and a model of the network representing
where the hosts are present in the network (e.g., the attacker
in the external network, the insider in VLAN 2). We use an
approximate victim model to guide the search. However, we
use a real victim appliance while testing our attacks (§6).
The output is a list of symbolic attacks applicable to the
given deployment and victim models. Each symbolic attack
is an ordered sequence of symbolic located packets [48],
which we define below.

Transitions in the SFW model are defined using lo-
cated packets [48]. Since considering all possible fields of
the TCP/IP headers is intractable, we consider a subset
of these fields and refer to each such packet as σ. σ is
defined by the following tuple: (interface, src-ip, src-port,
dst-ip, dst-port, flag, data, prefix, seq, ack). interface is
the incoming interface (LAN or WAN) where the packet
is received at the SFW. data is a Boolean indicating the
presence of a payload. prefix indicates whether the seq/ack
fields were rewritten during model inference to follow the
TCP semantics (ΣAlembic or ΣNC). For now, seq/ack fields in
the packet are unused and become relevant in the Concrete
Attack Generator (§5.2) when binding seq/ack to concrete
integers. Input packets to the victim model are also defined
by this tuple (σ) but seq/ack-related fields (prefix, seq,
ack) are unused. This is a conscious choice given that the
attacker may manually approximate victim models for attack

generation and will not have enough information to model
seq/ack behavior. This does not compromise our success in
attack generation. (Extending the victim model to include
seq/ack-related fields is trivial.) Next, we discuss how to
use SMT constraints to generate symbolic attacks from the
above inputs.

Modeling temporal sequence: Given that a symbolic
attack is an ordered sequence of symbolic packets, we need
to model the progression of time. When an SFW receives a
located input packet (an event), the timestep T advances
to T + 1, changing the system state. While we use the
SFW as an example, this modeling of temporal behavior
is general across other hosts in the deployment. We use the
following functions to represent the state of the SFW at a
given T: (1) State : Q × T → Bool, a Boolean function
indicating if a a given state of the SFW, s ∈ Q, occurs
at timestep T; (2) Input : ∆ × T → Bool, indicating if a
located packet, σ ∈ ∆, occurs as an input at timestep T;
(3) Output : O×T → Bool, indicating if an output packet,
o ∈ O, occurs at timestep T; and (4) Trs : Φ× T → Bool,
indicating whether a specific transition, ϕ ∈ Φ, occurs at
timestep T. A transition is determined by an input symbolic
packet (σ), an output symbolic packet (o), and the current
state (s).

Modeling senders: We determine a possible sending host
based on the given deployment model; e.g., an insider can
spoof the source IP. Our encoding is extensible to add more
attributes. We encode the SFW behavior using propositional
logic. At any given timestep T, we encode the following
constraints: (1) exactly one state occurs, (2) at most one
input packet is received, (3) at most one output packet is
sent, and (4) exactly one transition happens in the model.
To encode the SFW model (a Mealy machine), we add pre-
and post-conditions to specify the state transition. Intuitively,
a transition ϕj at a timestep T implies the occurrence of a
specific state and an arrival of a located input packet at
the same timestep T. After a transition ϕj , the state of the
SFW changes and we observe a corresponding output packet
(defined by the SFW model). We represent this as:

(State(si,T) ∧ Input(σi,T)) =⇒
∨
j

Trs(ϕj ,T))

Trs(ϕi,T)) =⇒ (State(si+1,T+ 1) ∧ Input(σi+1,T+ 1)

∧ Output(oi+1,T+ 1))

We encode the victim using a similar logic. If an at-
tacker’s packet reaches the victim, then the next input is
dictated by the victim’s model. The above encoding allows
us to easily generalize to diverse deployments (e.g., multiple
insiders, insiders with different capabilities).

Modeling attacker goal: The goal is to find an ordered
sequence of σ (located packets) that leads to the SFW
forwarding a DATA packet to an internal victim at timestep
T. Additionally, we can specify the victim’s final state at
timestep T, when it receives the DATA packet. Specifying
the victim state prunes the search space and generates
attacks that are more likely to succeed, especially against

criteria S2 and S3 (§3.1). This is because these criteria base
attack success on the victim’s behavior, and not just the
firewall’s. We evaluate attack success only when we validate
our attacks (§6).

Assumptions in modeling: In modeling host behaviors,
we make the following assumptions:
1) Similar to prior work [49], we assume that the SFW

receives only 1 packet at a time.
2) At any timestep, any host (attacker, victim, insider, SFW)

receives at most 1 packet and outputs at most 1 packet. If
a host receives more than 1 packet, those packets can be
represented as being received at consecutive timesteps.
We do not model a host that sends multiple packets on
receiving a single packet. We generate successful attacks
(Finding 1), even with this simplifying assumption.

3) At any timestep, the SFW and the victim occupy ex-
actly 1 state of their corresponding Mealy machines and
perform exactly 1 transition on receiving a packet.

4) The victim outputs a packet only when it receives a
packet. In our system model (§3.1), the victim is a pas-
sive entity that does not attempt to start communication
with any host and thus does not send packets on its own.

Improving diversity of attack pathways: Given the above
encoding, we now discuss how to generate symbolic attacks.
Our aim is to find as many semantically-distinct evasion
attacks as possible, given a bounded sequence length. We
model the problem similar to bounded model checking
(BMC) [50] to find counterexamples with a bounded length,
that can be identified within a few iterations/timesteps.
By default, the SMT solver terminates upon finding one
counterexample, where each counterexample is an evasion
attack. To find a new counterexample, we need to add a
constraint to block this counterexample. Naively doing so
finds many semantically-identical attacks which is not useful
and time-consuming. Thus, we need to block not only the
counterexample, but also other attacks that exhibit similar
semantics/patterns. Our insight is to encode additional con-
straints to block semantically-identical attacks during the
search, and thus only discover semantically-distinct attacks.
A natural question is how to (1) define semantically-distinct
attacks, and (2) enable the discovery of these distinct attacks.
For (1), we define the invariant of the attacks we output and
use that invariant to define semantically-distinct attacks. To
efficiently search over the SFW model’s state space, we want
to avoid attacks that can be generated from another attack
by simply adding packets that loop in the SFW’s state space.
Thus, an outputted attack should not have any loops and use
the minimum number of packets to traverse the SFW’s state
space. Thus, we encode a loop-free invariant into the solver.

Definition 5.1 (Loop-free invariant). A state, si, can appear
at most once in a state sequence s1 · · · sn transitioned by
an attack sequence, p1 · · · pn, where pi is a located packet.

Given this loop-free invariant, when we discover an at-
tack packet sequence, a={p1 · · · pn}, our refinement strategy
excludes the exact packet string match. For question (2)

Attacker (A)SFWInsider (I)Victim (V)
Data:False …Seq:X, Ack:0, Flag:SYN SrcIP:V, DstIP:A …

…Seq:X, Ack:0, Flag:SYN SrcIP:A, DstIP:V …Data:False

Data:False …Seq:Y,Ack:X+1,Flag:SA SrcIP:V, DstIP:A …

Data:True …Seq:X+1,Ack:Y, Flag:A SrcIP:A, DstIP:V …

Figure 11: An example of a generated symbolic attack
with symbolic seq/ack numbers (src/dst ports omitted for
brevity). The start of an arrow denotes a packet sender.

above, we encode this invariant into the model checker to
output semantically-distinct attacks.

Definition 5.2 (Semantically-distinct attacks). Loop-free at-
tack strings, a and a′, are semantically distinct iff a ̸= a′.

By construction, the generated attack sequences are
loop-free (from Def. 5.1). Additionally, as we do an exact
string matching as a refinement strategy, all sequences we
generate are distinct as defined above.

Concrete example: Figure 11 shows a symbolic attack
sequence. Each vertical line is a host. An edge from host A
to B represents a located packet sent from A to B. While not
shown in this timing diagram, this packet sequence causes
state transitions in the SFW model while ensuring that a
state is not repeated (Def. 5.1)

5.2. Concrete Attack Generator

The generated symbolic attacks (§5.1) do not have se-
q/ack fields set in the located packets. To get a concrete
packet sequence that can be injected into the network, we
set concrete seq/ack values for each packet in this module.

Strawman solutions: To see why setting concrete seq/ack
values is non-trivial, consider three strawman solutions: (1)
randomly assigning seq/ack numbers in all packets, (2)
reusing the restricted values from firewall model inference
(e.g., using X=1000, Y =2000 for all symbolic packets) and
(3) exploring the entire space of seq/ack numbers. Unfortu-
nately, (1) is likely to be dropped by the SFW or the victim.
(2) is too restrictive and cannot find potential vulnerabilities
when the victim or SFW are more permissive. (3) ensures
coverage but is intractable due to the large space (264) of
seq/ack numbers to explore. We show the ineffectiveness of
strawmen (1) and (2) in Finding 5.

Key insight: We observe that, while SFWs tend to check
for some relations between seq/ack numbers of TCP pack-
ets in a connection, they do not enforce completely strict
checking [51]. A strict dependence between packets’ seq/ack
results in low coverage of the attack space. On the other
hand, using random seq/ack results in the SFW dropping
packets. Our insight is to maintain a loose dependence
between packets’ seq/ack numbers to trade off coverage and
tractability.

Symbolic attack Dependency graph Spanning tree

S1 S2 S3

……seq=2, ack=0, ……

……seq=3, ack=2, ……

……seq=4, ack=6, ……

……seq=2, ack=0, ……

……seq=3, ack=1, ……

……seq=4, ack=2, ……

……seq=2, ack=0, ……

……seq=13, ack=1, ……

……seq=42, ack=8, ……

Concrete attack 1

………..…

………..…

………..…

Concrete attack 2 Concrete attack 3

p1

p2

p3

Figure 12: Generating concrete attacks from a symbolic
attack by (1) creating a dependency graph, (2) pruning
to a spanning tree, and (3) applying strategies.

Random TCP Compliant Delta Step

Y.seq rand()

{
X.seq X.dir = Y.dir

X.ack X.dir ̸= Y.dir

{
X.seq + ∆seq X.dir = Y.dir

X.ack + ∆seq X.dir ̸= Y.dir

Y.ack rand()

{
X.ack X.dir=Y.dir

X.seq + 1 X.dir ̸= Y.dir

{
X.ack + ∆ack X.dir = Y.dir

X.seq + ∆ack X.dir ̸= Y.dir

TABLE 2: update function for different strategies.

Based on this insight, we design a practical 3-step mod-
ule to generate multiple concrete attacks from a symbolic
attack (Figure 12), using an ensemble of strategies. Given a
symbolic attack, we generate a dependency graph, prune the
graph to a spanning tree, and then apply a strategy (defined
shortly) to set concrete seq/ack values. Each concrete attack
is then evaluated for success on a live deployment of a
firewall and victim. We describe these 3 steps below:

Generating seq/ack dependency graph: Consider a sym-
bolic packet sequence p1 · · · pn. In a TCP-compliant non-
evasion context, the seq/ack numbers of packets are de-
fined by the TCP RFC [51]; e.g., in a 3-way handshake
SYN-ACK.ack == SYN.seq + 1. However, our goal is
to generate evasion attacks, not to adhere to the TCP
protocol. Thus, we relax these constraints and consider
loose dependence among the seq/ack numbers of various
packets. For instance, there could be a sequence of packets:
{p1: SYN-ACK, p2: FIN-ACK, p3: ACK} and setting p3’s
ack depending on p2’s seq may result in an attack. While
we allow loose dependencies between seq/ack numbers of
various packets, we do not know what seq/ack numbers
may result in a successful attack. Hence, we devise multiple
heuristics based on diverse packet properties (Appendix B)
to add dependencies between packets. Using these heuris-
tics, we generate a graph where each node represents a
symbolic packet and edges represent potential dependencies
between the packets’ seq/ack numbers.

Pruning to a spanning tree: The dependency graph
may have nodes that depend on multiple packets (i.e., have
multiple incoming edges). We use heuristics to select one
incoming edge for each node (details in Appendix C). This
converts the dependency graph to a spanning tree.

Setting concrete values: Given an ensemble of strategies
and a spanning tree, we assign concrete seq/ack values to
each packet. Each strategy consists of (a) an init function
for initializing seq/ack values for packets with no dependen-
cies (no incoming edges), and (b) an update function for

Attacker (A)SFWInsider (I)Victim (V)
Data:False, Prefix:ΣAlembic seq=0, Flag:S SrcIP:V, DstIP:A …

seq=20, Flag:S SrcIP:A, DstIP:V …Data:False, Prefix:ΣNC

Data:False, Prefix:ΣNC seq=N, ack=21, Flag:SA SrcIP:V, DstIP:A …

Data:True, Prefix:ΣNC seq=21, ack=N+1, Flag:A SrcIP:A, DstIP:V …

Figure 13: Example of a generated concrete attack where
symbolic seq/ack are substituted with integer values.

updating seq/ack values for other packets. These functions
are applied in topological order (details in Appendix D). 10

We implement three strategies: (i) Random, (ii) TCP
compliant, and (iii) Delta step. The seq/ack fields are ini-
tialized to random values for the Random strategy and to
0 for the other two strategies. Table 2 shows the update
functions for these strategies.
• Random: This strategy randomly assigns seq/ack numbers

and is useful to explore if SFWs and victims accept
packets with random, out-of-window seq/ack numbers.
We use this as a baseline strategy.

• TCP compliant: This strategy attempts to maintain correct
TCP semantics. Such a strategy is useful to explore if
firewalls and victims accept packets with unexpected TCP
flags that still follow correct TCP seq/ack semantics.

• Delta step: This strategy gives control over increments
in the seq/ack numbers using parameters ∆seq and ∆ack.
This is useful when firewalls and/or victims accept TCP
packets with seq/ack numbers within a range of window
sizes.

Concrete example: Figure 13 shows the concrete attack
generated from the symbolic attack in Figure 11 and the
Delta step strategy with parameters ∆seq = 1, ∆ack = 2.
Note that in a concrete attack, symbolic values for seq/ack
values are substituted with concrete values but some con-
crete values (e.g., the seq number of a victim’s SYN-ACK)
are outside the control of an attacker. These are left as-it-is
by Pryde.

In this module, our design contribution is the 3-step
workflow for concrete attack generation, and not the heuris-
tic recipes used within. As long as an operator follows
Pryde’s workflow, Pryde can admit a variety of heuristics
and still generate successful evasion attacks as its success is
not sensitive to the specific heuristics an operator may want
to employ. For instance, the strawman solutions described
earlier (randomly assigning seq/ack, reusing the restricted
seq/ack from model inference) do not follow the Concrete
Attack Generator workflow and cannot generate successful

10. A subtle issue is that the seq/ack rewriting logic (§4.3) is input
template-aware but seq/ack assignment here is template agnostic. This is a
pragmatic choice we made. §4.3 is firewall-centric; i.e., making inference
tractable in the presence of non-compliance. However, to generate concrete
attacks, we also need to take the victim’s behavior into account and
thus, need more flexibility. Hence, we pick a constrained template-specific
approach in §4.3 but adopt a looser approach in this section.

concrete attacks (Finding 5) In contrast, Pryde generates
successful evasion attacks even if the specific heuristics
change. We evaluate Pryde’s robustness to heuristic changes
in Finding 5. Using an ensemble of strategies, Pryde can
generate attacks against diverse firewalls and victim stacks.
The operator can specify a custom strategy by writing a
function to represent its mathematical formulation (Table 2).
Finding 5 shows how Pryde benefits from using an ensemble
of strategies.

6. Implementation and Evaluation Setup

Implementation: We implement Pryde’s Model Inference
in Java atop Learnlib [52]. For the Symbolic Attack Gen-
erator, we use Python and Z3 [18] (an SMT solver). For
the Concrete Attack Generator, we use Python for de-
pendency graph generation and generate concrete packets
using scapy [53]. We use the boto3 [54] Python API and
CloudFormation templates to spin up testbeds for Model
Inference and attack validation in AWS EC2.

Evaluation Setup: We evaluate Pryde on 4 off-the-shelf
firewalls and 4 victim stacks. We chose these firewalls based
on their popularity and ease of deployment. 3 of these
are available commercially with closed-source implemen-
tations while 1 is open-source. We deploy 2 firewalls on
Cloudlab [55] and 2 firewalls on AWS using the AWS
Marketplace [19] and EC2. We chose the following victim
stacks that are popular [31], [32] in IoT devices:
1) Telnet server on Contiki OS[56]
2) HTTP server on TTYLinux[57] (thttpd daemon)
3) TCP server on Ubuntu 11.04 (netcat)
4) TCP server on Ubuntu 16.04 (netcat)

All 4 victim stacks have open-source implementations.
Even though we have the source code for the victims and
one firewall, we treat them as black-boxes. For each victim,
we handcraft an approximate model and identify states in
the model where the victim is likely to accept TCP data. We
use this information for symbolic attack generation (§5.1).

For each SFW and the 10 input alphabets from §4.2,
we infer a symbolic model. We run the Symbolic Attack
Generator module for each pair of inferred symbolic mod-
els and victim models. We constrain the Symbolic Attack
Generator to generate symbolic attacks upto length 10 and
specify the end state of the victim model. We then use
the 3 strategies mentioned in §5.2 to generate multiple
concrete attacks from each symbolic attack. We consider
5 instances of the delta-step strategy with ∆seq,∆ack =
{(1, 1), (1, 2), (2, 1), (2, 2), (10000, 10000)}. We use these
parameters to exercise different behaviors – off by 1, off by a
small number >1, and off by a large number. Using all the 3
strategies, each symbolic attack generates 7 concrete attacks.
Given these concrete attacks, we validate them against a live
deployment of the firewall and victim, based on the success
criteria mentioned in §3.1. Since S2 and S3 are stronger
criteria, we focus on these in our evaluation. Finally, we
cluster successful attacks based on an equivalence criteria
(described below) and analyze patterns in successful attacks.

V I SFW A
[S]

[S]

(I, ip− portV, ip− portA,S,LAN);
(I, ip− portV, ip− portA,S,WAN)

(A, ip− portA, ip− portV,S,WAN); (null)

Figure 14: Example of symbolic representation used for
checking attack equivalence.
Attack equivalence: Many evasion attacks are semantically
related and provide no additional value to operators or
vendors trying to prioritize countermeasures. To this end,
we define equivalence criteria to determine if two sequences
are related, and explain how this differs from the loop-free
invariant (Def. 5.1). We define criteria at the symbolic and
concrete level, using attributes visible “on the wire”.
• Symbolic: As shown in Figure 14, we represent each

symbolic packet as a pair of tuples of a packet before and
after it is acted on by the firewall: (sender, src-ip-port,
dst-ip-port, flags, firewall-iface). firewall-iface is the
interface at which the firewall sees the packet. 2 symbolic
attacks are semantically related if their packet represen-
tations are equal. This representation is based on the
prediction of firewall behavior as per models inferred
in §4. This equivalence criteria differs from Def. 5.1
as this criteria differentiates attacks based on attributes
observable on the wire, while Def. 5.1 also considers
model-internal attributes.

• Concrete: For each concrete attack, we consider the
packet traces at each host (attacker, victim, insider).
We represent each sent and received packet as (sender,
src-ip-port, dst-ip-port, flags, strategy-class). Here
strategy-class is a qualitative parameter to represent se-
q/ack behavior namely; random vs. off by a large number
vs. off by a small number. We define strategy-class = 0
for random, strategy-class = 1 for the delta-step instance
with ∆seq,∆ack = (10000, 10000) and strategy-class =
2 for others. Unlike symbolic attacks, this representation
is based on the actual behavior during attacks, not the
behavior predicted by the inferred models.

Given these equivalence criteria, we post-process the
results and only report unique uncovered attacks.

7. Results
We summarize our findings and implications along 4

dimensions: (1) firewall, (2) victim, (3) attack success cri-
teria, and (4) attacker capability. Overall, we find that: (1)
Pryde outperforms alternatives [15] in terms of number of
successful attacks generated; (2) Pryde uncovers interesting
attack patterns unique to different settings; and (3) Pryde’s
design choices are critical to tackle the diverse problem
space.

Finding 1: Pryde generates up to 2-3 orders of magnitude
more distinct successful concrete attacks than baseline
black-box fuzzing and prior work on firewall evasion [15]
(Table 3).

We compare Pryde with 2 fuzzing approaches and a
state-of-the-art genetic algorithm based evasion tool called

FW1 FW2 FW3 FW4

S2
Pryde 4 169 6956 539
Stateless Fuzzing 0 0 0 0
Model-guided Fuzzing 0 0 0 0
Geneva [15] 0 0 0 0

S3
Pryde 4 169 6954 61
Stateless Fuzzing 0 0 0 0
Model-Guided Fuzzing 0 0 0 0
Geneva [15] 0 0 0 0

TABLE 3: Number of distinct successful concrete at-
tacks generated by Pryde, stateless fuzzing, model-guided
fuzzing and Geneva [15] for different success criteria.

Geneva [15]. Prior work on protocol fuzzing [11], [12], [25]
is inapplicable in our context and cannot be used as baseline
vs. Pryde. These works assume a simple client-server net-
work deployment and do not model other deployments or
stateful firewalls. We consider two natural baseline fuzzing
approaches to compare Pryde against – stateless fuzzing and
model-guided fuzzing (inspired by prior work [58]).

Table 3 shows the number of distinct successful concrete
attacks generated by Pryde and these baselines for success
criteria S2 and S3. These results include all 4 victim stacks.
Detailed results of Pryde for all 3 success criteria are given
in Appendix E. Below, we discuss the baseline approaches
and their experimental setup.

Stateless fuzzing: This approach serves as a deployment-
aware model-free baseline. We generate random sequences
of TCP packets of lengths 1 to 7 with the knowledge of
the deployment which includes host IPs, TCP flags, and
the insider’s capability to spoof packets as the victim. This
approach fails to generate any successful attacks (Table 3)
across firewalls and victims for success criteria S2 and S3.

Model-guided fuzzing: We consider a deployment-agnostic
model-guided baseline, which leverages the SFW models
inferred in §4. For each SFW model, we identify “data-
forwarding” states; i.e. those where the SFW forwards TCP
DATA from the external to the internal network. We identify
all paths from the start state to a data-forwarding state and
sample a subset of these paths (for path lengths 1 to 7).
Each path represents a series of transitions in the SFW
model and corresponds to a symbolic packet sequence. We
set the seq/ack numbers randomly in each packet. As shown
in Table 3, this approach does not generate any successful
attacks for success criteria S2 or S3.

Geneva: To run Geneva [15] in our setting, we add a custom
plugin for Pryde (using the Geneva docs [59]) which defines
a fitness function to be used for evaluating evasion strategies.
This fitness function sends a SYN from the attacker to the
victim, then sends a DATA and finally, checks if it the
attacker receives an ACK from the victim. We leave other
configurations in Geneva as the default and do not change
any internal logic. For each firewall and victim pair, we run
Geneva as a client-side evaluator [59] on the attacker, for
50 generations with a population of 200 evasion strategies.
We find that Geneva is unable to generate any effective
evasion strategies for criteria S2 and S3 (refer to Table 3).
This is due to a mismatch between Geneva’s assumptions

Figure 15: Percentage equivalence while comparing suc-
cessful symbolic and concrete attacks generated for one
firewall (x-axis) against those of another firewall (y-axis).

and the deployment model we consider. Geneva requires
visibility into attack success to evolve strategies. However,
since neither the attacker nor the insider can observe the
firewall forwarding packets to the victim or the victim’s
behavior on receiving the attacker’s packets, this information
is not available in our system setting.

Finding 2: At least 86.74% and up to 100% of the attacks
successful against one firewall are unsuccessful against
another. This shows the need for a generalizable workflow
that can generate deployment-specific attacks (Figure 15).

A natural question is: Can we re-purpose attacks that
work against one SFW to attack another SFW, instead of
re-running Pryde. To answer this, we consider pairs of
SFWs: FWX and FWY. For each attack successful against
FWX (and any victim), we check if it is equivalent to
an attack successful against FWY, using the equivalence
criteria described in §6. We calculate the percentage of
attacks successful against FWX that pass this check.

Figure 15 shows the results for symbolic and concrete
attacks. Each cell in the heatmap shows what percentage
of attacks successful against FWX (firewall on X-axis) are
equivalent to any attack successful against FWY (firewall
on Y-axis). For symbolic attacks, at least 86.74% and up to
100% of the attacks are distinct between pairs of firewalls.
For concrete attacks, 100% of all attacks successful against
a firewall do not translate to success against another firewall.
These results validate that evasion attacks need to be tailored
to an SFW and deployment, and that Pryde’s generalizable
workflow can generate such tailored attacks.

Finding 3: Pryde uncovers subtle and interesting attack
patterns, that are unique to each firewall (Figure 16).

We analyze the set of successful attacks and report subtle
interesting patterns that we observe for each firewall. Here,
too, we consider attacks successful against criteria S2 where
the insider is present.

Figure 16a shows the insider spoofing a SYN and punch-
ing a hole in FW-1 which allows the attacker to send a
SYN to the victim. The victim receives a RST (in red and
bold), which is spoofed and sent by FW-1. FW-1 consis-
tently spoofs RSTs to try to stop communication between
the attacker and the victim. However, this RST does not
completely teardown the connection state as a later SYN

V I SFW A
[S]

[S]

[SA]

[R]
[R]

[X]

[R]
[S]

[SA]

[S]

[DATA]

[A]

X={A,SA,FA}

(a) FW-1

V I SFW A
[S]

[SA]

[S]

[SA]

[A]

[R]

[S]

[SA]

[R]

[DATA]

[A]

(b) FW-2

V I SFW A
[A]

[X]

[R]

[S]

[S]

[SA]

[DATA]

[A]

X={A,SA,
DATA,FA}

(c) FW-3

V I SFW A
[S]

[S]

[S]

[SA]

[X]

[DATA]

[R]

[A]

[SA]

[DATA]

[A]

X={R,RA}

(d) FW-4

Figure 16: Unique attack patterns for different firewalls.

from the attacker is forwarded. Ultimately, this allows the
attacker to send malicious data to the victim and the attack
is successful.

Figure 16b depicts unique attacks against FW-2. The at-
tacker attempts to communicate with the victim but receives
RSTs from the victim twice. Inspite of this, malicious data
from the attacker is forwarded to the victim by FW-2 and
accepted by the victim. We discuss FW-3 in the next finding
(Finding 4).

Figure 16d shows unique attacks with 2 spoofed SYNs.
As seen before with FW-1 and FW-2, RSTs don’t fully
teardown the connection state in FW-4. In this specific attack
pattern, the last ACK from the victim is not forwarded. Thus,
this attack pattern is successful based on criteria S2 but not
based on criteria S3. Note that the ACK being blocked by
the firewall only limits the observability of attack success
by the attacker, not the impact of the attack on the victim.

Finding 4: Pryde generates attacks against FW-3 that (a)
require no insider, and (b) start with a TCP ACK from
the insider (Figure 16c).

Pryde discovers that FW-3 trivially allows a TCP DATA
packet from the attacker to the victim without any preceding
packets. This attack satisfies success criteria S1 and succeeds
without an insider. FW-3 is the only firewall against which
Pryde discovers successful attacks (for criteria S2 and S3)
that start with an ACK from the insider. FW-3 forwards these
to the attacker without a previous SYN (Figure 16c). We ob-
serve that other firewalls are not vulnerable to deployments
without the insider.

Finding 5: Pryde’s design choices are crucial for
generating successful concrete attacks across diverse
firewalls and victims.

We present a systematic ablation study of Pryde’s mod-
ules and the design choices shown in Figure 4. We discuss

FW1 FW2 FW3 FW4

S2
Pryde 4 169 6956 539
Pryde + subset of DAG
generation heuristics 2 186 4317 1059

Pryde + random edge
selection for pruning 4 264 6121 661

S3
Pryde 4 169 6954 61
Pryde + subset of DAG
generation heuristics 2 186 4317 618

Pryde + random edge
selection for pruning 4 264 6121 179

TABLE 4: Number of successful concrete attacks gener-
ated by Pryde and its variations with modified heuristics.

strawman solutions and show Pryde’s benefit over these.

(1) Deployment-agnostic vs deployment-aware: We com-
pare Pryde with Geneva [15] and a deployment-agnostic
model-guided baseline in Finding 1. Table 3 shows that these
approaches are ineffective.

(2) Monolithic vs modular: Finding 1 compares Pryde
against stateless fuzzing, a deployment-aware monolithic
approach, and shows that this approach is ineffective.

(3) Model-free vs model-guided: The stateless fuzzing
and Geneva [15] baselines discussed above are model-free
approaches. This shows the need for adopting a model-
guided approach.

(3a) Value of evasion-aware models: We run Pryde using
the alphabet sets proposed in Alembic [45]: (1) ΣEvasion

= ΣAlembic (ΣNC is a null set); and (2) ΣNC = Σrand
NC

11.
We discover no successful attacks against any firewall and
victim pair, for any success criteria. This result validates our
choice to extend Alembic [45] to explicitly consider non-
TCP-compliant scenarios for model inference.

(4a) Symbolic attack generation: Running the model
checker without the loop-free invariant (Def. 5.1) generates
semantically-identical symbolic attacks, that provide no ex-
tra value to an operator.

(4b) Concrete attack generation: We compare against 2
strawman approaches to set seq/ack numbers (mentioned in
§5.2). The first approach ignores any structure of the sym-
bolic attack and assigns seq/ack numbers randomly to each
packet. The second approach leverages the fact that each
symbolic packet had a concrete equivalent packet which was
played against the firewall in the Model Inference module.
This approach naively re-uses the seq/ack values from those
concrete packets and sets them in the symbolic attack. We
observe that both these approaches are ineffective.

Heuristics for concrete attack generation: We evaluate
Pryde’s robustness to changes in heuristics for (a) depen-
dency graph generation, and (b) pruning to a spanning
tree, in the Concrete Attack Generator (§5.2). For (a), we
modify dependency graph generation to use a subset of the

11. Alembic refers to these as correct-seq and combined-seq

C – Contiki; T – TTYLinux; U11 – Ubuntu 11; U16 – Ubuntu 16

Figure 17: Number of symbolic attacks that generate
successful concrete attacks, using all strategies and using
only the tcp-compliant strategy, respectively.

heuristics12 from Appendix B. For (b), instead of using
heuristics from Appendix C to prune edges and generate
a spanning tree, we select an edge at random from the set
of incoming edges at each node. For both experiments, we
leave the other steps as it is and test the generated attacks
against criteria S2 and S3.

Table 4 shows that while changes in these heuristics do
affect the exact number of successful concrete attacks, Pryde
is robust at generating successful attacks across diverse
firewalls and victims, robust to heuristic choices.

Ensemble of strategies: To evaluate the benefit of using an
ensemble of strategies, we consider symbolic attacks that
generate at least 1 successful concrete attack. Figure 17
shows the results of using the entire ensemble of strategies,
and only the tcp-compliant strategy (we consider this strat-
egy as it produces the largest number of attacks). The tcp-
compliant strategy misses 100% and 75% of the attacks for
FW-1 and FW-2 respectively (even though it performs well
for FW-3 and FW-4). Thus, even using the “best” strategy
results in missing a majority/all of the attacks for 2 out of
the 4 firewalls, supporting our choice to use an ensemble of
strategies.

8. Countermeasures

Robust network configuration: Stateful firewalls and net-
work deployments should utilize best practices. Specifically,
firewalls should use strict seq/ack checking logic, validate
packet length/malformed packets, and protect against spoof-
ing. Vendors and network operators should enable these by
default, to mitigate the risk of firewall circumvention.
Model-guided defense: Vendors can use Pryde’s inferred
models and evasion attacks to identify bug fixes. The models
can help narrow down the exact code region/path for a given
attack. We envision doing this iteratively. After patching spe-
cific bugs, we can re-run Pryde to validate the effectiveness
of the patches against the attacks and also identify if the
patches introduced any new evasion opportunities.
Using traffic normalizers: Operators can use our attacks
to synthesize policies for traffic normalizers [60]. Our post-

12. We only used heuristics CONSECUTIVE, VICTIM_SA and
ATTACKER_S. The first one adds dependence between consecutive packets
while the other two add dependence between SYN, SYN-ACK and ACK
based on the TCP 3-way handshake

processing analysis for summarizing the patterns of attacks
can be used to generate attack signatures, which can be used
by traffic normalizers to drop malicious packet sequences.
Automating firewall patching: Given our findings, we can
leverage techniques from program synthesis and program
patching to generate patches for the firewall connection-
tracking logic that are correct by construction [61].

9. Conclusions

Stateful firewalls are ubiquitously used to protect net-
works from adversaries. We propose Pryde, a modular
model-guided framework to automatically analyze these fire-
walls and uncover evasion attacks. Our analysis shows the
importance of Pryde’s customizability and unearths unique
behaviors for different firewalls. Thus, Pryde is a valuable
tool for firewall vendors as well as network administrators.
An interesting direction of future work is to combine our
work with the power of model-free techniques by using
model-guided results as “seeds” for model refinement.

Acknowledgements: We thank our anonymous shepherd
and the anonymous reviewers for their suggestions. This
work was funded in part by NSF awards CNS-2132639
and CNS-1552481, the Combat Capabilities Development
Command Army Research Laboratory under Cooperative
Agreement Number W911NF-13-2-0045 (ARL Cyber Secu-
rity CRA), the Ann and Martin McGuinn Graduate Fellow-
ship, and the Kavcic-Moura research award. The views and
conclusions in this paper are those of the authors and should
not be interpreted as presenting the official policies or posi-
tion, either expressed or implied, of the Combat Capabilities
Development Command Army Research Laboratory or the
U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon.

References

[1] “Katherine Pryde,” https://marvel-movies.fandom.com/wiki/
Katherine Pryde, last accessed Dec 1, 2023.

[2] “What is a firewall? Firewalls explained and why you need one,”
https://us.norton.com/blog/privacy/firewall, last accessed Dec 1, 2023.

[3] “The Importance of Industrial Control Systems (ICS) Firewalls,”
https://www.therma.com/the-importance-of-industrial-control-
systems-ics-firewalls/, last accessed Dec 1, 2023.

[4] “Cloud-based firewalls are key to protecting employees while working
remotely,” https://securityboulevard.com/2020/05/cloud-based-
firewalls-are-key-to-protecting-employees-while-working-remotely/,
last accessed Dec 1, 2023.

[5] “Red Hat Sprucing OpenShift for Network Functions on Kuber-
netes,” https://www.lightreading.com/virtualization/red-hat-sprucing-
openshift-for-network-functions-on-kubernetes, last accessed Dec 1,
2023.

[6] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra,
“FIREMAN: A toolkit for firewall modeling and analysis,” in IEEE
Symposium on Security and Privacy. IEEE Computer Society, 2006.

[7] E. Al-Shaer, A. El-Atawy, and T. Samak, “Automated pseudo-live
testing of firewall configuration enforcement,” IEEE J. Sel. Areas
Commun., 2009.

[8] Adel El-Atawy, K. Ibrahim, H. Hamed, and Ehab Al-Shaer, “Policy
segmentation for intelligent firewall testing,” in NPSec, 2005.

[9] Y. Cao, Z. Wang, Z. Qian, C. Song, S. V. Krishnamurthy, and
P. Yu, “Principled unearthing of tcp side channel vulnerabilities,” in
Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. Association for Computing Machinery,
2019.

[10] T. Ferreira, H. Brewton, L. D’Antoni, and A. Silva, “Prognosis:
Closed-box analysis of network protocol implementations,” in Pro-
ceedings of the 2021 ACM SIGCOMM Conference. Association for
Computing Machinery, 2021.

[11] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network
protocol fuzzing framework,” IJCSNS, 2010.

[12] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
“Pulsar: Stateful black-box fuzzing of proprietary network protocols,”
in SecureComm, ser. Lecture Notes of the Institute for Computer
Sciences, Social Informatics and Telecommunications Engineering.
Springer, 2015.

[13] I. Karim, A. Al Ishtiaq, S. R. Hussain, and E. Bertino, “Blediff:
Scalable and property-agnostic noncompliance checking for ble im-
plementations,” in 2023 IEEE Symposium on Security and Privacy
(SP), 2022.

[14] P. Fiterău-Broştean, R. Janssen, and F. Vaandrager, “Combining
model learning and model checking to analyze tcp implementations,”
in Computer Aided Verification: 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II
28, 2016.

[15] K. Bock, G. Hughey, X. Qiang, and D. Levin, “Geneva: Evolving
censorship evasion strategies,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, 2019.

[16] K. Bock, G. Hughey, L.-H. Merino, T. Arya, D. Liscinsky,
R. Pogosian, and D. Levin, “Come as you are: Helping unmodified
clients bypass censorship with server-side evasion,” in Proceedings of
the 2020 ACM SIGCOMM Conference. Association for Computing
Machinery, 2020.

[17] R. Jhala and R. Majumdar, “Software model checking,” ACM Comput.
Surv., 2009.

[18] L. M. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in
TACAS, ser. Lecture Notes in Computer Science. Springer, 2008.

[19] “AWS Marketplace,” https://aws.amazon.com/marketplace, last ac-
cessed Dec 1, 2023.

[20] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose, “Sok: Security
evaluation of home-based iot deployments,” in 2019 IEEE Symposium
on Security and Privacy (SP), 2019.

[21] D. Breitenbacher, I. Homoliak, Y. L. Aung, N. O. Tippenhauer, and
Y. Elovici, “Hades-iot: A practical host-based anomaly detection
system for iot devices,” in Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security. Association
for Computing Machinery, 2019.

[22] “Guidelines on Firewalls and Firewall Policy,”
https://www.govinfo.gov/content/pkg/GOVPUB-C13-
f52fdee3827e2f5d903fa8b4b66d4855/pdf/GOVPUB-C13-
f52fdee3827e2f5d903fa8b4b66d4855.pdf, last accessed Dec 1,
2023.

[23] “2020 Sees a 100 Percent Rise of Compromised IoT Devices,”
https://atlas-cybersecurity.com/cyber-threats/2020-sees-a-100-
percent-rise-of-compromised-iot-devices/, last accessed Dec 1,
2023.

[24] Z. Wang, S. Zhu, Y. Cao, Z. Qian, C. Song, S. V. Krishnamurthy,
K. S. Chan, and T. D. Braun, “Symtcp: Eluding stateful deep packet
inspection with automated discrepancy discovery,” in NDSS, 2020.

https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://marvel-movies.fandom.com/wiki/Katherine_Pryde
https://us.norton.com/blog/privacy/firewall
https://www.therma.com/the-importance-of-industrial-control-systems-ics-firewalls/
https://www.therma.com/the-importance-of-industrial-control-systems-ics-firewalls/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://securityboulevard.com/2020/05/cloud-based-firewalls-are-key-to-protecting-employees-while-working-remotely/
https://www.lightreading.com/virtualization/red-hat-sprucing-openshift-for-network-functions-on-kubernetes
https://www.lightreading.com/virtualization/red-hat-sprucing-openshift-for-network-functions-on-kubernetes
https://aws.amazon.com/marketplace
https://www.govinfo.gov/content/pkg/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855/pdf/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855/pdf/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855.pdf
https://www.govinfo.gov/content/pkg/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855/pdf/GOVPUB-C13-f52fdee3827e2f5d903fa8b4b66d4855.pdf
https://atlas-cybersecurity.com/cyber-threats/2020-sees-a-100-percent-rise-of-compromised-iot-devices/
https://atlas-cybersecurity.com/cyber-threats/2020-sees-a-100-percent-rise-of-compromised-iot-devices/

[25] V. Pham, M. Böhme, and A. Roychoudhury, “Aflnet: A greybox
fuzzer for network protocols,” in Proceedings of the 13rd IEEE Inter-
national Conference on Software Testing, Verification and Validation
: Testing Tools Track, 2020.

[26] P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager,
and P. Verleg, “Model learning and model checking of ssh imple-
mentations,” in Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software. Association for
Computing Machinery, 2017.

[27] S. R. Hussain, I. Karim, A. A. Ishtiaq, O. Chowdhury, and E. Bertino,
“Noncompliance as deviant behavior: An automated black-box non-
compliance checker for 4g lte cellular devices,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, 2021.

[28] “Heartbleed,” https://heartbleed.com/, last accessed Dec 1, 2023.

[29] “Firewall Penetration Testing: Steps, Methods And Tools That Work,”
https://purplesec.us/firewall-penetration-testing/, last accessed Dec 1,
2023.

[30] “CVEs for Linux 2.6 kernel,” https://www.cvedetails.com/
vulnerability-list/vendor id-33/product id-47/version id-
410986/Linux-Linux-Kernel-2.6.html, last accessed Dec 1, 2023.

[31] “Home Router Security Report 2020,” https://www.fkie.fraunhofer.de/
content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity
2020 Bericht.pdf, last accessed Dec 1, 2023.

[32] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka, and
N. Tsiftes, “The contiki-ng open source operating system for next
generation iot devices,” SoftwareX, vol. 18, p. 101089, 2022.

[33] “Cisco Nexus 9000 Series NX-OS Security Configuration Guide,
Release 7.x,” https://www.cisco.com/c/en/us/td/docs/switches/
datacenter/nexus9000/sw/7-x/security/configuration/guide/b Cisco
Nexus 9000 Series NX-OS Security Configuration Guide 7x/b
Cisco Nexus 9000 Series NX-OS Security Configuration Guide
7x chapter 010111.html, last accessed Dec 1, 2023.

[34] https://www.tenable.com/audits/items/CIS Cisco NX-OS-
v1.0.0 Level 2.audit:06ddd866be61e9feb8b36e058ade8d1e, last
accessed Dec 1, 2023.

[35] “FBI recommends that you keep your IoT devices on a separate
network,” https://www.zdnet.com/article/fbi-recommends-that-you-
keep-your-iot-devices-on-a-separate-network/, last accessed Dec 1,
2023.

[36] “Three security practices that IoT will disrupt,” https:
//www.csoonline.com/article/2599509/three-security-practices-
that-iot-will-disrupt.html, last accessed Dec 1, 2023.

[37] M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallit-
sis, D. Kumar, C. Lever, Z. Ma, J. Mason, D. Menscher, C. Seaman,
N. Sullivan, K. Thomas, and Y. Zhou, “Understanding the mirai
botnet,” in Proceedings of the 26th USENIX Security Symposium.
USENIX Association, 2017.

[38] “Californian government agency breached in phishing attack,”
https://www.grcworldforums.com/security/californian-government-
agency-breached-in-phishing-attack/1095.article, last accessed Dec
1, 2023.

[39] “Microsoft Employees Exposed Own Company’s Internal Lo-
gins,” https://www.vice.com/en/article/m7gb43/microsoft-employees-
exposed-login-credentials-azure-github, last accessed Dec 1, 2023.

[40] “Twitter hack: Staff tricked by phone spear-phishing scam,” https:
//www.bbc.com/news/technology-53607374, last accessed Dec 1,
2023.

[41] “Attackers hijack UK NHS email accounts to steal Microsoft logins,”
https://www.bleepingcomputer.com/news/security/attackers-hijack-
uk-nhs-email-accounts-to-steal-microsoft-logins/, last accessed Dec
1, 2023.

[42] “IoT Hackers Target Millions of Devices in Pandemic,”
https://www.msspalert.com/cybersecurity-research/iot-report-zscaler-
findings/, last accessed Dec 1, 2023.

[43] “Insider threats, supply chains, and IoT: Breaking down a modern-
day cyber-attack,” https://darktrace.com/blog/insider-threats-supply-
chains-and-iot-breaking-down-a-modern-day-cyber-attack, last ac-
cessed Dec 1, 2023.

[44] “Somebody’s Watching: Hackers Breach Ring Home Secu-
rity Cameras,” https://www.nytimes.com/2019/12/15/us/Hacked-ring-
home-security-cameras.html, last accessed Dec 1, 2023.

[45] S. Moon, J. Helt, Y. Yuan, Y. Bieri, S. Banerjee, V. Sekar, W. Wu,
M. Yannakakis, and Y. Zhang, “Alembic: Automated model inference
for stateful network functions,” in NSDI. USENIX Association, 2019.

[46] S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “BUZZ:
testing context-dependent policies in stateful networks,” in NSDI.
USENIX Association, 2016.

[47] D. Angluin, “Learning regular sets from queries and counterexam-
ples,” Inf. Comput., 1987.

[48] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in NSDI. USENIX Association, 2012.

[49] Y. Yuan, S.-J. Moon, S. Uppal, L. Jia, and V. Sekar, “Netsmc: A
custom symbolic model checker for stateful network verification.” in
NSDI. USENIX Association, 2020.

[50] E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model
checking using satisfiability solving,” Formal Methods in System
Design, 2001.

[51] “Rfc 9293: Transmission control protocol (tcp),” https://datatracker.
ietf.org/doc/html/rfc9293, last accessed Dec 1, 2023.

[52] H. Raffelt and B. Steffen, “Learnlib: A library for automata learning
and experimentation,” in FASE, ser. Lecture Notes in Computer
Science, vol. 3922. Springer, 2006.

[53] “Scapy,” http://www.secdev.org/projects/scapy/, last accessed Dec 1,
2023.

[54] “Boto3,” https://github.com/boto/boto3, last accessed Dec 1, 2023.

[55] “Cloudlab,” https://www.cloudlab.us/, last accessed Dec 1, 2023.

[56] “Contiki OS,” https://www.contiki-ng.org/, last accessed Dec 1, 2023.

[57] “TTYLinux,” https://www.minimalinux.org/ttylinux/, last accessed
Dec 1, 2023.

[58] J. De Ruiter and E. Poll, “Protocol state fuzzing of tls implementa-
tions,” in Proceedings of the 24th USENIX Conference on Security
Symposium. USENIX Association, 2015.

[59] “Running the Evaluator – geneva documentation,” https://geneva.
readthedocs.io/en/latest/howitworks/evaluator.html, last accessed Dec
1, 2023.

[60] M. Handley, V. Paxson, and C. Kreibich, “Network intrusion detec-
tion: Evasion, traffic normalization, and end-to-end protocol seman-
tics,” in USENIX Security Symposium. USENIX Association, 2001.

[61] A. Zaostrovnykh, S. Pirelli, L. Pedrosa, K. J. Argyraki, and G. Can-
dea, “A formally verified NAT,” in Proceedings of the 2017 ACM
SIGCOMM Conference. Association for Computing Machinery,
2017.

Appendix A.
Vendor disclosure

We share anecdotes from the vendor interactions below:
• FW-1: On the vendor’s request, we evaluated a newer ver-

sion of FW-1 and found successful attacks. We observed
that the newer version was more aggressive in spoofing
TCP RSTs. Thus, some attacks successful against criteria

https://heartbleed.com/
https://purplesec.us/firewall-penetration-testing/
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/version_id-410986/Linux-Linux-Kernel-2.6.html
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.fkie.fraunhofer.de/content/dam/fkie/de/documents/HomeRouter/HomeRouterSecurity_2020_Bericht.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x_chapter_010111.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x_chapter_010111.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x_chapter_010111.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x_chapter_010111.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus9000/sw/7-x/security/configuration/guide/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x/b_Cisco_Nexus_9000_Series_NX-OS_Security_Configuration_Guide_7x_chapter_010111.html
https://www.tenable.com/audits/items/CIS_Cisco_NX-OS-v1.0.0_Level_2.audit:06ddd866be61e9feb8b36e058ade8d1e
https://www.tenable.com/audits/items/CIS_Cisco_NX-OS-v1.0.0_Level_2.audit:06ddd866be61e9feb8b36e058ade8d1e
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://www.zdnet.com/article/fbi-recommends-that-you-keep-your-iot-devices-on-a-separate-network/
https://www.csoonline.com/article/2599509/three-security-practices-that-iot-will-disrupt.html
https://www.csoonline.com/article/2599509/three-security-practices-that-iot-will-disrupt.html
https://www.csoonline.com/article/2599509/three-security-practices-that-iot-will-disrupt.html
https://www.grcworldforums.com/security/californian-government-agency-breached-in-phishing-attack/1095.article
https://www.grcworldforums.com/security/californian-government-agency-breached-in-phishing-attack/1095.article
https://www.vice.com/en/article/m7gb43/microsoft-employees-exposed-login-credentials-azure-github
https://www.vice.com/en/article/m7gb43/microsoft-employees-exposed-login-credentials-azure-github
https://www.bbc.com/news/technology-53607374
https://www.bbc.com/news/technology-53607374
https://www.bleepingcomputer.com/news/security/attackers-hijack-uk-nhs-email-accounts-to-steal-microsoft-logins/
https://www.bleepingcomputer.com/news/security/attackers-hijack-uk-nhs-email-accounts-to-steal-microsoft-logins/
https://www.msspalert.com/cybersecurity-research/iot-report-zscaler-findings/
https://www.msspalert.com/cybersecurity-research/iot-report-zscaler-findings/
https://darktrace.com/blog/insider-threats-supply-chains-and-iot-breaking-down-a-modern-day-cyber-attack
https://darktrace.com/blog/insider-threats-supply-chains-and-iot-breaking-down-a-modern-day-cyber-attack
https://www.nytimes.com/2019/12/15/us/Hacked-ring-home-security-cameras.html
https://www.nytimes.com/2019/12/15/us/Hacked-ring-home-security-cameras.html
https://datatracker.ietf.org/doc/html/rfc9293
https://datatracker.ietf.org/doc/html/rfc9293
http://www.secdev.org/projects/scapy/
https://github.com/boto/boto3
https://www.cloudlab.us/
https://www.contiki-ng.org/
https://www.minimalinux.org/ttylinux/
https://geneva.readthedocs.io/en/latest/howitworks/evaluator.html
https://geneva.readthedocs.io/en/latest/howitworks/evaluator.html

S3 against the older version only satisfied criteria S1
against the newer version. This re-emphasizes the need
for a model-guided workflow that can detect subtle dif-
ferences in firewall implementations and generate attacks
that are customized to a firewall’s behavior.

• FW-2: The vendor acknowledged our initial report but did
not follow up.

• FW-3: The vendor mentioned that they had enabled a
stricter TCP check by default in their configuration, which
could potentially thwart our attacks. In fact, this check was
enabled only after our initial disclosure to the vendor back
in Sep 2020. While enabling this check blocked some
attacks, we still found many attacks successful against
criteria S1. Some attacks that are successful against crite-
ria S3 with the strict check disabled only satisfied criteria
S1 with the check enabled. Similar to FW-1 above, this
re-emphasizes the need for a model-guided workflow.

• FW-4: On the vendor’s request, we evaluated a newer ver-
sion of FW-4 and all attacks were successful against the
newer version, including attacks that passed our strictest
success criteria (criteria S3 in Figure 3).

Appendix B.
Dependency graph generation

In the dependency graph, a directed edge from node X to
Y signifies a potential dependency of the seq/ack of packet
Y on the seq/ack of packet X . We use 6 heuristics to add
these edges and construct the graph.
1) PRED: X is a predecessor of Y , and X and Y have the

same prefix.
2) CONSECUTIVE: X is the immediate predecessor of Y .
3) SAME_DIR: X is the latest predecessor of Y such that

X and Y have the same prefix and the same direction.
4) DIFF_DIR: X is the latest predecessor of Y such that

X and Y have the same prefix but different directions.
5) VICTIM_SA: X is a SYN-ACK packet sent by the

victim; Y is a DATA packet sent by the attacker.
6) ATTACKER_S: X is a SYN packet sent by the attacker;

Y is a SYN-ACK packet sent by the victim.

Appendix C.
Edge selection

Given a dependency graph, Algorithm 1 selects edges to
create a spanning tree.

Appendix D.
Setting concrete seq/ack using a strategy

Given a spanning tree, Algorithm 2 describes how to
assign seq/ack numbers to each packet (each node in the
spanning tree represents a packet).

Algorithm 1: Edge selection
1 Function EdgeSelection(dependencyGraph):
2 tree edges = []
3 for node in dependencyGraph.nodes do
4 edges =

PRUNE VISIBLE(node.incoming edges)
5 if len(edges) == 1 then
6 tree edges.append(edges[0])
7 continue

8 e =PRUNE TYPE(edges, [V ICTIM SA,
ATTACKER S])

9 if e is not None then
10 tree edges.append(e)
11 continue

12 e =PRUNE TYPE(edges, [SAME DIR,
DIFF DIR])

13 if e is not None then
14 tree edges.append(e)
15 continue

16 e =PRUNE TYPE(edges, [PRED])
17 if e is not None then
18 tree edges.append(e)
19 continue

20 e =PRUNE TYPE(edges, [CONSECUTIV E])
21 if e is not None then
22 tree edges.append(e)
23 continue

24 return (dependencyGraph.nodes, tree edges)

25 Function PRUNE_TYPE(edges, types):
26 edges.SORT() /* sort edges in decreasing

order of source node index */
27 for edge in edges do
28 for type in types do
29 if edge.type == type then
30 return edge

31 return None

32 Function PRUNE_VISIBLE(edges):
33 visibleEdges = []
34 for edge in edges do
35 if edge.src.direction == edge.dst.direction

then
/* src and dst packets are in the

same direction */
36 visibleEdges.append(edge)

37 else
38 if edge.src.is forwarded then

/* src pkt is forwarded to its
destination */

39 visibleEdges.append(edge)

40 return visibleEdges

Appendix E.
Detailed results

For all 3 success criteria given in §3.1, Figure 18 shows
the number of unique successful concrete attacks, for all

Algorithm 2: Strategy application
1 Function StrategyApplication(spanningTree,

initialization, update):
2 nodes = TOPOLOGICAL SORT(spanningTree)
3 for node in nodes do
4 if node has no incoming edge then
5 initialization(node.seq)
6 initialization(node.ack)

7 else
8 update(node.seq)
9 update(node.ack)

firewalls and victims. Figure 19 contains results for the
effectiveness of all strategies against different firewalls and
victims.

(a) Success criteria: S1

(b) Success criteria: S2

(c) Success criteria: S3

Figure 18: Number of distinct successful concrete attacks
generated by Pryde

(a) FW-1

(b) FW-2

(c) FW-3

(d) FW-4

Figure 19: Strategy effectiveness for different firewalls
and victims

Appendix F.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

F.1. Summary

The paper presents Pryde, which combines black-box
automata learning with model checking to identify eva-
sion attacks against stateful firewall deployments. Pryde’s
approach has been shown to be effective in identifying
more than 6,000 evasion attacks against 4 popular stateful
firewalls and 4 networking stacks.

F.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established Field

F.3. Reasons for Acceptance

1) The paper presents a principled model inference-based
approach embodied in a tool called Pryde, which can
identify evasion attacks against a stateful firewall imple-
mentation in a highly automated fashion.

2) Pryde’s effectiveness has been demonstrated by discover-
ing many unique evasion attacks against stateful firewall
products, some of which are from commercial-grade
vendors.

3) Experimentally Pryde has been shown to be more effec-
tive in generating 2-3 orders of magnitude more evasion
attacks compared to two baselines, namely, a custom
model-guided fuzzer and Alembic++ (Alembic-inferred
stateful firewall model enhanced with Pryde’s symbolic
attack generation).

F.4. Noteworthy Concerns

1) Although the paper demonstrates Pryde’s effectiveness
by experimentally comparing it with two baselines,
namely, model-guided fuzzing and Alembic++, the paper
could be further improved by directly comparing Pryde
with SymTCP.

2) One of the reviewers had concerns that the experiments
presented in the paper were performed using outdated
network stacks and it is unclear whether Pryde is equally
effective in newer network stacks.

Appendix G.
Response to the Meta-Review

We emphasize that our contribution in this paper is
Pryde, a generalizable framework for uncovering evasion

attacks against stateful firewalls, not the attack sequences
themselves. While we have tested Pryde on a few popular
IoT/router network stacks, Pryde itself generalizes to other
stacks or firewalls. Practitioners can run Pryde in these new
scenarios and uncover custom evasion attacks. Appendix A
mentions some related anecdotes for FW-1 and FW-3.

	Introduction
	Background and motivation
	Background on stateful firewalls
	Motivating scenario
	Related work and limitations

	Overview
	Problem Setup and Threat Model
	High-level ideas
	Pryde's workflow
	How an operator would use Pryde

	Evasion-Aware Model Inference
	Prior work and limitations
	Evasion-aware input alphabet selection
	Evasion-aware rewriting logic

	Extensible Evasion Attack Generator
	Symbolic Attack Generator
	Concrete Attack Generator

	Implementation and Evaluation Setup
	Results
	Countermeasures
	Conclusions
	References
	Appendix A: Vendor disclosure
	Appendix B: Dependency graph generation
	Appendix C: Edge selection
	Appendix D: Setting concrete seq/ack using a strategy
	Appendix E: Detailed results
	Appendix F: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix G: Response to the Meta-Review

