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Abstract

Social media is an area where users often experience censorship through a variety
of means such as the restriction of search terms or active and retroactive deletion
of messages. In this paper we examine the feasibility of automatically detecting
censorship of microblogs. We use a network growing model to simulate discussion
over a microblog follow network and compare two censorship strategies to simu-
late varying levels of message deletion. Using topological features extracted from
the resulting graphs, a classifier is trained to detect whether or not a given com-
munication graph has been censored. The results show that censorship detection
is feasible under empirically measured levels of message deletion. The proposed
framework can enable automated censorship measurement and tracking, which,
when combined with aggregated citizen reports of censorship, can allow users to
make informed decisions about online communication habits.

1 Introduction

The recent and continuing popularity of the social aspect of the Internet, in par-
ticular social media and online social networks (OSNs), has facilitated unprece-
dented new ways of communication and levels of information sharing. This new
freedom has challenged many governments, organisations and businesses which,
for legitimate reasons or not, are struggling to control dissemination of news
events, digital content and other sensitive information. When the censorship is
acknowledged, justification ranges from maintaining public order and safety [9]
to protection of morality from obscenity [20] to the protection of intellectual
property or copyright [21]. In most cases, however, censorship is unquestion-
ably a hindrance to a free and transparent society where citizens are able to
participate by expressing ideas and opinions openly and without fear of reprisal.

Exposing censorship and the methods used to achieve it puts pressure on
repressive elements and allows citizens to make informed decisions about how
they participate in society. Projects such as Herdict [18,12] and ConceptDoppler
[7] have undertaken to measure and track censorship online. However, Herdict
relies on user reports and neither Herdict nor ConceptDoppler focus on user
communication in OSNs.
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Recent research has focused on identifying sensitive keywords as well as in-
fluential or controversial users who are more likely to be censored [1,24,25]. How-
ever, these entities cannot always be anticipated before the censorship occurs,
and therefore it is desirable to focus on features that are not content-based.

This paper proposes a novel method for censorship detection that does not
rely on keyword lists or other forms of content. Instead, the approach classifies
communication graphs derived from OSNs based solely on topological proper-
ties. More specifically, this work makes the assumption that user communication
behaviour on microblogs, i.e., the posting and replying of messages, is gener-
ated by a random process that can be approximated using a graph generator.
More importantly, however, is the further assumption that acts of censorship,
specifically message deletion, results in a definite and measurable effect on the
communication graphs.

Combined with the aforementioned citizen reports of censorship, OSNs and
other online communities that deviate from known norms could be flagged as
being censored and users could be warned to adapt strategies for organising and
disseminating information.

This paper contributes to the understanding of the effects of social media
censorship on network structure in the following two ways:

1. We identify salient topological features and show how they are affected by
varying levels of censorship;

2. We propose a framework for automatic censorship detection at the network
level that is content-agnostic.

In light of recent political events such as the Arab Spring of 2011, the current
conflict in Syria and the ongoing censorship of media in China, there is an urgent
need for a framework for the measurement of censorship online to ensure freedom
of speech and access to information, and, in the larger context, maintain a free
and open Internet. The approach aims to fill this gap and in doing so facilitate a
better understanding of network censorship and ultimately provide a means for
automated measurement, tracking and monitoring of censorship on the Internet.

The remainder of the paper is organised as follows. First we highlight related
work that examines censorship of microblogs, primarily on the Sina Weibo net-
work popular in China. Then in Section 3 we present the methodology which
outlines the data generation, graph feature extraction and classifier setup. Fi-
nally, Section 4 presents the results and discussion.

2 Related work

Censorship in the context of social media has been defined as the “suppression,
limiting or deleting of objectionable” content or any other form of speech or
expression [8,9]. There have been numerous works documenting instances and
trends of censorship and circumvention strategies online, generally anecdotal or
qualitative in nature, often relying on first-hand accounts [19,15,20]. However,



some recent research has employed quantitative methods to measure and com-
pare censorship practices on different OSNs [1,24,25].

Detection of deleted posts has been used in previous work to quantify censor-
ship. The most pervasive methodology involves sampling microblog posts over a
period of time to capture sensitive political events while querying the service at
regular intervals to determine if any of the posts have been deleted [1,24,25].

Bamman et al. [1] uncovered politically sensitive terms more likely to be
actively and retroactively deleted in a comparison between censorship on Twitter
and China’s Sina Weibo microblogging services. A random sample of collected
messages found that 16.25% were deleted from the Weibo network. Geographic
distribution was found to have a strong impact on message deletion rates, with
up to 53% of sampled messages originating from some Chinese provinces deleted.

Initial research by [24] shows that active and retroactive censorship to a large
extent succeeds in stemming the spread of information on microblogs. In a sub-
sequent work, the authors studied the time distribution of deleted messages and
found that nearly 30% of deletions happen in the first 5-30 minutes and up to
90% of deletions occur within 24 hours of the posting [25]. Extrapolating the
sampled data to message posting rates, the authors estimated that up to 4,200
workers working eight hour shifts would be required to match the demand for
censorship levels on Sina Weibo alone. Furthermore, the authors uncovered cen-
sorship behaviour such as peak hours where censorship occurs and the practice
of deleting entire repost cascades started from a single sensitive post. Ultimately,
a complex array of censorship practices filter the continuous stream of Weibo
posts such that sensitive topics do not enter into mainstream discussion.

Network perturbation and resilience is a closely related field where network
metrics are studied under destructive processes that iteratively remove nodes or
edges [4,11,23], however, these works do not consider censoring models for these
processes nor do they formulate the problem as one of classification.

Despite these important works, no research to date has explored the effects
of censorship on the underlying structure of the network and furthermore no
research exists that attempts to automatically detect and classify censorship in
these networks. Given that online social networks have certain universal prop-
erties [2], it is likely that common strategies of censorship such as limiting or
deleting content or users from the network would have measurable effects on
these properties. This research constitutes a first step to fill this gap by studying
these effects.

3 Methodology

In this section we detail the methodology. First, we define a reply-graph over a
microblog follow network. Then, we show how we use the configuration model to
generate reply-graphs and present two methods to simulate censorship of these
networks. Next, we introduce topological features extracted from the reply-graph
that are then used to train a support vector machine in order to classify network
censorship. Finally, our experimental setup is presented.



3.1 Definitions

Consider a directed multigraph G = (V,E) without self loops where the nodes
V represent users and the edges E represent microblog posts over the follow
network. That is, an edge eij ∈ E if user vi is followed by user vj and a post
from vi is shown in vj ’s timeline. Note, an edge eij does not imply an edge eji.
This notation corresponds to the flow of information over the edges E. As an
example, the user vi, who is followed by the set of users S, posts a new microblog
entry m. Then, for each vj ∈ S, a new edge eij is created in G, meaning that
the entry m was visible in the timelines of users S.

To remain general, we refer to the graph G as the reply-graph as in [16], but
with the constraint that an edge is only possible if there is a follow relationship
between two users.

3.2 Configuration model

Due to the limited availability of censored microblog reply-graphs, we have cho-
sen to generate random graphs with similar characteristics. Simulation of net-
work data is commonly used when access to data is limited or when character-
istics of the network must be carefully controlled. Since our aim is the study of
reply-graphs, we make use of the directed multigraph configuration model (CM)
proposed by [17] that permits random graph construction with arbitrary in and
out degree distributions.

Power laws have been observed in the degree distributions of online social
networks [2] although the ubiquity of data conforming to this distribution is
often overstated [3] and depending on the network in question a closer fit may
be found in any number of exponential distributions (e.g., Pareto-lognormal
distribution [10]). However, to simplify network generation in this preliminary
work we assume the degree distributions follow a power law and generate the
reply-graphs accordingly. We fix the power law exponent to α = 2.0 for both the
in and out degree distributions that are used as input to the CM and set the
network size to |V | = 1000 nodes.

3.3 Simulating censorship

We focus on the censorship of microblog posts which are represented by the edges
E of G. That is, we do not consider the case where user accounts (the nodes
V of G) are suspended or deleted. Two censorship strategies are compared.
The first is based on a uniform sampling of a fraction of the edges in G. This
strategy can be likened to a population of users that are subjected to uniform
censorship, that is, each user’s post has the same probability of being deleted.
This carries with it the assumption that each user is equally likely to post about
a topic considered worthy of censorship, which is unlikely to be the case in
the real world [25]. Nonetheless, a uniform sampling of deleted edges serves as
a useful baseline. The second strategy is based on the removal of repost (or
retweet) cascades. Such a cascade occurs when users, upon seeing a message



posted by one of their followees, choose to repost the message to their followers.
The information cascades over the network according to the popularity of the
original post. Censoring of entire cascades has been empirically documented in
previous work [25] where censors were shown to retroactively remove a post
and all subsequent reposts. We simulate repost cascades using the independent
cascade model (ICM).

ICM, originally proposed by Kempe et al. [13], is used to model spreading
processes such as disease or information cascading through OSNs. The method
starts with a set of activated (infected) seed nodes and at each iteration a coin
is flipped to determine whether the information flows across an outgoing edge of
a newly activated node. On success, the information spreads and the activated
node attempts to spread the information in the next iteration. A global transmis-
sion probability is used for the coin flip and in our experiments this probability is
set to 0.1 to allow for larger cascades that will form the censored edges of G. For
simplicity, the seeds are selected by ranking the nodes according to out degree
and taking the top five, corresponding to the fraction 0.005 of the nodes V in
G. Cascades are generated with ICM until the total number of edges reaches the
censorship threshold. Figure 1 shows an example set of cascades generated over
G using ICM.

For both the uniform and ICM-based censorship strategies, we remove a
fraction γ of the edges in G for each γ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6} where the
total number of edges removed equals γ× |E|. This range allows us to study the
detection of levels of censorship that have been empirically measured [1].

1
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Fig. 1. An example set of generated repost cascades starting with three initially acti-
vated seed nodes (top row).

3.4 Network features

Communication graphs derived from OSNs have specific characteristics distin-
guishing them from other networks such as random graphs [2,14,10,22]. For ex-
ample, node degree distributions of OSNs have been shown to be exponentially



distributed, following power laws [2] or Pareto-lognormal mixtures [10]. OSNs
also exhibit small diameters [2] that shrink with network growth [14] and have a
higher number of triangles1 compared to random graphs [2]. Centrality measures
also show characteristic behaviour. In [6] the authors measure the stability of var-
ious centrality measures of OSNs sampled at different thresholds and show that
certain centrality measures are less robust to uniform sampling. Other research
has examined spectral eigenvalue distributions for classification of biological net-
works as the eigenvalues are known to summarise various topological properties
of graphs [22].

We motivate our choice of graph features by drawing on the aforementioned
work. Based on these characteristics, we derive the following features and posit
that they can be used to discriminate between censored and uncensored reply-
graphs based on the assumption that acts of censorship fundamentally change
network structure. We abbreviate feature names in parentheses for use in the
figures and tables that follow.

Average degree (avgdeg) is defined as 2×|E|
|V | , ignoring edge direction. The

assortativity coefficient (assort) is the degree correlation between pairs of
connected nodes for the undirected equivalent of G. The diameter (dia) of
G is defined as the maximum shortest path for the undirected equivalent of
G and the radius (rad) is the minimum of the set of maximum path lengths
from every node to every other node in the undirected equivalent of G.2 The
average clustering coefficent (clustering) is defined as 1

|V |
∑
i∈V Ci where

Ci is the local clustering coefficient measuring the number of edges divided by
the number of total possible edges between the neighbours of node i for the
undirected equivalent of G. The average betweenness centrality (betcent) is
the average of the number of shortest paths that pass through any node in G.

For simplicity, we assume the in and out degree distributions of G to follow
a power law. As such, we include the estimates of the power law exponent α
(in alpha fit and out alpha fit, respectively) as well as the goodness of fit mea-
sured by the negative log-likelihood (in likelihood fit and out likelihood fit).
The parameters are estimated by maximum likelihood estimation (MLE) as de-
scribed in [3]. Finally, we calculate and retain the first 50 eigenvalues of the
Laplacian matrix (spec0-49).

The resulting feature vector F is of length 60 (10 topological features plus
50 Laplacian eigenvalues).

3.5 Classification

The classifier used in this work is the support vector machine (SVM) [5] with
the radial basis function (RBF) as a kernel with parameters complexity C = 1.0
and gamma g = 0.01. The choice of classifier and kernel is motivated by satis-
factory experimental results and the pervasive use of SVMs in machine learning

1 If actors A and B are connected and B and C are connected, there is a high proba-
bility that actors A and C are also connected.

2 Diameter and radius are calculated on the largest connected component.



literature although we note that any number of classification methods could be
readily used. For brevity we omit details of SVMs and statistical learning theory
and refer the reader to [5].

3.6 Experimental setup

The experimental setup is as follows:

1. Generate N = 100 directed multigraphs G with |V | = 1000 nodes using the
CM

2. Simulate censorship uniformly and with ICM by removing γ × |E| edges,
yielding Gγcu and GγcICM

3. Compute topological features F , F γcu and F γcICM of G, Gγcu and GγcICM ,
respectively

4. Classification by pairwise 10-fold cross validation on (F , F γcu), (F , F γcICM )
with class labels {0, γ}

To account for variance, Step 4 is repeated 10 times, each using a different
random seed. The Java-based WEKA machine learning toolkit is used for clas-
sification and feature selection3 and all experiments are conducted on an Intel
quad-core i5-2520M CPU laptop running at 2.50GHz.

4 Results and discussion

In this section we (1) show the effects of censorship on graph features, (2)
present the classification results and (3) highlight salient graph features dis-
covered through feature selection. Some figures have been fit with a statistical
smoother and include shaded 95% confidence intervals for readability.

4.1 Censorship effects on graph features

Figure 2 shows the effect of censorship on the topological network features. In
(a), we see that under uniform censorship, assortativity is not a discriminating
feature. However, for censorship of repost cascades with ICM, we see a substan-
tial increase in assortative nodes for mid to moderate levels of edge removal.
At γ = 0.6, there are less assortative nodes since at this high level much of the
network structure has been lost. The average clustering coefficient (b) shows
different trends for uniform and ICM. For uniform it peaks at γ = 0.1 and then
slowly declines while for ICM the decline is immediate with a fluctuating mean
for larger values of γ. The trends for average degree (c) are similar to both strate-
gies with a predictable decline as γ increases. Unsurprisingly, network diameter
(d) and radius (e) behave similarly because they both describe characteristics
of the shortest paths. For ICM, the metrics increase with γ, consistent with
previous work [14]. For uniform edge removal, the growth is slower. Average
betweenness centrality (f) shows a declining behaviour as γ increases.

3 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 2. Topological features as a function of the fraction of censored edges.

Moving our focus to the in and out degree distributions, Figure 3 (a) and
(b) show the estimated exponent α of the power law for the in and out degree
distributions, respectively. Recall that the networks were generated with a value
of α = 2.0. The estimated value of α is lower than expected, possibly due to the
scale of the network and the fact that the configuration model may not accurately
portray the given distributions in the resulting network. However, the estima-
tions vary with γ, which indicates discrimination potential. The likelihoods of
the power law fitting, shown in (c) and (d), are also informative features. As
we deviate from the power law in the uncensored network by simulating censor-
ship, the distributional fit becomes less and less accurate. While the power law
assumption is simplistic, we expect that this can be readily generalised to other
distributions if the degree sequences for uncensored networks are known a priori.

For satisfactory pairwise classification of censored versus uncensored net-
works, discriminating features should exhibit different values for γ = 0.0 and
γ >= 0.1. Through visual inspection of Figures 2 and 3,4 we can see that when
used together, the chosen features appear to support our hypothesis that cen-
sorship, even at lower levels (γ = 0.1), fundamentally alters network structure.

4 We omit plots for the Laplacian eigenvalues due to space considerations.



1.80

1.85

1.90

1.95

0.0 0.2 0.4 0.6
Fraction of censored edges

in
_a

lp
ha

_f
it

ctype icm uniform

(a) Estimated in degree α

1.85

1.90

0.0 0.2 0.4 0.6
Fraction of censored edges

ou
t_

al
ph

a_
fit

ctype icm uniform

(b) Estimated out degree α

●

●

●

●

●

●● ●

●

●

● ●

●

●

●

●
●

●

●

●

● ●● ●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●● ●
● ●

●

●

●

●

● ●

●

●

● ●

● ●

● ●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●● ●
● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●● ●

●

●

● ●

●

●

●

●

●

●● ●● ●

●

●

●

●

●

●

●

●

● ●●

●

● ●
● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

● ●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●● ●

●

●

●

●

● ●● ●

●

●

● ●

●

●

●

●

● ●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
● ●● ●

● ●● ●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●● ●● ●

●

●

●

●

● ●● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●● ●

●

●

● ●

●

●

● ●
● ●

●

●● ●
● ●

●

●● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●
● ●

●

●

● ●

●

●● ●

●

●

●

●

● ●
● ●● ●

●

●

●
●

●

●

●

●

●
●

●

●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●

●

●● ●● ●

●

●

●

●
● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
● ●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
● ●

●

●

●

●
● ●● ●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

−750

−500

−250

0

0.0 0.2 0.4 0.6
Fraction of censored edges

in
_l

ik
el

ih
oo

d_
fit

ctype ● ●icm uniform

(c) In degree α likelihood

●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●
● ●

● ●
● ●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

● ●

●

●

● ●

●

●

● ●
● ●

●

●

● ●

●

●

● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
● ●

● ●

●

●

●

●

●

●

● ●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

● ●● ●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

● ●
● ●

● ●
● ●

●

●

●

●

● ●● ●● ●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●● ●● ●

●

●

●

●

● ●● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●●

● ●● ●
● ●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

● ●

●

●● ●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

● ●

●

●●
●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●
●

●

●

●

●

●● ●

●

●

● ●●
●

● ●

●

●

●

●●
●

●

●
● ●

●

●

●

●

● ●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●

● ●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

● ●

●

●

●
●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

● ●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●● ●

●

●
●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

−750

−500

−250

0

0.0 0.2 0.4 0.6
Fraction of censored edges

ou
t_

lik
el

ih
oo

d_
fit

ctype ● ●icm uniform

(d) Out degree α likelihood

Fig. 3. Estimated power law exponent α and log-likelihood values for in and out degree
distributions as a function of the fraction of censored edges.



4.2 Classifying censorship

Figure 4 shows the classification accuracy of the SVM as a function of varying the
fraction of censored edges for the uniform and ICM-based censorship strategies.
Accuracy is substantially higher than random (50%), and quite satisfactory for
a two-class problem. We see that censorship of repost cascades (ICM) has a
much stronger affect on network structure for lower values of γ than the uniform
strategy due to the inherent structural correlation between repost cascades and
the reply-graph. Interestingly the accuracy plateaus to 97% at γ = 0.6 which
indicates that censorship at γ >= 0.5 is trivial to detect. For uniform edge
removal, there is a steep transition between γ = 0.2 and γ = 0.4 after which it
matches classification accuracy of ICM.

Table 1. Feature selection results for the two censorship strategies.

Censorship
strategy γ Selected attributes

ICM 0.1 assort, spec2, spec3, spec38
0.2 avgdeg, in alpha fit, out alpha fit, assort, spec21
0.3 avgdeg, in alpha fit, assort, rad, betcent, spec1, spec13, spec29, spec35, spec48
0.4 out alpha fit, assort, rad, spec1, spec12
0.5 out alpha fit, assort, rad, spec0
0.6 out alpha fit, assort, rad, spec2

Uniform 0.1 in alpha fit, spec1, spec10, spec13
0.2 clustering, betcent, spec22, spec29, spec36
0.3 dia, rad, clustering, betcent, spec12, spec13, spec15
0.4 avgdeg, dia, rad, spec1, spec7, spec17, spec19, spec30, spec34, spec35
0.5 avgdeg, dia, rad, clustering, betcent, spec0, spec5, spec9, spec18, spec28, spec32, spec45, spec47
0.6 clustering, spec8

4.3 Feature selection

Feature selection was performed for each γ using a greedy forward search on the
entire dataset with the RBF SVM for both uniform and ICM. These results are
presented in Table 1. For ICM, topological features such as assortativity and ra-
dius appear to be selected for most values of γ along with the in and out degree
α estimation and various spectral eigenvalues. For uniform edge removal, aver-
age degree, clustering, diameter and radius are selected as well as betweenness
centrality and some spectral eigenvalues. The MLE estimation of α is mostly
absent, possibly due to high correlation with other features.

5 Conclusion

In the cat and mouse game of censorship and circumvention, sensitive word lists
play a central role and are invaluable for measuring censorship [1]. However,
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Fig. 4. Classification accuracy as a function of the fraction of censored edges.

in this paper we have shown that network structure is also a very promising
avenue for measurement and detection of censorship. We examined the feasibility
of automatically classifying networks as either censored or uncensored based
on topological features. We compared two censorship strategies: (1) a uniform
strategy where every post has an equal probability of being removed and (2)
a strategy based on removing entire repost cascades. As expected, deletion of
repost cascades was shown to result in higher classification accuracy. In the real
world, however, models of censorship are far more complex and involve sensitive
topics, users, as well as a combination of seemingly arbitrary post removals.

We identified salient topological properties including assortativity, average
degree, deviations from scale-free degree distributions and average clustering
coefficient that provide a starting point for exploring other local and global
network features in the context of censorship detection.

There are some shortcomings in the present work. First, both the power law
assumption and the configuration model for network generation are simplistic,
so other degree distributions and network generators need to be examined. Sec-
ond, we ignored the problem of sampling an online social network by directly
generating the communication graphs. In reality, it not feasible to collect the
complete communication graph due to the scale of the data. Thus, a future work
will incorporate network sampling into the methodology to show how this affects
classification. This is expected to negatively impact classifier accuracy. Third,
the scale of the simulated networks size is small, with |V | = 1000, however, we
expect that for larger networks the features and subsequent classification results
will stabilise, although at the cost of increased complexity. Finally, the methods
presented in this preliminary study must be validated on real data. For this to



be feasible it may be necessary to use different online social networks as sources
of censored and uncensored reply-graphs.

There are several directions in which this work can be extended. Given that
censorship primarily affects the diffusion of information, in addition to edge
removal, we will examine how different levels of node censorship (i.e., suppression
or removal of user accounts) affects the spread of information through an online
social network. Second, the classification framework could be extended to provide
a quantitative estimation of the level of censorship (i.e., the estimation of γ) in
a given online social network.
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