
Secure Communication over Diverse Transports

[Short Paper]

Michael Rogers
michael@briarproject.org

Eleanor Saitta
ella@dymaxion.org

ABSTRACT
This paper describes BTP, a protocol that ensures the confidential-
ity, integrity, authenticity and forward secrecy of communication
over diverse underlying transports, from low-latency, bidirectional
transports like TCP to high-latency, unidirectional transports like
DVDs sent through the mail.

BTP is designed for use in censorship-resistant delay-tolerant
overlays that operate over heterogeneous mixtures of underlying
transports. By providing consistent security properties for a very
wide range of transports, BTP simplifies the design and implemen-
tation of such overlays.

Forward secrecy is achieved by establishing an initial shared se-
cret between each pair of endpoint devices and using a one-way
key derivation function to generate a series of temporary shared
secrets from the initial shared secret. Once both devices have de-
stroyed a given temporary secret, any keys derived from it cannot
be re-derived if the devices are later compromised.

BTP is designed to be compatible with traffic analysis preven-
tion techniques such as traffic morphing: the protocol includes op-
tional padding and uses no timeouts, handshakes or plaintext head-
ers, with the goal of making it difficult to distinguish BTP from
other protocols. If unlinkability between communicating devices is
required, BTP can use anonymity systems such as Tor and Mixmin-
ion as underlying transports.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; E.3 [Data]: Data Encryption

Keywords
Delay-tolerant, forward secrecy, traffic analysis

1. INTRODUCTION
Communication across the internet is vulnerable to surveillance

and censorship on an unprecedented scale: from a central point, a
government or internet service provider can monitor the personal
communications, reading habits and movements of an entire popu-
lation. The potential for authoritarian abuse of such poweris clear.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’12, October 15, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1663-7/12/10 ...$15.00.

Many privacy-enhancing technologies have been developed to
resist internet surveillance and censorship, but when the infrastruc-
ture on which such technologies operate is controlled by thead-
versary they seek to frustrate, there are limits as to what can be
achieved. In extreme circumstances, governments may even be
willing to shut down communication infrastructure in orderto en-
force censorship. Such actions have led to increasing interest in
communication technologies that can function with or without in-
ternet access, includingdelay-tolerant overlays, which use store-
and-forward techniques to communicate over a mixture of online
and offline links.

In this paper we describe BTP, a transport protocol designedfor
use in censorship-resistant delay-tolerant overlays. BTPprovides
a secure unidirectional or bidirectional channel between two end-
point devices, ensuring the confidentiality, integrity, authenticity
and forward secrecy of their communication. In separate work we
are developing key agreement and messaging protocols that are in-
tended to be used alongside BTP.

1.1 Adversary Model
Since BTP is intended to be used in systems that resist govern-

ment surveillance and censorship, we must assume the existence of
a powerful adversary:

• The adversary can observe, block, delay, replay and modify
traffic on all underlying transports.

• The adversary can choose the data written to the BTP layer
by higher protocol layers.

• The adversary has a limited ability to compromise endpoint
devices. If a device is compromised, the adversary can ac-
cess any information held in the device’s volatile memory or
persistent storage.

• The adversary cannot break standard cryptographic primi-
tives such as block ciphers and message authentication codes.

1.2 Design Goals
BTP has the following design goals:

• Flexibility. BTP should be able to operate over a wide range
of underlying transports, both unidirectional and bidirectional,
with bandwidths varying from kilobits to gigabits per second,
and with latencies varying from milliseconds to days.

• Layering. BTP should treat the underlying transport as a
unidirectional or bidirectional byte stream with a simple socket-
like interface (open, read/write, close). Likewise, higher pro-
tocol layers should be able to treat BTP as a unidirectional or
bidirectional byte stream with a similar interface.

• Concealability. BTP should not reveal any plaintext fields
that would make it easily distinguishable from other proto-
cols. It should be compatible with techniques such as traffic
morphing [1] that are designed to resist traffic analysis and
traffic classification.

• Confidentiality. The adversary should not be able to learn
what data is being transported across a BTP connection.

• Integrity. The adversary should not be able to cause either
endpoint of a BTP connection to read data from the BTP
layer that differs from the data written to the BTP layer by the
other endpoint. If the adversary truncates a BTP connection,
the receiving endpoint should be able to detect that this has
happened.

• Authenticity. The adversary should not be able to cause ei-
ther endpoint of a BTP connection to accept data from any
third party as though it came from the other endpoint.

• Forward secrecy.The adversary should not be able to learn
what data was transported across a BTP connection if, at
some later time, the adversary compromises one or both of
the endpoint devices.

BTP does not attempt to conceal the identities of the commu-
nicating parties or the fact that they are communicating – inother
words, it does not provide anonymity, unlinkability or unobserv-
ability [2]. However, BTP can use anonymity systems such as
Tor [3] and Mixminion [4] as underlying transports if unlinkability
between the endpoints is required.

2. OVERVIEW OF THE DESIGN
Achieving forward secrecy without two-way communication is

an unusual requirement that is not addressed by existing protocols.
BTP addresses this requirement by using aone-way key derivation
function to generate a series oftemporary shared secrets from an
initial shared secret. The initial shared secret is destroyed after
deriving the first temporary secret. Each temporary secret is used
for a singlerotation period and destroyed at the end of itsretention
period, which extends beyond the rotation period.

Each endpoint can use the current temporary secret to derivekeys
for communicating with the other endpoint, even if there is never
any communication in the other direction. Once both endpoints
have destroyed a given temporary secret, no keys derived from it
can be re-derived if the endpoint devices are later compromised.

The second unusual requirement addressed by BTP is conceal-
ability. The wire protocol includes optional padding and does not
use any timeouts, handshakes or plaintext headers, making it suit-
able for use with traffic analysis prevention techniques such as traf-
fic morphing. These features are intended to make it difficultfor an
observer to distinguish BTP from other protocols.

In principle the key derivation scheme and the wire protocolare
independent – either could be used alone, but achieving all of the
design goals listed above requires both parts of the design.

2.1 Underlying Transports
BTP can operate over any underlying transport that can deliver

an opaque stream of bytes. We refer to these streams of bytes as
connections. A connection may be unidirectional or bidirectional,
depending on the nature of the underlying transport. Transports
with very high latency are only used for unidirectional connections,
even if they are able to carry data in both directions. Sending DVDs
through the mail is an example of a unidirectional transport– each
DVD carries a unidirectional BTP connection. TCP is an example

of a bidirectional transport – each TCP connection carries abidi-
rectional BTP connection.

Underlying transports do not have access to unencrypted or unau-
thenticated data; nor are they required to ensure the confidential-
ity, integrity, authenticity or forward secrecy of the datathey carry.
BTP is responsible for providing those properties.

Transports must ensure that the bytes sent in each directionacross
a given connection are received in order, but the connections them-
selves may be reordered. For example, a transport based on DVDs
sent through the mail must ensure that bytes are read from a given
DVD in the same order as they were written, but it does not need
to ensure that any two DVDs arrive in the same order as they were
sent. Transports do not have to ensure that all connections reach
their intended recipients.

A transport may impose a maximum connection length, such as
the capacity of a storage medium. BTP passes this restriction on to
higher protocol layers; it does not fragment connections.

To use a datagram-oriented transport such as UDP, which has no
concept of connections, BTP requires an intermediate connection-
oriented protocol such as UDT [5].

2.2 Prerequisites
Two parties, Alice and Bob, who wish to communicate using

BTP must first establish aninitial shared secret. BTP is designed to
be used with a separate key agreement protocol that securelyestab-
lishes the initial shared secret. We are developing such a protocol in
separate work. BTP does not place any restrictions on the method
used to establish the initial shared secret, except that it must not be
possible to re-derive the secret from any information retained by
the parties after the secret has been destroyed.

If Alice and Bob wish to communicate across more than one
transport, they must establish a separate initial shared secret for
each transport to ensure they do not reuse keys.

Alice and Bob must also agree on amaximum latency for each
transport they wish to use. If the sender of a connection starts writ-
ing to the underlying transport at timeT0 and the recipient starts
reading from the transport at timeT1, we callT1−T0 thelatency of
the connection. For any transportt we can choose somemaximum
latency, Lt , such that the latency of any connection is unlikely to
exceedLt under normal conditions. For example, we might choose
one minute as the maximum latency for TCP, or two weeks as the
maximum latency for DVDs sent through the mail.

Finally, Alice and Bob must agree on aframe length, Ft , for each
transportt they wish to use. For all transports,Ft must be at least
64 bytes and at most 215 bytes (32 KiB). The impact of the frame
length is discussed in section 6.

2.3 Cryptographic Primitives
BTP uses two cryptographic primitives: a block cipher and an

authenticated encryption mode. The authenticated encryption mode
must be a stream mode that can use a counter as an initialisation
vector, and it must acceptadditional authenticated data that is au-
thenticated but not encrypted. GCM [6] and OCB [7] are examples
of suitable modes.

We useb to denote the cipher’s block size,k for the key size, and
m for the size of the message authentication code. All are measured
in bytes. Since the authenticated encryption mode is a stream mode,
each ciphertext ism bytes longer than the corresponding plaintext.

3. THE WIRE PROTOCOL
BTP’s wire protocol is very simple. A unidirectional connection

consists of a pseudo-randomtag followed by one or more encrypted
and authenticatedframes. The tag can be calculated in advance

Figure 1: The state machine for bidirectional connections.

by the recipient, allowing the recipient to recognise the incoming
connection without revealing any plaintext fields that would make
it easy for an observer to distinguish BTP from other protocols.

The initiator’s side of a bidirectional connection likewise con-
sists of a tag followed by one or more frames. The responder’s
side has no tag, just one or more frames. Figure 1 shows the state
machine for bidirectional connections. As with TCP, the sides of a
connection may be closed independently.

3.1 Connection Numbers
The connections sent from Alice to Bob during a given rotation

period are assigned sequentialconnection numbers starting from
zero, as are the connections sent from Bob to Alice. The connection
numbers used in each direction are independent from each other
and from any other connection numbers used by Alice or Bob.

Neither endpoint can send more than 232 connections to the other
during a given rotation period. Each endpoint persistentlystores the
highest connection number it has sent to the other during thecur-
rent rotation period, together with a sliding window of the highest
connection numbers it has received from the other during each of
the current retention periods. The persistent storage of these val-
ues is vital, so BTP cannot be used by endpoint devices that lack
writable persistent storage (unless the devices never reboot).

3.2 Tags
The pseudo-random tag at the start of each connection is gen-

erated by encrypting a predictableb-byte plaintext with atag key
using the block cipher in ECB mode. Two tag keys are derived
from each temporary secret: one for Alice’s outgoing connections
and the other for Bob’s (see section 5.2 for details). The plaintext
begins with the connection number as a 32-bit integer, with all other
bits set to zero.1

It is safe to use ECB mode in this context because all plaintext
blocks encrypted with a given tag key are guaranteed to be unique.
The tags generated with a given tag key are also unique, and are
otherwise indistinguishable from random by anyone who doesnot
know the key, under standard assumptions about block ciphers.

3.3 Frames
BTP uses a simple frame format that does not require any plain-

text headers. Every frame sent across a given transport,t, is exactly
Ft bytes long, except the last frame on each side of each connec-
tion, which may be shorter. Each frame consists of a header, zero
or more bytes of payload, and zero or more bytes of padding. All
padding bytes must be set to zero. The header has the following
format:

• Bit 0: Final frame flag. Raised if this is the final frame on
this side of this connection, otherwise lowered.

1All integers used by the protocol are big-endian and unsigned.

Figure 2: The format of a BTP frame. Lengths are in bytes.
AAD is the additional authenticated data (not sent), H is the
header and MAC is the message authentication code.

• Bits 1–15: Length of the payload in bytes, as a 15-bit integer.

The final frame flag allows the recipient to distinguish between
a connection that has been closed by the sender and a connection
that has been truncated by the adversary.

The frames on each side of each connection are assigned sequen-
tial frame numbers starting from zero. No more than 232 frames can
be sent by either side. Each side uses a uniqueframe key derived
from the current temporary secret (see section 5.2 for details). Each
frame is encrypted and authenticated with the frame key using the
block cipher’s authenticated encryption mode. The initialisation
vector begins with the frame number as a 32-bit integer, withall
other bits set to zero. This initialisation vector is guaranteed to be
unique for all frames using a given key. The additional authenti-
cated data has the following format:

• Bits 0–31: Frame number as a 32-bit integer.

• Bit 32: Set to zero.

• Bits 33–47: Length of the plaintext (header, payload and
padding) in bytes, as a 15-bit integer.

The ciphertext (including them-byte message authentication code)
is sent across the underlying transport, but the additionalauthenti-
cated data is not. Instead, the sender and recipient calculate the
additional authenticated data independently.

The recipient uses sequential frame numbers when calculating
the additional authenticated data for received frames. If the adver-
sary deletes or reorders frames, the sender and recipient will use
different frame numbers when calculating the additional autheti-
cated data, so authenticated decryption will fail.

The recipient knows that the plaintext of every frame is exactly
m bytes shorter than the ciphertext, and that the ciphertext of every
frame except the last is exactlyFt bytes long. The recipient learns
the length of the last frame by reading to the end of the underlying
transport connection. If the adversary truncates the last frame, the
sender and recipient will use different plaintext lengths when calcu-
lating the additional authenticated data, so authenticated decryption
will fail.

If authenticated decryption fails, or if any frame has an invalid
length or payload length or contains non-zero padding, the recipi-
ent must close the connection immediately without processing the
frame’s payload. Higher protocol layers can treat the payloads re-
ceived from the BTP layer on each side of each connection as a
continuous stream of bytes.

4. CONNECTION REORDERING
Since an endpoint does not know when it will receive each in-

coming connection, or whether connections will be lost or reordered,
it must be ready to receive any of several incoming connections at
any time. This is achieved by using aconnection reordering win-
dow that spans several consecutive connection numbers. Connec-
tions outside the window will not be recognised by the recipient.

Each endpoint keeps a separate window for each of its currentre-
tention periods. A window consists of a connection number called
the centre, which is initialised to zero, and aWt -bit bitmap. The
constantWt is chosen to reflect the amount of connection loss and
reordering expected from transportt. The⌊Wt/2⌋ connection num-
bers below the centre and the⌈Wt/2⌉−1 numbers above it are con-
tained in the window, excluding numbers outside the range[0,232−
1]. The bitmap indicates which connections inside the window have
been received.

For each connection inside the window that has not yet been re-
ceived, the endpoint calculates the tag the sender will use and stores
the resultingexpected tag in a hashtable. By looking up the tag of
an incoming connection in the hashtable, the recipient can identify
the sender, the transport over which the connection should have ar-
rived, the rotation period and the connection number, allowing the
recipient to derive the appropriate frame key for each side of the
connection.

When connectionn is received, the centre of the window slides
to n+1 unless the centre was already greater thann. The bitmap
and hashtable are updated accordingly. Each window is persistently
stored until the end of the respective retention period, at which
time the window is destroyed and its tags are removed from the
hashtable.

Expected tags do not need to be stored persistently, since they
can be recalculated from the window and the temporary secret.

5. KEY MANAGEMENT

5.1 The Key Derivation Function
BTP’s forward secrecy relies on the one-way nature of the key

derivation function. If a function produces an output from asecret
input and some public inputs, we call it aone-way function if it
is not possible to derive from the output and the public inputs any
information that would allow the secret input to be guessed with
a better than random probability of success or calculated with less
effort than brute force.

A block cipher fits this definition of a one-way function. When
a block cipher is used to encrypt a known plaintext, we can regard
the key as the secret input, the plaintext as the public input, and
the ciphertext as the output. It is a standard design requirement for
block ciphers that no information about the key can be obtained
from any number of plaintexts and the corresponding ciphertexts.
A block cipher is therefore a natural choice for constructing a one-
way key derivation function.

The key derivation function used by BTP is described in section
5.1 of NIST SP 800-108 [8]. The secret input to the function isa
k-byte key. The public inputs are an ASCII string called thelabel
and a 32-bit integer called thecontext, which are combined with
a counter to create⌈k/b⌉ distinct plaintext blocks. Each plaintext
block starts with the null-terminated label followed by thefour-byte
context. At least one byte must be left free for the counter. Any
unused bytes of the block are set to zero and the counter occupies
the last byte. The counter starts at zero for the first block and is
incremented for each subsequent block. Each block is encrypted
with the block cipher in ECB mode. The output of the function is
the⌈k/b⌉ concatenated ciphertext blocks, truncated tok bytes.

The label, context and counter are assumed to be known to the
adversary; thek-byte key is the only secret input.

5.2 Key Derivation Inputs
Alice and Bob derive the first temporary secret from the initial

shared secret using “ROTATE” as the label and zero as the context.

The secret for periodr+1 is derived from the secret for periodr
using “ROTATE” as the label and(r+1) (mod 232) as the context.

Alice’s tag key for rotation periodr is derived from therth tem-
porary secret using “A_TAG” as the label and zero as the context.
Bob’s tag key uses the label “B_TAG”.

The frame keys for Alice’snth outgoing connection during ro-
tation periodr are derived from therth temporary secret usingn
as the context: the key for Alice’s side of the connection uses the
label “A_FRAME_A”, while the key for Bob’s side uses the label
“A_FRAME_B”. For Bob’s outgoing connections, Bob’s side uses
the label “B_FRAME_B” and Alice’s side uses the label
“B_FRAME_A”.

5.3 Rotation and Retention Periods
Each temporary secret is used for one rotation period and re-

tained for one retention period. The rotation period may be arbi-
trarily short, but there are two practical constraints on the retention
period.

The first constraint is the latency of the underlying transport. As
discussed in section 2.2, Alice and Bob must agree on a maximum
latency for each transport they wish to use. For example, they might
choose one minute as the maximum latency for TCP, or two weeks
as the maximum latency for DVDs sent through the mail. The max-
imum latency for transportt is denotedLt .

The second constraint is loose clock synchronisation. Requiring
the endpoints to have exactly synchronised clocks would restrict
the circumstances under which BTP could be used, since many de-
vices lack highly accurate clocks. Therefore we only require that
the difference between the endpoints’ clocks does not exceed some
arbitrarily large constant,C. For devices with clocks that are set
manually by their owners, we might reasonably assume that each
clock differs from the correct time by up to half an hour, so one
hour would be a suitable value forC. For devices with clocks that
are set automatically via GPS [9] or NTP [10], ten seconds would
be a conservative value forC.

To see how the constraintsLt andC affect the retention period,
consider a connection sent across transportt during rotation period
r. If the sender’s clock is ahead of the recipient’s clock, theconnec-
tion may be received as much asC before the start ofr according
to the recipient’s clock. On the other hand, if the sender’s clock
is behind the recipient’s clock, the connection may be received as
much asC+Lt after the end ofr according to the recipient’s clock.
Every temporary secret must therefore be derivedC before its ro-
tation period starts and retained forC+Lt after its rotation period
ends. Thus a transport with a rotation period ofRt has a retention
period ofRt +2C+Lt .

There is no necessary relationship between the rotation period Rt
and the practical constraintsLt andC; even ifLt andC are large,Rt
can be arbitrarily small. But the smaller the value ofRt , the more
temporary secrets each endpoint will have to retain at any time.
Key management is simplified if we chooseRt = 2C +Lt , so that
only two temporary secrets need to be retained at any time.

Using the examples ofLt andC given above, the retention period
would be 2 minutes 40 seconds for devices with automatic clocks
communicating by TCP; 4 hours 2 minutes for devices with manual
clocks communicating by TCP; 4 weeks 40 seconds for devices
with automatic clocks communicating by mail; or 4 weeks 4 hours
for devices with manual clocks communicating by mail.

6. DISCUSSION
We have tried to keep BTP’s design as simple as possible. It is

constructed from well-known primitives: block ciphers, authenti-
cated encryption, one-way functions, key rotation and loosely syn-

chronised clocks. We use these primitives to address two unusual
requirements: forward secrecy without two-way communication,
and concealability.

The wire protocol is suitable for use with traffic morphing: frames
can be arbitrarily segmented and delayed by the morphing process,
while padding can be added if the morphing process requires more
traffic than higher protocol layers are providing. Padding can also
be used more straightforwardly to disguise the amount of data sent
over a connection.

6.1 Applicability
Because it is designed for use in delay-tolerant overlays, BTP is

optimised for latency-insensitive data transfer rather than latency-
sensitive interactive applications. Fixed-length frameswould be
inefficient for interactive traffic, as a frame must be sent each time
the sender needs to flush data to the underlying transport.

Each endpoint device must allocate storage for every other de-
vice with which it communicates. In the context in which we in-
tend to deploy BTP it is reasonable to assume that each devicewill
communicate with a limited number of other devices, but BTP may
not be suitable for use in contexts where this assumption does not
hold.

BTP does not provide proof of delivery for the data it transports.
If proof of delivery is required, it must be provided by higher pro-
tocol layers.

6.2 Engineering Considerations
For each underlying transport they wish to use, Alice and Bob

must each persistently store one temporary secret, one outgoing
connection number and two connection reordering windows (as-
suming Rt = 2C + Lt). To avoid excessively frequent writes to
persistent storage, we suggest a minimum rotation period ofone
minute (with a corresponding retention period of two minutes) re-
gardless of the latency of the transport and the accurary of the end-
points’ clocks.

When a device reboots after a period of inactivity it may needto
‘fast-forward’ through several rotation periods to reach the current
period. Each temporary secret takes⌈k/b⌉ block cipher operations
to derive, which should not be an excessive burden even for a low-
powered device that has been inactive for thousands of periods. The
tag key for each period can also be derived cheaply if there are any
stored connections that need to be recognised.

The frame length,Ft , presents a tradeoff between buffering la-
tency and framing overhead: shorter frame lengths will reduce buffer-
ing latency, while larger frame lengths will amortise the framing
overhead across larger payloads. Different values ofFt are likely
to be appropriate for different transports. For example, TCP might
use a frame length of 512 bytes, whereas DVDs sent through the
mail might use a frame length of 215 bytes (32 KiB).

The size of the connection reordering window,Wt , presents an-
other tradeoff, this time between memory overhead and reliable
recognition of incoming connections: the larger the window, the
more expected tags must be held in memory, but the more likelyit
is that a connection arriving out of order will be recognised.

The retention period presents a third tradeoff, between reliable
connection recognition and forward secrecy. If a transporthas highly
variable latency it may be difficult to choose an appropriatemaxi-
mum latency for the transport, and hence an appropriate retention
period. If the retention period is too short, recipients mayfre-
quently fail to recognise incoming connections due to the corre-
sponding temporary secrets having been destroyed. On the other
hand, if the retention period is too long, connections with latency

below the maximum will be vulnerable for longer than necessary
to decryption if a device is compromised.

6.3 Security Considerations
Unlike most cryptographic protocols, BTP does not require any

source of randomness apart from the initial shared secret. It fol-
lows, however, that the strength of every key depends on the strength
of the initial shared secret – BTP cannot recover from a low-entropy
initial shared secret.

BTP’s forward secrecy relies on the ability to destroy old keys.
This seems unavoidable given our design goals: unidirectional trans-
ports do not allow ephemeral keys to be agreed in-band, so the
information required to decrypt each connection must be known to
the recipient in advance. Unfortunately, securely deleting data from
persistent storage – especially solid-state storage – is difficult with
current operating systems and hardware [11]. The best defence may
be to encrypt the stored data with a key derived from a passphrase,
though that shifts the problem to protecting the passphrase.

If a device is compromised while it is inactive, it may contain
secrets that have outlasted their retention periods but have not been
destroyed. Again, passphrase-protected encrypted storage would
seem to be the best defence.

The adversary can attack the connection reordering window by
blocking traffic on an underlying transport until the sender’s con-
nection number exceeds the recipient’s window; the recipient will
then be unable to recognise the sender’s connections even after the
attack has ceased. BTP limits the impact of such attacks by using
a new window for each rotation period, allowing the endpoints to
recover within one retention period following the end of theattack.

7. RELATED WORK
Protocols for delay-tolerant networking have received consider-

able research attention in recent years, but that research has not
generally aimed at resisting censorship. The IETF’s delay-tolerant
networking architecture “has a basic security model, optionally en-
abled, aimed at protecting infrastructure from unauthorized use” [12].
Kateet al. [13] describe an architecture for anonymous and secure
communication in delay-tolerant networks; unlike BTP, it relies on
a trusted central authority. Ferreiraet al. [14] describe a transport-
layer abstraction for peer-to-peer networks. Their abstraction is
limited to bidirectional transports, but unlike BTP it is capable of
operating over datagram-oriented transports such as UDP. Forward
secrecy and concealability are not among their design goals.

Pseudo-random tags have previously been used to conceal the
network traffic of anti-censorship systems [15, 16], and to conceal
network services [17, 18].

One-way key derivation functions have been used in numerous
protocols, including Lamport signatures [19] and the Guy Fawkes
protocol [20]. Bellare and Yee [21] analyse the use of one-way
functions to provide forward secrecy for symmetric encryption.

Brown et al. [22] describe how short-term encryption keys can
be associated with long-term signature keys to provide forward se-
crecy for PGP [23]. To discover each other’s short-term keysthe
communicating parties need access to an out-of-band key distri-
bution mechanism such as a key server. In-band key distribution
would require regular communication in both directions, a restric-
tion we wish to avoid.

TLS [24] includes cipher suites that provide forward secrecy, but
it cannot be used over unidirectional transports. OTR [25] is more
flexible: after an initial key exchange, two parties can communicate
intermittently in one or both directions, but forward secrecy is only
achieved if there is regular communication in both directions.

Øverlier and Syverson [26] distinguish betweenimmediate for-

ward secrecy andeventual forward secrecy. BTP provides eventual
forward secrecy, as each connection is vulnerable to decryption un-
til the end of the corresponding retention period.

Anderson [27] distinguishes betweenforward security, meaning
that “the compromise of a key now does not necessarily exposefu-
ture traffic”, andbackward security, meaning that “the compromise
of a key now does not necessarily expose old traffic”. The property
we refer to as forward secrecy (looking forward from the moment
the key is used) is what Anderson would call backward security
(looking backward from the moment the key is compromised). The
difference is one of perspective.

8. FUTURE WORK
We have tried to make it difficult for a passive observer to dis-

tinguish BTP from other protocols, but it may be possible to de-
tect whether a device is accepting BTP connections through active
probing. For example, every connection starts with ab-byte tag,
so if a device always acceptsb−1 bytes of random data but closes
the connection afterb bytes, it may be accepting BTP connections.
Preventing such attacks is an important task for future work.

Other important issues that must be addressed in future work
include attacks on the endpoints’ clocks and revocation of compro-
mised secrets. We have not formally proven the security of the wire
protocol or the key derivation mechanism.

We are currently working on open source implementations of
BTP and related key agreement and messaging protocols.2

9. ACKNOWLEDGEMENTS
The authors would like to thank the Small Media Foundation and

the Open Internet Tools Project for supporting this work; Mered-
ith L. Patterson, Emerson Tan and Ben Kurtz for helpful discus-
sions; and Zooko Wilcox-O’Hearn, the anonymous reviewers and
our shepherd Aniket Kate for their comments and advice.

10. REFERENCES
[1] C. Wright, S. Coull, and F. Monrose. Traffic morphing: An

efficient defense against statistical traffic analysis. In16th
Annual Network and Distributed Security Symposium, 2009.

[2] A. Pfitzmann and M. Köhntopp. Anonymity, unobservability,
and pseudonymity - a proposal for terminology. InInt.
Workshop on Design Issues in Anonymity and
Unobservability, 2000.

[3] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
second-generation onion router. In13th USENIX Security
Symposium, 2004.

[4] G. Danezis, R. Dingledine, and N. Mathewson. Mixminion:
Design of a type III anonymous remailer protocol. InIEEE
Symposium on Security and Privacy, 2003.

[5] Y. Gu. UDT: UDP-based data transfer protocol, 2010.
http://tools.ietf.org/html/draft-gg-udt-03.

[6] M. Dworkin. Recommendation for block cipher modes of
operation: Galois/Counter Mode (GCM) and GMAC.
Special Publication 800-38D, NIST, 2007.

[7] P. Rogaway, M. Bellare, and J. Black. OCB: A block-cipher
mode of operation for efficient authenticated encryption.
ACM Transactions on Information and System Security, 6(3),
2003.

[8] L. Chen. Recommendations for key derivation using
pseudorandom functions (revised). Special Publication
800-108, NIST, 2009.

2http://briarproject.org/

[9] US Department of Defense.Global Positioning System
Standard Positioning Service Performance Standard.
Washington, DC: Department of Defense, September 2008.

[10] D. Mills, J. Martin, J. Burbank, and W. Kasch. Network time
protocol version 4: Protocol and algorithms specification.
RFC 5905, IETF, 2010.

[11] M. Wei, L.M. Grupp, F.E. Spada, and S. Swanson. Reliably
erasing data from flash-based solid state drives. In9th
USENIX Conf. on File and Storage Technologies, 2011.

[12] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst,
K. Scott, K. Fall, and H. Weiss. Delay-tolerant networking
architecture. RFC 4838, IETF, 2007.

[13] A. Kate, G.M. Zaverucha, and U. Hengartner. Anonymity
and security in delay tolerant networks. In3rd Int. Conf. on
Security and Privacy in Communication Networks, 2007.

[14] R.A. Ferreira, C. Grothoff, and P. Ruth. A transport layer
abstraction for peer-to-peer networks. In3rd Int. Symposium
on Cluster Computing and the Grid, 2003.

[15] A. Houmansadr, G.T.K. Nguyen, M. Caesar, and N. Borisov.
Cirripede: Circumvention infrastructure using router
redirection with plausible deniability. In18th ACM Conf. on
Computer and Communications Security, 2011.

[16] E. Wustrow, S. Wolchok, I. Goldberg, and J.A. Halderman.
Telex: Anticensorship in the network infrastructure. In20th
USENIX Security Symposium, 2011.

[17] P. Barham, S. Hand, R. Isaacs, P. Jardetzky, R. Mortier,and
T. Roscoe. Techniques for lightweight concealment and
authentication in IP networks. Technical Report
IRB-TR-02-009, Intel Research Berkeley, 2002.

[18] E.Y. Vasserman, N. Hopper, J. Laxson, and J. Tyra.
SilentKnock: Practical, provably undetectable
authentication. In12th European Symposium on Research in
Computer Security, 2007.

[19] L. Lamport. Constructing digital signatures from a one-way
function. Technical Report CSL-98, SRI International, Palo
Alto, CA, USA, 1979.

[20] R.J. Anderson, F. Bergadano, B. Crispo, J.H. Lee,
C. Manifavas, and R.M. Needham. A new family of
authentication protocols.Operating Systems Review,
32(4):9–20, 1998.

[21] M. Bellare and B. Yee. Forward-security in private-key
cryptography. InCryptographers’ Track, RSA Security Conf.
(CT-RSA), 2003.

[22] I. Brown, A. Back, and B. Laurie. Forward secrecy
extensions for OpenPGP, 2005.http://www.links.org/
dnssec/draft-brown-pgp-pfs-04.txt.

[23] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and
R. Thayer. OpenPGP message format. RFC 4880, IETF,
2007.

[24] T. Dierks and E. Rescorla. The transport layer security(TLS)
protocol, version 1.2. RFC 5246, IETF, 2008.

[25] N. Borisov, I. Goldberg, and E. Brewer. Off-the-record
communication, or, why not to use PGP. InWorkshop on
Privacy in the Electronic Society, 2004.

[26] L. Øverlier and P. Syverson. Improving efficiency and
simplicity of Tor circuit establishment and hidden services.
In 7th Workshop on Privacy Enhancing Technologies, 2007.

[27] R. Anderson. Two remarks on public key cryptology.
Technical Report 549, University of Cambridge Computer
Laboratory, 2002.

