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ABSTRACT

Free and open communication over the Internet is considered a
fundamental human right, essential to prevent repressions from
silencing voices of dissent. This has led to the development of
various anti-censorship systems. Recent systems have relied on
a common blocking resistance strategy i.e., incurring collateral
damage to the censoring regimes, if they attempt to restrict such
systems. However, despite being promising, systems built on such
strategies pose additional challenges, viz., deployment limitations,
poor QoS etc. These challenges prevent their wide scale adoption.
Thus, we propose a new anti-censorship system, Camoufler, that
overcomes aforementioned challenges, while still maintaining sim-
ilar blocking resistance. Camoufler leverages Instant Messaging
(IM) platforms to tunnel client’s censored content. This content (en-
capsulated inside IM traffic) is transported to the Camoufler server
(hosted in a free country), which proxies it to the censored website.
However, the eavesdropping censor would still observe regular
IM traffic being exchanged between the IM peers. Thus, utilizing
IM channels as-is for transporting traffic provides unobservabil-
ity, while also ensuring good QoS, due to its inherent properties
such as low-latency message transports. Moreover, it does not pose
new deployment challenges. Performance evaluation of Camou-
fler, implemented on five popular IM apps indicate that it provides
sufficient QoS for web browsing. E.g., the median time to render
the homepages of Alexa top-1k sites was recorded to be about 3.6s,
when using Camoufler implemented over Signal IM application.
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1 INTRODUCTION

In the last decade the Internet has become an integral part in various
aspects of our lives, ranging from education, healthcare to social
interactions, technological advancements in different spheres of
science etc. Free flow of ideas and unrestricted access to information
has become a necessity not only for personal development but also
for the advancement of the society. However, repressive regimes
continuously attempt to surveil and censor this flow of information
by restricting the content, users can share and access.

In opposition, free speech activists and researchers developed
systems [32, 46, 63] which aim at providing unhindered access to
information for clients in repressive regimes. This strife of ideolo-
gies between the censors and the free speech advocates has led to
the evolution and development of effective censorship as well as
anti-censorship technologies [22, 46, 63]. This has led to an arms
race between the censors and free speech activists. As censors ad-
vance their craft, researchers try to stay a step ahead by developing
hard to block anti-censorship systems [66].

To that end, recent anti-censorship systems [33, 38, 45] are de-
signed on a fundamental principle i.e., to incur collateral damages to
the censor, if the they attempts to disrupt the circumvention scheme.
This makes it difficult for the adversary to completely block these
systems. Approaches like decoy routing [45], domain fronting [33]
etc. are examples of such systems. Restricting Decoy Routing re-
quires the censor to update nation-wide routing policies, and in
the process sustain heavy collateral damages, e.g., increased per-
formance overheads [52]. Similarly, Domain Fronting requires the
adversary to block cloud services (such as Google App engine),
which might also be hosting essential services for oblivious users.
Other systems such as Conjure [35] and MassBrowser [53] require
the censor to block some IPs or IP prefixes, thereby also blocking
other innocuous services running behind those. Lastly, tunnelling
systems such as SWEET [43], Covercast [50], Freewave [41] etc.,
transport censored traffic via services and protocols essential for
smooth functioning of businesses, and thus a censor’s economy.
These systems exploit Email [43], VoIP [41], video streams [24, 50]
etc., as covert channels to transport content. Since these systems
use the underlying protocol as-is, it becomes hard for an adversary
to distinguish circumvented traffic from the underlying protocol’s
messages. Hence, a determined adversary may attempt to disrupt
the use of the underlying protocol itself (e.g., emails in case of
SWEET). Although, blocking such channels may incur collateral
damage to the censor.

However, despite these systems providing efficient blocking re-
sistance from the adversary, they exhibit other challenges which
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Figure 1: Camoufler basic architecture.

hinders them from being widely used. These challenges include
deployment limitations, high cost of operation and low perfor-
mance for the users. For instance, Decoy Routing and Conjure
requires collaboration from ISPs to install and maintain additional
network hardware for them to function. Similarly, Domain Fronting
requires hosting a proxy on a fronting service (such as Google App
Engine, Amazon Cloudfront etc.) which incur high periodic sub-
scription [33] costs. Moreover, DeltaShaper [24] (a tunneling based
system) provides 2.56 Kbps throughput, which is insufficient for
providing web browsing.

Thus, we propose and build a new tunnelling based system,
Camoufler, that aims at overcoming the shortcomings of the existing
systems while maintaining similar blocking resistance. Camoufler
utilizes Instant Messaging (IM) platform as a medium to tunnel the
censored traffic. IM channel seems to be better suited to act as a
tunnelling medium for developing such a system in comparison
to other existing counterparts. This is because it has some salient
features, that in general, anti-censorship schemes strive to achieve.
They are:

(1) Minimized latency: IM platforms aim at minimizing the
latency (< 1s) [1] when user exchange messages with each
other (ref. Sec. 4). This provides good QoS, unlike other non-
realtime channels such as emails.

(2) Adequate throughput: IM platforms have sufficient data
transport capacity (in the form of attachments), in compari-
son to channels such as VoIP (which encode data at low bit
rate). Thus IM proves to be more suitable for regular web
browsing.

(3) Reliability: IM is also a reliable channel in comparison to
others such as VoIP and video. While IM ensures reliable
delivery of messages, real-time VoIP and video generally do
not incorporate this feature, as the information lost in the
latter channels becomes irrelevant and is thus not recovered.

(4) Blocking resistance: Similar to existing systems, restrict-
ing the underlying IM applications may incur collateral dam-
age to the adversary as IM apps are an important part of
personal as well as professional spaces [23, 55, 58, 59, 62]1. At
present, businesses utilize IMs as a medium to advertise, com-
municate and expand. E.g., several airline reservation and
movie ticketing services utilize IMs to directly send e-tickets
to customers. Further, IM based collaboration platforms such
as Slack, Flock etc., are now widely used as an alternate to
email for professional communication [3, 11, 14].

! There were 2.5 billion active IM users till January 2019 and this number is expected
to easily cross 3 billion till 2022 [61].
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(5) Deployment ease: IM applications are ubiquitously used by
netizens. As a consequence, to use Camoufler, a user merely
needs to install programs at the client and server ends. Apart
from that, there are no additional requirements as assumed
by previous circumvention proposals (e.g., collaborating with
ISPs [34, 36, 45]).

Thus, we developed Camofler with IM channels as its underlying
tunneling protocol. The basic architecture of Camoufler (depicted in
Fig. 1) requires the censored user to have an IM ID on any popular
IM platform. The user using the Camoufler client, tunnels requests
to a Camoufler server hosted in a free country, which acts as a
proxy and serves the censored content to the client. All the cen-
sored content is encrypted and exchanged via the underlying IM
platform that the user has access to. This would give the pretense
to the censor that regular IM clients are communicating, providing
unobservability to Camoufler.

Camoufler has been implemented and tested to work on several
popular IM applications including Whatsapp, Signal, Telegram,
Slack and Skype, and can be extended to others as well. Camoufler
clients take an average and median time of 4.1s and 3.6s respectively,
to access webpages of Alexa top-1000 sites.

To summarize, following are our major contributions:

o The design of a new anti-censorship system Camoufler, which
utilizes IM apps as covert media to tunnel censored content.
— Usage of IM covert channel serves multiple advantages in

comparison to existing tunneling channels by ensuring: (i)
low latency (ii) reliability (iii) similar blocking resistance
and (iv) high data transport capacity.

e A prototype implementation with a detailed performance
evaluation of Camoufler on five popular apps including, Sig-
nal, Telegram, Slack, Whatsapp, and Skype, depicting the
feasibility of our design.

o A detailed security analysis, depicting Camoufler’s robust-
ness against variety of attacks including traffic analysis.

2 BACKGROUND AND RELATED WORK
2.1 Instant Message Applications

Instant Messaging (IM) applications are one of the most widely used
medium of communication over the Internet. They are used for both
personal (Whatsapp [19], Telegram [15] etc.) as well as professional
communication (Slack [12], Flock [2] etc.). This is reflected in a
recent report [61] which depicts that the number of monthly active
users of IM platforms, were ~ 2.4 billion in January 2019. These
users are expected to go beyond 3 billion in 2022.
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IM applications provide variety of features which are similar
across all IM platforms. These include real time messages, image,
video and file sharing (for individuals as well as for groups). Some
IM apps also support integration of payment wallets [18]. Apart
from these features, such apps consider providing security (and pri-
vacy) to their clients as one of their design principles. To that end,
almost all IM apps provide encryption by either requiring a TLS con-
nection from the client to the IM app providers i.e., end-to-middle
(E2M) or by having an end-to-end (E2E) encrypted connection be-
tween the clients (ref. Fig. 2). This provides confidentiality to the
IM clients from eavesdroppers who may attempt to snoop on the
network traffic. However, it is desirable that the applications use
E2E encryption as it ensures that neither the local eavesdropper,
and nor the IM provider is able to see any content. Many applica-
tions support this feature, including Whatsapp, Telegram, Viber,
Signal, Line, Flock etc.

IM Provider

8 Encrypted Unencrypted Encrypted 8

Alice Bob

8 Encrypted Encrypted 8

Alice Bob

End-to-Middle Encrypted

IM Provider

Encrypted

End-to-End Encrypted

Figure 2: Difference between end-to-middle (E2M) and end-
to-end (E2E) encryption in IM applications.

E2E and E2M encryption schemes We now give a brief overview
of these two different encryption schemes and how they are im-
plemented in IM applications. In an IM application supporting E2E
encryption, the peers depend on a centralized server which is re-
sponsible for distributing public keys of the peers and relaying
messages between them. The client utility uploads a key bundie
(containing public keys) to the central server. When an IM user Al-
ice initiates communication with another user Bob, her client utility
retrieves the key bundle of Bob from the key server, and derives
session key (e.g., using Triple Diffie Hellman algorithm [49]). Then,
Alice forwards her key bundle to Bob, which also derives the same
session key. At this point, they establish an E2E encrypted connec-
tion with each other. With E2E encryption scheme, even the key
server (i.e., an IM provider) cannot compromise the confidentiality
of the messages being exchanged.

On the other hand, applications supporting E2M encryption
generally use the TLS protocol to establish an encrypted connection
between the users and the provider. E.g., if Alice and Bob wish to
communicate with one another, they first establish individual TLS
connections to the IM provider’s server 2. As evident from Fig. 2,
E2M encryption scheme allows the provider to observe the content
(being relayed) in plain-text. However, it protects the confidentiality
of the users’ messages from any third-party.

2 A server managed by app maintainers which stores and relays messages.
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2.2 Related Work

To promote free speech and unhindered information exchange over
the Internet, researchers and free speech activists have proposed
several anti-censorship solution [29, 31, 33, 45, 46, 51, 63, 67, 70]
over the years. Given the plethora of such systems and proposals
available, we try to categorize them and enlist their advantages and
disadvantages.

(1) Proxy based systems: These systems include proxies, VPNs,
Tor [32] etc. These involve clients relaying their traffic via inter-
mediate proxies, that connect to the censored sites on behalf of
the clients. Such systems are easily deployable and thus readily
available to end users. However, they can be easily blocked by
the adversaries, as generally such systems publicly advertise
the proxies’ IP addresss. This, makes it trivial for the adversary
to block them as soon as discovered.

Decoy routing systems: Decoy routing is a promising ap-

proach, that requires client in the censoring regime to connect to

unfiltered websites. These requests contain covert information,
that allows special intermediate routers (decoy routers) en-route
to intercept them, and decipher the true censored destination
that the client wishes to access. These decoy routers then proxy
the requests and responses between the clients and censored
sites, while keeping up with the pretense to the adversary that
the client is connected to the unfiltered website. Examples of

such systems include, Telex [68], Cirripede [40], Slitheen [27],

Tapdance [67], Waterfall of Liberty [54],SiegeBreaker [57] etc.

To censor decoy routers, the adversary may require undertaking

daunting measures such as changing entire nation’s routing pol-

icy [56] in order to bypass such systems. Such routing changes
are prohibitively expensive to achieve in practice [36, 42]. Thus
it becomes very difficult for the adversaries to block them. How-
ever, such systems require collaboration from the ISPs in order

to function and thus pose a hurdle in deployment [36].

(3) Mimicry based systems: These systems attempt to disguise
and transfer censored content as regular applications’ protocol
messages. E.g., SkypeMorph [51], helps acccess censored web-
sites by mimicking Skype’s communication protocol. Others,
like CensorSpoofer [65], obfuscate requests to camouflage cen-
sored sites as VoIP messages transported over SIP. However,
such systems are relatively easier for the adversary to block as
it is very difficult to mimic all the features of the underlying
protocol [39]. Moreover, their performance depends on the traf-
fic rate of the cover protocols. VoIP, used commonly, has very
low transmission rates (e.g., 5 - 40 Kbps in Skype), thus leading
to low QoS for web browsing.

(4) Tunneling based systems: Tunneling based systems rely on
encapsulating covert traffic in standard application protocol
messages — e.g., email, VoIP, video streams, online games etc.
Examples include SWEET [43], Covertcast [50], Delta Shaper
[24], Freewave [41], CloudTransport [28], Rook [64], Games
without frontiers [37], Autoflowleaker [44] etc. These systems
are an improvement over mimicry based systems as they do
not mimic protocol messages, rather they directly use them
as the covert channels. This ensures that the features of the
underlying protocol (e.g., packet size) remain unaltered, while
the censored content is encapsulated inside the payload. In turn,

@
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this makes it difficult for the censor to disambiguate them from
regular (underlying) protocol messages. Thus such systems
provide more efficient blocking resistance against adversaries,
as the latter may require blocking the complete underlying
applications (such as email, cloud services etc.) which may result
in massive collateral damages. However, such systems provide
low QoS for web downloads (e.g., due to low offered bandwidth
in these channels) and are limited in their deployment.
Recently, another tunneling based system Protozoa [25] (with
design goals similar to Camoufler) was proposed. It also aims at
ameliorating the challenges associated with existing tunnelling
systems. Interestingly, it was developed roughly around the
same time as that of Camoufler, and we believe it is a promising
circumvention solution.

Miscellaneous systems: There exist other anti-censorship sys-
tems, which do not fall in any of the above categories, like do-
main fronting [33], CacheBrowser [38], MassBrowser [53] etc.
Domain fronting makes use of different popular cloud services
such as Google app engine, to access censored content. The
request to the proxy server (hidden behind a cloud server), is
concealed in a HTTPS request, which is destined to the domain
name of an innocuous front-end of the cloud server. This front-
end decrypts the HTTPS request and forwards it to the proxy
server. To block such services the adversary may require block-
ing the entire fronting service (e.g., Google app engine), thereby
blocking other third party applications that use the platform.
However, leveraging fronting services is not cost effective for
deployment [33].

Similarly, CacheBrowser works by utilizing content distribu-
tion networks (CDN5s) frontends, located outside the censor’s
boundary. It requires the blocked content to be hosted on the
CDN network, and thus also has an associated cost. Moreover,
websites not hosted on these CDNs cannot be accessed.

A recent system MassBrowser by Nasr et al., leverages some
of the existing techniques (such as Domain fronting and CDN
browsing) to build a client-to-client proxy system. It is similar
to proxy based systems (described before), with a fundamental
difference that these proxies are not hosted on a public IP but
are rather behind public NATs. Thus, blocking the MassBrowser
is not as easy as blocking the IP addresses as it would lead to
blocking other clients behind those NATed IPs.

Lastly, similar to Decoy Routing a recent approach by Frolov
et al. (Conjure [35]) tries to host proxies on an ISP’s unused IP
addresse space. However, Conjure also requires collaboration
from ISPs to install network taps that would allow them to
inspect the traffic transiting the ISP.

Camoufler is an example of tunneling based systems. It aims to
address the shortcomings of tunneling systems such as low QoS,
low-bandwidth channel etc. Additionally, similar to other systems,
we attempt to achieve effective blocking resistance.

3 CAMOUFLER ARCHITECTURE

This section describes the threat model we consider for Camou-
fler, and present its design (ref. Fig. 3) as well as a step-by-step
walkthrough of the protocol.

150

ASIA CCS ’21, June 7-11, 2021, Virtual Event, Hong Kong

3.1 Threat Model

We assume the adversary to be a nation state, which can employ
any existing censorship technique, e.g. IP/DNS filtering, URL and
keyword filtering [22, 30, 69] etc. However, we assume that the
adversary is not willing to be disconnected from important Internet
services (or from the complete Internet for that matter) and inflict
loss to itself, for achieving extensive censorship. Specifically, censor
would allow atleast some IM based channel(s) to function within its
jurisdiction. However, it may attempt to selectively block certain
IM platforms. This is because IM platforms have proliferated sig-
nificantly and are widely used in personal as well as professional
space [23, 58, 59]. Hence, it would be difficult for the censor to
completely block them without sustaining significant collateral
damage.

Additionally, we also assume that the IM channels are encrypted,
either end-to-end or end-to-middle, as is already the case with most
of the existing popular IM applications [60]. Thus the adversary
can monitor or actively analyze the encrypted traffic. He may also
attempt to drop, modify or replay packets for deliberately inducing
perturbations (for some suspicious IM connections) to detect the us-
age of Camoufler. However, he would refrain from launching these
active attacks at a large scale so as to not disrupt the communication
of regular IM clients.

3.2 System Design

We now describe the protocol design of Camoufler. It tunnels the
web requests of IM users (i.e.,, Camoufler clients) residing in cen-
sored regime to an IM peer in a free country (acting as Camoufler
server), using IM applications. The users of Camoufler could them-
selves rent out VPS servers in such countries and run the Camoufler
server, or may rely on trusted peers (friends in free countries) for
running the server on residential or educational hosts. The Cam-
oufler server proxies the received web requests to the censored
destination. This enables the clients (in a censored regime) to ac-
cess blocked content.

General working of our end-to-end system can be understood
by referring to Fig. 3. We begin by describing the individual com-
ponents of Camoufler and their functioning, followed by a step by
step walkthrough of Camouflers’ operation.

Camoufler client consists of the following components:

(1) Local Proxy (LP): It is a standard HTTP proxy that acts as
an interface between the user’s browser and the client engine
(described ahead). More specifically, it accepts content requests
from the browser and passes them to the client engine and vice
versa.

Client Engine (CE): Client engine acts as an interface between
the LP and the underlying IM application. It receives a web
request from the LP, processes it (encryption, compression etc.),
and then forwards the processed web request to the underlying
IM application.

IM application oblivious to the aforementioned process sends
the received content to the other IM peer (Camoufler server) as
standard IM packets. Similarly, CE receives content from the
IM application, decompresses and decrypts it before sending it
to the LP.

The IM server consists of the following components:

@

~



Session 2A: Network and Web Security (1)

ec

I

CAMOUFLER CLIENT

o
(.

<=

ASIA CCS ’21, June 7-11, 2021, Virtual Event, Hong Kong

7

BLOCKED
WEBSITE

200 OK GET :
html Iblocked.com 200 O]
e ||
LOCAL PROXY (LP)
localhost: 8000 Web content encapsulated

A inside IM traffic [ CONTENT PROXY (CP) |

200 OK GET :

<html> Iblocked.com GET : 200 OK

...data... || |EErEEE blocked.com <html>

....... ...data...

Y

[ CLIENT ENGINE (CE) | [SERVER ENGINE () |

I

CAMOUFLER SERVER

o J

Figure 3: Camoufler detailed architecture.

(1) Server Engine (SE): The server engine works similar to CE. When
SE receives a web request, it forwards it to the CP. Later, when
SE receives the web content from the CP, it compresses and
encrypts the web content and sends it back to the Camoufler
client, using the underlying IM application.

(2) Content Proxy (CP): The content proxy retrieves the requested
censored content from the blocked website and sends it back to
the SE.

Furthermore, similar to other existing systems, we assume that the
user has access to the Camoufler software. We now describe a com-
plete walkthrough of our system. The steps involved in accessing
Camoulfler are as follows:

(1) The user configures his browser of choice (Firefox, Chrome,
Opera etc.) to forward all the requests of the browser to the LP.
Once configured, the client can use its browser to access the
blocked content freely.

(2) Next, the user inputs the URL of a censored website in the
browser. This is forwarded to the LP, which forwards this con-
nection request to the CE and waits for the retrieved content.

(3) On receiving the content request (from LP), CE encrypts it

(using a derived shared key as described ahead in §3.2.1), and

uses the underlying IM application to transport this request to

the Camoufler server (SE).

SE, on receiving content request, decrypts it and then forwards

the request to the CP. The CP, retrieves the censored content

and sends it back to the SE. The SE then finally, encrypts and
compresses this content and tunnels it back to Camoufler client
using the IM channel.

On receiving the website content from Camoufler server, the

CE decompresses, decrypts and forwards it to the LP, which in

turn provides it to the browser for appropriate rendering.
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3.2.1 Onencrypting exchanged content. Most of the IM applications
support end-to-end encryption and thus ideally it is not required to
additionally encrypt the messages exchanged via them (ref. §2.1).
However, there might be scenarios where E2E applications are
not allowed within the censor’s jurisdiction (only E2M apps are
allowed), or the client wants to be extra cautious by additionally
encrypting the exchanged content. In such scenarios, the client
derives a shared key with the server.

For this, the client program needs the RSA public key (KS,5) of
the server along with the public key of its DH exponent (¢¥). Since
the Camoufler server is managed by the user himself (or by his
trusted peer), these keys are assumed to be with the client program.

Similarly, the client would generate its DH private key x and
eventually derive the shared key g*¥Y. When the client utility is run
by the user, as a background process, it informs the server that it
intends to encrypt its communication. Then the utility sends the
public key of its DH exponent g* encrypted with the RSA public
key of the server KS,.

The server extracts g* by decrypting it using its RSA private key
(KSpriv) and derives the shared key g*¥ using its private part of
DH exponent y. Once the key is derived, both the parties derive a
hash of g*Y (using SHA-256), and use these resulting hashed bits to
encrypt the subsequent messages exchanged between them using
AES-256. The corresponding DH private keys x and y along with
the derived key g*¥ are then deleted to ensure perfect forward
secrecy.

4 EVALUATION

We now evaluate the performance of Camaoufler using our proto-
type implementation on several IM apps viz., Signal, Skype, Slack,
Telegram and Whatsapp. It must be noted that Camoufler has a
general architecture which can be implemented on any IM app.



Session 2A: Network and Web Security (1)

Time to access Alexa top-1k websites: In the first experiment,
we assessed the time, Camoufler takes to access different websites.
Thus, we downloaded the default webpages of the Alexa top 1000
websites and recorded the time it took Camoufler to complete this
operation. The Camoufler client and server were geographically
apart by a distance of ~ 8300 miles. The Camoufler client was run-
ning on a machine hosted in our university, whereas the server was
running on a cloud hosting service. We performed this experiment
for all the five IM apps. The results (in the form of a box plot for
each IM app), are represented in Fig. 4. As evident from the figure,
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Figure 4: Download time of Alexa top-1k websites using dif-
ferent IM apps and its comparison with direct downloads.

we were able to access most of the websites in a few seconds that is
comparable to direct download time. E.g., for Signal, we recorded
a median download time of 3.6s with the average being 4.1s. Simi-
larly, using Telegram we were able to access these websites with an
average time of 2.7s and median time of 2.3s. Time taken by What-
sapp was higher (average of 7.6s) compared to other IM apps, as it
was automated using Selenium web automation framework. The
details can be found in Appendix. A.4. However, it must be noted
that the performance obtained by Camoufler using Whatsapp was
still better than most of the existing systems such as Covercast [50],
Deltashaper [24], etc. which incur an overhead of more than 10s
for similar operations.

Time to first byte: This experiment was conducted to test the
responsiveness efficiency of Camoufler server. We record the time
it took for the first byte of the content to reach the Camoufler client
(from the Camoufler server), after it sent the initial request.

For this experiment we accessed the Alexa popular 10 websites
(100 times each) and plot the CDF of the results obtained for the
Telegram app in Fig. 5. As evident from the graph, most of the
websites (in over 90% of trials) were able to receive their first byte
in less than 2s with half of the websites retrieving it under 1s. We
obtained similar results for other apps. The details of the individual
apps can be referred in Appendix. A.1.

Transmission time of messages from Camoufler client to
server: Next, we evaluated the time spent for sending request from
Camoufler client to Camoufler server via IM platforms (analogous
to one way delay) using the aforementioned setup. This provides a
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Figure 5: CDF of Time To First Byte (TTFB) for 10 popular
Alexa websites (each downloaded 100 times).

measure of the end-to-end latency incurred due to the underlying
IM platforms in transferring messages. Thus, in this experiment,
we sent the same web requests via different IM platforms (100 times
each), and recorded the time taken in receiving them at the other
end. As evident from Fig. 6, in majority of the cases, the apps take
less than a second to transfer the content in one direction. The in-
herent low overhead of the IM platforms is very helpful in providing
good QoS for the clients, and is reflected in our results.
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Figure 6: CDF of time taken by a message to travel from Cam-
oufler client to Camoufler server for different IM apps.

Location diversity: In this set of experiments we varied the loca-
tion of both the Camoufler client and the server to analyze if there
was any significant change in performance. We varied the client
across six locations, and the server across three (each in America,
Europe and Asia). Alexa top-1k websites were downloaded for each
of the 18 (6x3) client-server pairs. The result for the server in Asia
(Singapore) is depicted in Fig. 7. It is evident from the box plot that
there was not much variation when the client location was varied.
The trend remained similar for other server locations as well (ref.
Appendix. A.2).

Bulk downloads: Camoufler also supports bulk content transfer
by transmitting the large files as compressed attachments. The Cam-
oufler server first downloads the requested content, compresses
it and then transfers it back to the client. In our tests, Camoufler
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Figure 7: Box plot depicting download time of Alexa top-1k
websites for varying client locations. The Camoufler server
was hosted in Singapore.

client successfully downloaded files of various sizes (10, 20,...,100
MB) that were hosted on cloud servers. A sample of our results
depicting download time variation is summarized in Tab. 1. Using

Downloaded Time (in s)
Using 10MB 20MB 30MB 40 MB 50MB 75MB 100 MB
Direct (Wget) 7.9 15 23 29 35 51 68
Camoufler 13.6 235 34.6 45.3 52.1 77.2 93.3

Table 1: Large File Downloads: Comparison of download
times of Camoufler and Wget.

Telegram as our underlying IM channel, we downloaded each file
five times. Across different measurements we observed that down-
load time with Camoufler is higher when compared to download
time with wget. This is because, Camoufler server first downloads
the complete file (at its end) and then sends it to the Camoufler
client. However, large file downloads are generally delay tolerant
and thus we believe this additional delay could be acceptable by
the Camoufler clients. Overall, we observed a similar performance
with other IM channels as well.

4.1 Implementation Details

We now describe the details of the proof of concept implementation
of Camoufler. As an example we describe the implementation de-
tails on the Signal messenger platform as it is very popular among
security and privacy practitioners. However, we similarly imple-
mented Camoufler on other platforms as well, including Whatsapp,
Telegram, Skype and Slack etc. The details of their implementation
can be referred in Appendix A.4.

Camoufler Client: The client implementation was performed on
a Linux host running Ubuntu 18.04 LTS, consisting of a 4 GHz
processor, and provisioned with 8GB of RAM. The client’s browser
was configured to forward its requests to local port 8000 where LP
listens for Camoufler requests. LP is written in python and uses the
sockets API [7] to manage connections to and from the browser.

CE comprises of scripts written using python and shell-scripting.
It interacts with the underlying Signal messenger to send and
receive messages, using the signal-cli [8] interface. signal-cli
helps automate exchanging messages (using CLI commands), over
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the signal messenger. Thus, CE uses it to craft and send blocked web-
sites request to the SE, using the send -m command of signal-cli.
Secondly, CE use the daemon mode and the dbus feature, shipped
with the signal-cli interface to listen for incoming messages
from SE. The dbus feature allows applications to create a listener
which can easily receive and process different events that are gen-
erated when the signal app receives messages. Pydbus [5] was used
to interact with the dbus interface. On receiving the response, CE
decompresses and decrypts it using the gzip [6] and Crypto [4]
libraries in python, before forwarding it to the LP. The compression
and decompression process are lossless.

Camoufler server: Camoufler server was also implemented on a
Linux machine running Ubuntu 18.04 LTS OS with 4 GHz processor
and 8 GB RAM. The source code was also written in python and
shell-scripting, and similar to CE it utilizes pydbus [5], gzip, and
Crypto library for performing various tasks.

SE also utilizes the signal-cli interface and accesses the dbus
feature for processing incoming messages. This processing enables
SE to extract the censored website. The CP connects to the blocked
website using python socktes API to retrieve responses. The SE com-
presses and encrypts the responses using gzip and Crypto library
before sending it back to CE (using the signal-cli interface).

5 SECURITY ANALYSIS

We now describe various attacks the censor might attempt to block
access to Camoufler.

5.1 Traffic Analysis

Censors may attempt to analyze Camoufler client’s traffic to identify
distinguishing features and block them from using Camoufler. As
already described in our threat model, the censor can inspect the
encrypted Camoufler client content within its network boundaries.

It must be noted that the functionality of all IM apps (with re-
spect to their traffic characteristics) are very similar [60]. Thus the
proposed attacks (and defenses) discussed subsequently are appli-
cable across all IM platforms. We now enlist the possible attacks.

On traffic patterns: Camoufler involves downloading and access-
ing blocked content by exchanging IM messages. As analyzed pre-
viously (e.g., by authors of SWEET [43] and Mailet [47] etc.), an
adversary could attempt to distinguish regular IM traffic from IM
flows that transport Camoufler traffic. Such attacks work on the
premise that the behaviour of the tunneling/encapsulating protocol
could be different when used with and without anti-censorship
schemes. For instance, if there are differences in the packet ex-
change rates between a regular IM client and a Camoufler client,
then it could be used to disambiguate the two. On one hand, it
is already known that, IM clients (other than chatting) exchange
significant amount of multimedia content [20]. In a recent study
[26], authors reported that above 50% of the messages exchanged
over IM applications constituted multimedia content. However, on
the other hand, Camoufler clients would mostly fetch blocked con-
tent (e.g., websites). Thus a determined adversary may attempt to
differentiate web content downloaded (using Camoufler) from mul-
timedia content downloaded (using standard IM apps). But, since



Session 2A: Network and Web Security (1)

the underlying traffic (both of regular IM and Camoufler) is en-
crypted, it is plausible that adversary may opt of for traffic analysis
based on differences in packet exchange rate and packet sizes [43].

Thus to observe such differences, we performed tests involving
regular IM clients accessing multimedia content and Camoufler
clients accessing websites. In our experimental setup, we used one
machine (located in our lab) for running both regular IM and Cam-
oufler clients. This machine communicated with another one (lo-
cated in a different country) that ran an IM client (the peer) and the
Camoufler server. We began by measuring the packet exchanged
rate when (1) multimedia content was downloaded by a regular IM
client and (2) web content was downloaded by using Camoufler.
Fig. 8 depicts the scenario when we downloaded a PDF file, a GIF
animation, an image and a video clip using regular IM app. Further,
we downloaded the webpages from cnn.com, youtube.com and
github.com, and a MS-Word document (.DOC) file using Camou-
fler. It is evident from the figure that, there is a sudden rise (spike) in
packet exchange rate when multimedia content is shared between
IM clients. This is because, multimedia attachments (e.g., large
video) involves a lot of content being transferred. Thus, underlying
IM applications send data (packets) at a faster rate resulting in a
spike in packet exchange rate.
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Figure 8: Packets exchange rate of regular IM client access-
ing multimedia content (images, GIF animation, video etc.)
vs a Camoufler client accessing websites (cnn, github etc.)
and a doc file. As evident, traffic characteristics of both reg-
ular IM and Camoufler are very similar.

It must be noted that, depending upon the size of the multimedia
object being shared over the IM channel, one could expect spikes
in packet exchange rate. For a large object (e.g., a video of size 1
MB) the spike would be very high when compared to a smaller
object (e.g., an image of size 100 KB). This trend hold good for
Camoulfler traffic as well, as it uses the same IM app for transferring
the content. For instance, when we downloaded a 1.5 MB video
using regular IM client, we observed packet exchange rate peaked
at 800 packets per second (ref. Fig. 8). Further, on downloading a
1.3 MB document using Camoufler, we observed a similar packet
exchange rate i.e., more than 700 packets per second. This trend
holds good for smaller size files, websites and multimedia objects as
well. Our experiment thus indicates that it is hard to differentiate
Camoufler traffic from the regular IM traffic.
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Further, we also plotted the packet size distribution for the above
set of experiments for multimedia content (exchanged by regular IM
clients) and websites (accessed by Camoufler clients). It is evident
from the histogram presented in Fig. 9, that the maximum number
of packets are clustered in two bins, the first bin with less than 100
byte packets, and the second bin with more than 1200 byte packets.
The former corresponds to mostly the acknowledgement packets
generated from the regular IM (or Camoufler) client and the latter
corresponds to the data packets sent by the other IM client (or
the Camoufler server). Overall, it is evident that depending on the
size of the content, the number of data packets vary; large content
download would result in large number of larger sized data packets
(over 1200 bytes) while smaller content download would result in
fewer bigger size data packets. For instance, the video downloaded
by the regular IM client resulted in about 1200 data packets (over
1200 bytes each). In contrast, the image download resulted in only
about 100 data packets of comparable sizes. The trend was very
similar for Camoufler client as well, a document download resulted
in 1000 data packets, whereas accessing website such as cnn.com
resulted in only around 150 data packets.
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Figure 9: Histogram of packet sizes when regular IM client
accessing multimedia content and when they use Camoufler
to access websites.

This is further highlighted in Fig. 10. Large content download
would result in large number of bigger size packets (over 1200 bytes)
irrespective of the type of client (regular IM/Camoufler) and the
content type (video/document etc.). E.g., the box plot for a video
download (by a regular IM client) and a document download (by a
Camoufler client) are very similar — packet size distribution mostly
consisting of more than 1200 bytes packets. Similarly, the box plot
for smaller objects (like image/GIF) download by a regular IM client
looks very similar to the website downloaded using Camoufler.
However, the box plots in this case have more spread; packet size
distribution consist of a fewer bigger size data packets>.

Additionally, we performed multiple such experiments to further
strengthen our claims. We downloaded different multimedia objects
using regular IM clients as well as web content using Camoufler,
and measured the packet exchange rates and packet sizes. Across all

3 Additionally, if the average size of multimedia objects being exchanged over IM
platforms differ from the average webpage sizes, the censor may attempt to distinguish
them. However, in such a scenario, Camoufler can easily add cover traffic (by padding
extra bytes) to even out the differences.



Session 2A: Network and Web Security (1)

REGULAR IM

CAMOUFLER

[]

Packet Size (in Bytes)

T T T T T T T T

N e ®° ©
N (W O
o

Figure 10: Box plot of observed packet sizes when regular
IM client accessing multimedia content and when they use
Camoufler to access websites.

our tests, the observations remain consistent, i.e., the traffic charac-
teristics of a web download using Camoufler is akin to multimedia
download using regular IM apps (ref. App. A.5 for details).

However, it could still be argued that our observations would
hold good only if regular IM clients often download multimedia
content. Otherwise, the spikes in packet exchange rate, or a packet
size distribution consisting of large number of bigger size packets,
could be a uniquely identifiable characteristics of Camoufler. To that
end, recent studies [19] suggest that IM clients very often exchange
multimedia content. For instance, in [26] authors report that more
than 50% of the messages exchanged over IM platforms constitute
multimedia objects. These would also result in spikes in packet
exchange rate and also the transmission of bigger sized packets,
by regular IM clients. Hence, overall we believe that any attempts
by a wire-sniffing adversary to distinguish Camoufler clients from
regular IM clients could lead to high false positives.

Inducing traffic perturbations: Next, an adversary may attempt
to identify Camoufler flows by actively dropping, delaying, modify-
ing packets in some connections so as to see if Camoufler and reg-
ular IM clients behaved differently to compensate for such pertur-
bations. However, it must be noted that, Camoufler is not mimicry
based, rather a tunnelling system. It does not “pretend” to use the
IM apps, rather it uses the underlying IM channel without modify-
ing its default behavior. Therefore, such analysis would not provide
any observable changes in the packet level features of the IM apps
being used by Camoufler. The IM channel would continue to re-
spond in exactly the same way to perturbations such as drops and
modifications, regardless of whether they are used with Camoufler
or not.

5.2 Other Attacks

Collusion attacks: The adversary can attempt to coerce, and thus
collude, with the IM service provider which would enable it to access
much more information than it could normally obtain by analyzing
merely the encrypted traffic. This information could further be used
for identifying and blocking Camoufler clients. Thus, there could
be two possibilities:

(1) Collusion with an end-to-end encrypted IM provider: In this sce-
nario, the IM provider, and thus the adversary, would not be able
to inspect the content of IM messages as they are end-to-end
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encrypted (ref. §2.1). The lack of plain-text messages would hin-
der the adversary from obtaining any identifying information,
such as the kind of content being transported.

Further, the censor could observe the metadata of messages from
the IM peers, e.g., their IM IDs. However, since the Camoufler
server’s ID is not publicly known (ref. §3.2), the censor would
not be able to differentiate it from regular IM IDs.

Collusion with end-to-middle IM providers: In end-to-middle IM
applications, an encrypted channel is established between the
client and the IM providers. Thus, if the adversary colludes
with the IM provider, it would be able to inspect IM clients’
content in plain text. However, Camoufler client derives a shared
secret with the Camoufler server (using the scheme described
in Subsec. 3.2.1), and uses that to encrypt the messages. This
would not allow the censor or the IM provider to inspect the
plain-text traffic and thus they could not attempt to identify
clients by filtering requests seeking censored URLs.

However, in extreme cases the adversary could attempt to iden-
tify and drop all encrypted IM messages, to disrupt Camoufler.
In such a scenario, we could use stenographic techniques [65]
to hide our content from the adversary in plain sight, as also
assumed in other anti-censorship systems [43, 50]. This may
reduce the overall QoS and thus could be seen as a trade-off
between unobservability and QoS.

@

~

Identifying Camoufler servers: An adversary may attempt to
identify Camoufler servers’ IM IDs, after which he/she may attempt
to censor it. If the adversary owns the IM platform it could simply
filter the IDs by itself, otherwise it may coerce the IM provider
to block the said IDs. However, as already mentioned, Camoufler
servers’ IM IDs are not publicly known — either a Camoufler client
would run its own Camoufler server in some hosting service or
would request someone trusted to run the Camoufler server util-
ity. Thus, it is extremely hard for an adversary to determine the
Camoulfler servers’ IM IDs. Additionally, a determined adversary
may further attempt to actively probe different IM IDs (on all IM
platforms) by pretending to be a Camoulfler client. Responses to
such probes could lead to the detection of the Camoufler server. As
a mitigation, the Camoufler server responds only to the trusted IM
IDs. Thus, active reconnaissance by censors would be futile.

Long term user profiling: An adversary could attempt to longi-
tudinally profile individual IM clients. Any deviations from the
profiled behavior (such as sending messages at odd times of the
day etc.) may evoke suspicion of use of a tunneling based system
(including Camoufler). The success of such attacks would largely
depend on accurately profiling clients e.g., using some advanced
machine learning techniques. Studying such attacks is an important
part of our future work.

6 COMPARISON WITH PRIOR SYSTEMS

We now compare Camoufler with existing systems (described in
Sec. 2.2) based on different features that circumvention schemes
strive to provide. We compared Camoufler with existing tunnelling
systems (e.g. SWEET, CloudTransport etc.), and also with other
anti-censorship systems (e.g. Proxy based system, Decoy Routing
etc). A summarization of this comparison is done in Tab. 2 and
Tab. 3 respectively.
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¢ Blocking Resistance

Tunnelling Systems: All such systems rely on using some under-
lying channel to covertly transport censored contents. Attempts
to block the channel often incurs collateral damages to the adver-
sary itself. Thus, all these systems, including Camoufler provide
blocking resistance, against adversaries that attempt to censor the
entire communication channel (e.g., blocking all email services,
IM services etc.).

Other Systems: Most of the current promising systems also pro-
vide adequate blocking resistance by using the same principle of
incurring collateral damage to the adversary. E.g., decoy routing
requires the adversary to change nation-wide routing policies
in order to prevent users from accessing the system. However,
proxy based systems are relatively easier to block as the adver-
sary merely needs to filter traffic destined to their IP addresses,
incurring no collateral damages.

e Deployment Ease

Tunnelling Systems: Camoufler, like most tunnelling based sys-
tems, require installing programs at the client and server ends.
Apart from that, there are no additional requirements.

Other Systems: Decoy routing systems require collaboration from
the ISPs, and thus poses a hurdle for deployment. Similarly, Cache-
Browser relies on content publishers to host their content on
some CDNs, thereby posing deployment challenges*. Similar to
Decoy Routing, Conjure requires ISPs assistance to install multi-
ple servers with taps having access to all content transiting the
ISP and thus pose challenges for deployment. Apart from these,
other systems do not pose much hurdle for deployment.

o No Cost of Operation

4Non-CDN (blocked) websites can not be accessed by the CacheBrowser.
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Tunnelling Systems: Except for CloudTransport, tunnelling based
systems do not incur any upfront cost to the users, or to the
content providers. CloudTransport requires hosting servers (e.g.,
Amazon s3), incurring monetary operational costs. Moreover,
Rook uses games to tunnel content, and thus may incur subscrip-
tion charges if paid games are used. Camoufler and Protozoa do
not incur any cost when the client has a peer to run the server
end. Otherwise, if the client decides to run the server on a cloud
host, it would incur hosting charges.

Other Systems: Domain fronting, Decoy routing and MassBrowser
incur a monetary cost for their functioning. While Massbrowser
and Domain Fronting requires subscription for services like
Google App Engine, Amazon CloudFront etc., most Decoy Rout-
ing proposals (including Conjure) ideally require ISPs to change
or add in their existing network routing infrastructure. Cache-
Browser requires that the censored content is hosted on CDN,
thereby incurring periodic subscription charges. Some proxy
based systems such as VPNs etc. also require subscription costs.
Requisite QoS

Tunnelling Systems: Most tunnelling systems do not provide req-
uisite QoS due to the limitation of the underlying channel they
use for exchanging content. E.g., freewave uses VoIP, which en-
codes and transports data at low bit rates (19 Kbps), insufficient
for providing requisite QoS for applications like web browsing.
Similarly, Facet, CovertCast, Protozoa and DeltaShaper use video
streams to encode censored contents. However, factors like lossy
video encoding of the underlying platforms, result in unsuit-
able QoS for web browsing. E.g. Mcpherson et. al. [50] report
that loading BBC news homepage along with three articles takes
almost 120s. Further, DeltaShaper only provides an effective band-
width of 2.56 Kbps [24]. Protozoa attempts to improve upon the
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Figure 11: Camoufler vs Sweet: Download time of Alexa top-
1k websites.

performance, but is limited by the unreliable nature of video
streams and the video quality offered. Using a 480p video stream,
it achieves 250 Kbps throughput and is further shown to achieve
a maximum download rate of ~ 1.5 Mbps. Mailet and SWEET
rely on emails which can carry significant content but inherently
involve substantial delays (when emails transit email servers).
However, Camoufler due to its usage of IM applications (which
involve minimum transit delay and substantial content carry-
ing capacity) provides good QoS with significant improvement
in comparison to other systems such as SWEET® (ref. Fig. 11).
CloudTransport traffic also transits multiple hops (cloud provider,
cloud bridge etc.), incurring delays and reducing the overall QoS.
Other Systems: In general, all existing systems attempt to provide
acceptable QoS. However, Decoy Routing systems do not pro-
vide adequate QoS guarantees [34, 35] (barring a few like [57],
which provide throughput comparable to direct TCP downloads).
Similarly, Domain Fronting incurs additional latency due to its
functional overheads [33]. Lastly, popular Proxy systems such as
Tor may sometimes incur substantial delays due to the selection
of low bandwidth relays.

Collusion Defense

Tunnelling Systems: It is generally difficult to safeguard against
a covert channel application provider who could collude with
the censor to help identify clients. The CloudTransport archi-
tecture ensure that the cloud provider has no information about
the destinations the client visits, even when the cloud provider
colludes with the censor. SWEET attempts to resists collusion
by distributing unique email IDs to individual users. In Camou-
fler, the Camoufler server IM IDs are known only to the specific
clients. This makes it difficult for the adversary (that colludes
with the IM provider) to block traffic by observing destination IDs
in clients’ requests. Protozoa, also distributes private ID and pass-
word among the peers using an out-of-band channel, mitigating
the impact of collusion.

Other Systems: Only CacheBrowser has a way to defend against
collusion, as it uses frontends located outside the censor’s bound-
ary to access censored content. Thus, even if the CDN provider
agrees to filter content in the censor’s country, it may not do so
in foreign countries, due to its own business motivations and
regulatory compliance. In proxy systems, the collusion of the
VPN provider or proxy maintainer with the adversary, makes it

5We could not obtain working codes of CloudTrasport for comparison. However,
SWEET’s code was publicly available.
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relatively easy for the latter to identify clients. Similarly for Do-
main Fronting, the adversary by colluding with fronting service
provider, could identify and block the Domain Fronting servers
hosted on these services. Also, in Decoy Routing and Conjure,
if the ISP colludes, then the respective systems would cease to
function.

7 DISCUSSION AND FUTURE WORK

On blocking of IM apps

It can argued that an adversary may attempt to block IM apps, and
in extreme case may block all existing IM apps to disrupt Camoufler.
In such a scenario, like any other tunneling system, Camoufler may
cease to function. E.g., if apps like Skype are completely blocked
by the censor, then circumvention solutions like DeltaShaper [24],
Facet [48], Freewave [41] etc. would be disrupted.

But we believe that such a move by the censor could be pro-
hibitively expensive leading to collateral damage as IM apps are
extremely popular and have penetrated deeply into businesses and
commercial spaces as well. However, it must be noted that, even if
the censor allows only a single IM app to function, controlled by
itself (ref. §5.2), Camoufler would continue to function.

A more rational approach that could be opted by the censor is
to selectively block only the suspicious IM IDs. Thus, a detailed
analysis of such threats is already presented in §5.2.

On scalability of Camoufler

As and when the popularity of Camoufler grows, the system has
the potential to scale up for larger deployments. Camoufler uses
IM apps as an overlay network to tunnel traffic. The ubiquity of IM
applications is potentially beneficial for scaling Camoufler into a
distributed system with a large user base. Similar to Tor, Camoufler
volunteer could act as the Camoufler servers. Thus, an increase
in the number of Camoufler clients could be handled by these
distributed volunteer Camoufler servers. We forsee that in future
the popularity of Camoufler may drive the recruitment of server
hosters and maintainer, much like Tor.

Text vs attachment for transporting content

Camoufler has a choice of selecting how it transports content using
the underlying IM channel viz. as text, or as an attachment. The
Camoulfler server initially used text messages to transport content.
However, we discovered that in a few cases the contents of the
websites accessed were truncated. Upon investigation, we found
that IM applications generally restrict the volume of data that can
be sent via a single text message. To overcome such restrictions,
the Camoufler server compressed the content before sending it to
the other end. Thereafter, almost all the websites could be accessed,
without data being truncated.

Next, we also considered transporting our content as an attach-
ment. This is because, with attachments we can transport more
data as compared to text. However, we noticed a slight increase in
the download time of Alexa top-1k websites, compared to when
data was transported via texts (ref. Fig. 12).

Thus, our design combines the best of both approaches. By de-
fault, we used text to transport content due to its obvious perfor-
mance advantage. However, for the few cases where text could not
be used, we relied on using attachments. Alternatively, the content
can be segmented into multiple chunks, such that the length of each
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Figure 12: Download time of Alexa top-1k websites using
Camoufler, when downloaded as text and as an attachment.

chunk is within the limits enforced on the length of text messages.
However, unlike ours, this approach may incur extra round trips.
and increase the overall delay.

8 CONCLUSION

In this paper we presented Camoufler, a new anti-censorship sys-
tem to provide unhindered access to information over the Internet.
Camoufler utilizes standard IM platforms (such as Whatsapp, Signal
etc.), to tunnel and transport censored content, and thus attempts
to make it difficult for the adversary to detect it. Camoufler provides
satisfactory performance, reliability, blocking resistance and deploy-
ment ease. Using the prototype implementation of Camoufler on
popular IM apps, we experimentally demonstrate that it provides
acceptable performance for regular web browsing and bulk down-
loads. A detailed security analysis of Camoufler highlights that it
is hard to be detected by an adversary (e.g., an ISP working at the
behest of an authoritative regime).
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A APPENDIX

A.1 Time To First Byte when using Camoufler
with different IM apps

In this subsection we present the TTFB of Signal, Skype, Slack and
Whatsapp IM apps in Fig. 13, Fig. 14, Fig. 15 and Fig. 16 respec-
tively. As evident from the graphs, majority of the websites’ first
byte was received withing 3s, across all IM apps. Except for What-
sapp, which as described in the previous subsection, was automated
using selenium framework and this incurred extra latency, with
most websites receiving content within 5s. Overall, the latency by
Camoufler implementations on different platforms was satisfactory
enough to support web browsing.
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Figure 13: CDF of Time To First Byte (TTFB) for 10 popular
Alexa websites (each downloaded 100 times) for Signal app.
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Figure 14: CDF of Time To First Byte (TTFB) for 10 popular
Alexa websites (each downloaded 100 times) for Skype app.

A.2 Location Diversity Additional Results

We demonstrate the results for impact of location diversity in Fig. 17
and Fig. 18. It is evident from the figures that when server was
placed at Amsterdam and San Francisco, clients at different location
across the globe did not observe much variation in performance
when accessing the Alexa top websites.

A.3 On SOCKS Implementation

The default implementation of Camoufler supports accessing web
content. However, we have also implemented Camoufler with SOCKS
support. SOCKS based implementation helps the client access any
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Figure 15: CDF of Time To First Byte (TTFB) for 10 popular
Alexa websites (each downloaded 100 times) for Slack.
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Figure 16: CDF of Time To First Byte (TTFB) for 10 popular
Alexa websites (each downloaded 100 times) for Whatsapp.
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Figure 17: Box plot depicting download time (server in Ams-
terdam) of top Alexa-1K websites for varying client location.

TCP or UDP based protocol using Camoufler. Although, using
SOCKS leads to a increase in download time by more than 1.5
times as compared to without SOCKS. Thus, if the goal is to ac-
cess websites, then the default Camoufler implementation should
be used. If other protocols needs to be accessed, then the SOCKS
implementation can be used with a trade-off in performance.

A.4 Implementation details of Camoufler with
different IM apps

We now describe how different IM applications could be used to
transport traffic for Camoufler. The IM apps can be divided into
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Figure 18: Box plot depicting download time (server in San
Francisco) of top Alexa-1K websites for varying client loca-
tion.

two categories with respect to implementation feasibility. First cat-
egory applications are the ones which have a dedicated API readily
available for public use (e.g., Signal, Telegram, Slack, Skype and FB
messenger). Second category contains apps which do not provide
API for public use or the API is hard to procure (e.g., Whatsapp,
Wechat).

First category applications were automated utilizing their re-
spective APIs, as they provide an interface to automate sending
and receiving messages. Applications such as Signal and Telegram
fall in this category. Similar to the signal implementation described
in Subsec. 4.1 we automated Telegram using its python API [16].
Additionally, we automated slack using its slackclient utility [10]
to send messages and its Real Time Messaging (RTM) API [13] to
automate processing of received messages carrying blocked content.
Similarly we used the skpy API [9] to automate Skype.

Second category apps could not be directly automated because of
lack of APIs. We believe that, with the kind of penetration IM apps
are having in businesses, building customized add-on applications
over these IM apps would become more popular leading to public
releases of the APIs for them. However, in the meantime, we devised
approaches that could be used to automate such apps. The basic idea
is to automate the GUI of such apps to achieve sending and receiving
of messages. One way is to use selenium web automation framework
to accomplish this task. Thus, we automated Whatsapp using its
actively maintained selenium based API [17]. Similar approach can
be used to automate other apps which provide a web based interface
to send/receive messages.

However, selenium based automation requires regular mainte-
nance as the HTML objects and their IDs (HTML class ID, table
ID etc.), required for identifying individual elements (such as user
chat, message send box etc.) are regularly updated by the IM app
maintainers. Moreover, the approach would not work for apps who
do not provide web based interface but rather a program binary
to be run on desktop systems (e.g., Wechat). Thus, to reduce the
regular maintenance requirement, we used an alternate approach
i.e., we automated the GUI using desktop GUI automation utilities
such as xdotool [21]. xdotool can be easily used to automate typ-
ing, clicking, copy paste, move mouse to a specific pixel on the app
window etc.

We developed a framework, where at the client engine, we send
the blocked content request message by clicking and typing the
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request using xdotool in the app GUI Similarly, The Camoufler
server keeps polling for new message at a regular time interval
in the app GUI On receiving the content request, SE uses steps
as described in Camoufler design to retrieve censored content. On
receiving this content, we follow the same procedure to copy and
paste this content in the response text box in the chat window .
Finally, we click at the send button. On the Camoufler client’s end,
CE keeps polling for a response in the Camoufler servers’ chat
window, and on receiving one, processes it and sends to LP which
forwards it to the browser for rendering. We could easily replicate
similar process for all the apps whose APIs are not available or who
do not provide web interface.

Thus, using all the approaches described above, we could auto-
mate roughly all the popular IM apps that are currently available.

A.5 On Traffic Analysis

As already described in §5.1, it is extremely difficult to disambiguate
Camoufler traffic from regular IM traffic. We performed some ad-
ditional experiments to strengthen our claims. As our first set of
experiments (using our experimental setup described in §5.1), we
downloaded different multimedia objects using regular IM client
and a website using Camoufer. The size of multimedia objects and
the webpage was roughly the same i.e., around 300 KB. As evident
from Fig. 19 and 20, packet exchange rate as well as the packet size
distribution of all are very similar. Thus it is difficult to differentiate
Camoufler traffic from regular the IM. This also indicates that, irre-
spective of the type of file being downloaded, the packet exchange
rate and packet size distribution primarily depends on the file size.

—— Regular IM
—— Camoufler

400
300 -
200

100 -

Packets per second

T
Audio Doc Image Video  Website

Figure 19: Same size (300 KB) object download: Packet ex-
change rate for a webpage download (using Camoufler)
is very similar to multimedia download using regular IM
client (irrespective of the type of multimedia content).

To further establish that Camoufler and regular IM apps result
in very similar traffic characteristics, we conducted the second set
of experiments. We downloaded the the same set of multimedia
objects using regular IM clients as well as Camoufler. It is evident
from Fig. 21, that rate of packets exchanged of Camoufler is akin to
regular IM client. It establishes that Camoufler does not alter any
underlying behavior of the IM channel.

Finally to establish that large size content download would result
in generation of high packet exchange rate, we downloaded three
images (with increasing sizes) using regular IM client (and Camou-
fler). It can easily inferred from Fig. 22, large size image result in
large number of packets exchanged per second. Download of image
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Figure 20: Same size (300 KB) object download: Packet size
distribution for a webpage download (using Camoufler) is

very similar to multimedia download using regular IM.
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Figure 21: Same object download using Camoufler and reg-
ular IM: Packet exchange rate for objects when downloaded
using Camoufler and regular IM is almost identical.

of size 1 MB resulted in more than 1000 packets per second, whereas
200 KB image download resulted in ~ 300 packets per second.

——200 KB
—— 500 KB
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Figure 22: Variable size images download: Packet exchange
rate increases with increase in the image size.

We repeated the experiments multiple times, varying the mul-
timedia objects and the websites. Across all our experiments, our
findings were consistent. (1) Since Camoufler use the underlying
IM as-is, traffic footprints of its traffic are very similar to regular
IM app. (2) Irrespective of the medium (Camoufler/Regular IM app)
and the object being download (video, audio, document, image, or a
website etc.), the packet exchange rate and packet size distribution
only depends on the size of the object being downloaded.



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Instant Message Applications
	2.2 Related Work

	3 Camoufler Architecture
	3.1 Threat Model
	3.2 System Design

	4 Evaluation
	4.1 Implementation Details

	5 Security Analysis
	5.1 Traffic Analysis
	5.2 Other Attacks

	6 Comparison With Prior Systems
	7 Discussion And Future Work
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Time To First Byte when using Camoufler with different IM apps
	A.2 Location Diversity Additional Results
	A.3 On SOCKS Implementation
	A.4 Implementation details of Camoufler with different IM apps
	A.5 On Traffic Analysis



 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: all pages
     Mask co-ordinates: Horizontal, vertical offset 44.87, 718.48 Width 527.04 Height 19.10 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         AllDoc
         1
              

       CurrentAVDoc
          

     44.8746 718.4821 527.0378 19.0956 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     14
     15
     14
     15
      

   1
  

 HistoryList_V1
 qi2base





