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Abstract—Covert, censorship-resistant communication in the
presence of nation-state adversaries requires unobservable
channels whose operation is difficult to detect via network-
traffic analysis. Traffic substitution, i.e., replacing data trans-
mitted by a “cover” application with covert content, takes
advantage of already-existing encrypted channels to produce
traffic that is statistically indistinguishable from the traffic of
the cover application and thus difficult to censor.

Online games are a promising platform for building cir-
cumvention channels due to their popularity in many censored
regions. We show, however, that previously proposed traffic
substitution methods cannot be directly applied to games. Their
traces, even if statistically similar to game traces, may violate
game-specific invariants and are thus easy to detect because
they could not have been generated by an actual gameplay.

We explain how to identify non-disruptive content whose
substitution does not result in client-server inconsistencies and
use these ideas to design and implement TELEPATH, a covert
communication system that uses Minecraft as the platform.
TELEPATH takes advantage of (1) Minecraft’s encrypted client-
server channel, (2) decentralized architecture that enables
individual users to run their own servers, and (3) popularity
of “mods” that add functionality to Minecraft clients and
servers. TELEPATH runs a Minecraft game but substitutes
non-disruptive in-game messages with covert content, without
changing the game’s interaction with the network manager.

We measure performance of TELEPATH for Web browsing
and audio streaming, and show that network traffic generated
by TELEPATH resists statistical traffic analysis that aims to
distinguish it from popular Minecraft bots.

1. Introduction
Censorship circumvention is an arms race between

covert communication systems and nation-state adversaries
who use techniques such as IP and protocol blocking and
deep-packet inspection [11, 26, 42] to prevent Internet users
in their regions from accessing censored online destinations.

The ultimate goal of censorship circumvention is un-
observable communication, i.e., the system should hide the
fact that communication is taking place even if the adversary
(e.g., an ISP with censorship filters installed) controls the
entire Internet in the user’s region. End-to-end encryption
of network traffic is not sufficient because it hides neither
the endpoints of communication, nor features such as packet
counts, sizes, and timings. An unobservable communication

system must be robust against adversaries who (a) whitelist
permitted applications, and (b) deploy network traffic anal-
ysis to recognize and block connections that do not belong
to any of the known, whitelisted applications.

A key challenge is how to design a communication sys-
tem whose network traffic cannot be reliably distinguished
from the traffic of a known, popular application. In general,
there is a tradeoff between the performance and capacity
of a covert channel and its resistance to traffic analysis.
Circumvention techniques that operate low in the system
stack and imitate existing network protocols have relatively
high capacity but can be easily distinguished due to various
discrepancies in their mimicry [15]. Steganographic tech-
niques that operate high in the stack and encode covert
communications into existing application content [7, 18]
have low capacity. Our goal in this paper is to find a
sweet spot in the system stack that provides (1) sufficient
capacity for practical tasks such as Web browsing and audio
streaming, as well as (2) resistance to traffic analysis.

Current state-of-the-art systems for unobservable com-
munications, such as Protozoa [2] and Balboa [31], run
a cover application—for example, video streaming—and
substitute its traffic with covert content in the transport
layer. Their prototype cover applications follow simple
state machines, and the application content is either non-
interactive [2], or deterministic and known to both commu-
nicating parties in advance [31].

Our contributions. We design, implement, and evalu-
ate TELEPATH, a covert communication system based on
Minecraft. Minecraft provides an interesting platform for
exploring the design space of unobservable communication.
(1) Minecraft is widely available and very popular in many
countries that engage in pervasive Internet censorship, such
as China. (2) Communications between Minecraft clients
and servers are end-to-end encrypted. (3) It is common for
users to run their own Minecraft servers, i.e., the game is
decentralized. (4) There is an active community of users who
modify Minecraft clients and servers, thus modifications
to the Minecraft software are not unusual and, in fact,
supported via popular “mod” platforms.

First, we identify application-specific causal dependen-
cies between network packets as the reason why traffic
substitution in the transport layer [2, 31] may produce traffic
traces that are impossible in a real game. This motivates the
need for non-disruptive content substitution that does not
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introduce inconsistencies between the client and the server.
Second, we identify generic categories of non-disruptive

game content, such as visual-effects data, map updates, and
synchronization messages, and explain how TELEPATH uses
this content in Minecraft for non-disruptive substitution.

Third, we demonstrate that TELEPATH resists traffic
analysis. The best previously proposed classifiers perform
similarly to random guessing when trying to distinguish
traffic generated by TELEPATH from that generated by a
Minecraft bot (a popular way to automate gameplay).

Fourth, we evaluate performance of TELEPATH on prac-
tical tasks such as browsing news websites and audio stream-
ing. TELEPATH achieves a clientbound bandwidth of 1300
Kbps and serverbound bandwidth of 1-2 Kbps, which is
sufficient for the browsing of many censored news websites
and audio streaming at up to 256 Kbps bitrates.

2. Background
We focus on covert communications in the presence of

a network-based adversary (e.g., an ISP controlled by a
government censor). In contrast to systems [8, 10, 36, 38]
that aim to hide who is communicating with whom but not
the fact that communication is taking place, our goal is
unobservability, i.e., to hide that the system is being used.

2.1. Censorship circumvention
The main challenge in constructing covert channels

based on a new network protocol is that the resulting traffic
is likely to be distinguishable from other network traffic.
First, the adversary may run an implementation of the
same channel, generate traffic traces, and build tools that
recognize such traffic. Second, the adversary may whitelist
known applications and block all traffic that does not look
like it was generated by a whitelisted application.

Previous circumvention systems used several approaches
to try and look like a known, whitelisted application (see
Fig. 1): (a) imitate an existing protocol like Skype or
HTTP [25, 41]; (b) send covert traffic through the network
layer of an existing application; (c) run an existing applica-
tion but substitute covert traffic in the transport layer [2, 31];
or (d) encode covert traffic into application-level content,
such as audio [16] or video [19] streams.

In general, the closer to the network layer is the covert
traffic injected, the easier it is to detect. Traffic that mim-
ics other network protocols can be recognized via tell-tale
discrepancies between implementations [15]. High-fidelity
imitation of a complex application requires mimicking its
correct behavior in any situation (including dynamic re-
sponses to network conditions), as well as every bug and
quirk of its implementation. Injecting covert traffic higher
in the software stack reduces the available bandwidth and
can still be vulnerable to statistical traffic analysis [1].

2.2. Minecraft
Minecraft [21] is a 3D open-world sandbox game de-

veloped by Mojang Studios. The player interacts with a
world composed of “blocks” that represent different items

and materials. Users play any way they want, there is no
required goal. Consequently, gameplay is diverse. Typical
game activities include gathering resources such as food and
ore, fighting monsters, and building houses.

Minecraft supports server-based multiplayer mode,
which lets players work, build, or fight together in the same
world hosted on a dedicated server. Multiplayer Minecraft
is decentralized: players can deploy third-party servers us-
ing the server binary provided by Mojang. Network traffic
between Minecraft servers and clients is encrypted.

Mojang’s EULA permits modifications that introduce
new game content or gameplay features. The Minecraft
“mod” community has reverse-engineered the game’s Java
source code and developed over 100,000 mods [9]. For ex-
ample, Hypixel, the world’s most popular public Minecraft
server, is heavily modded and supports many multiplayer
minigames that are not available in the vanilla server. The
game’s communication protocol [23] is well-documented,
enabling customization of client-server communication.

Minecraft can be automated using bots, which are mods
that take control of the player and automatically perform
tasks. Since players in the game’s survival mode have to
collect a large amount of resources to keep alive, bots are
commonly used to automate repetitive tasks such as farming
and mining. Although Minecraft traffic is hard to model in
general due to very diverse player behaviors, it is possible
to repeatedly run a specific bot to generate bot traffic.
In this paper, we will use the following Minecraft terms.
Block. Blocks are the basic units of structure in Minecraft.
They are unit cubes arranged in a 3D grid, representing
materials and resources such as stone, dirt, water, and ores.
Blocks can be collected, placed, or destroyed by the user.
World/Map. The Minecraft world is the entire game area
composed of blocks. It emulates the real-world terrain and
biome. The core gameplay is to explore the world and
interact with the blocks in it. The world is 30 million blocks
long, 30 million blocks wide, and 256 blocks high.
Entity. Entities are the dynamic, moving objects throughout
the Minecraft world, such as characters, animals, and other
game items. An entity has the following properties: position
(its coordinates in the grid), rotation (its facing direction),
and velocity (its moving direction and speed).
Player. The player is a special entity controlled by the user.
It can move around the world, interact with other entities,
mine blocks, and place them elsewhere. If the player takes
damage that exceeds its “health” property, it dies and cannot
perform any action until it respawns.
Client. The game client is the software that controls the
player. The client renders the game’s graphical content (the
player and the world near it) and displays it to the user. The
client does not store any world or player data. It receives
this data from the server and sends the player’s updates (e.g.,
position, mining or block-placing actions) to the server.
Server. The game server is the software that lets multiple
users play the game with each other online. The server hosts
the Minecraft world, stores the position and status of each
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Figure 1: Circumvention approaches at different levels of the system stack.

Figure 2: Minecraft software stack (shaded components are
added by TELEPATH.)

block and entity, sends required data (e.g., map information
and entity status) to the clients, receives all updates from
the players, and applies them to the local game data.

Fig. 2 shows the software stack of Minecraft.
Chunk. Chunks are 16-block-long, 16-block-wide, 256-
block-high1 segments of a Minecraft world. They are the
basic units of map operations (such as generation and load-
ing), dividing the world into manageable pieces. Since the
Minecraft world is too big to be loaded at once, the game
only loads the chunks that are necessary to make it playable.
Usually the server loads the chunks within a certain radius
of the player and sends them to the player’s client. Because
only these chunks can be displayed by the client, this is the
player’s “view distance” (determined by the server).

3. Threat model
We assume a state-level censor who can monitor, store,

inspect, and block the network traffic of all users within its

1. Minecraft Version 1.15.2

scope. It can block connections to prohibited IP addresses
and use deep packet inspection to filter unencrypted traffic
containing blacklisted content. We assume the censor can
identify network protocols and block prohibited protocols
such as Tor. Furthermore, we assume the censor whitelists
permitted applications and protocols, and blocks any traffic
that does not look like it was generated by a permitted
application and conveyed over a permitted protocol.

We assume the adversary cannot subvert TLS and thus
cannot decipher encrypted network packets. When observing
encrypted traffic flows, the adversary can observe packet
sizes and timings, as well as any unencrypted metadata.
The adversary may build statistical traffic models [1] to
distinguish covert traffic from genuine application traffic.

We assume the adversary knows how whitelisted appli-
cations operate and can thus infer partial application states
from the encrypted traffic and detect if the application enters
an impossible state. With games, the adversary can (a) infer
some game events from packet sizes and timing, and (b)
check simple invariants that these events must satisfy. In
Section 4, we use Minecraft to show how game events and
invariants can be inferred from encrypted network traffic.

4. Minecraft traffic invariants

In this section, we demonstrate that certain Minecraft
game events can be inferred from the encrypted network
traffic by recognizing packets with unique lengths. We then
identify simple invariants satisfied by any Minecraft game
session. The corresponding invariants over encrypted packet
traces can be checked by a network observer via determinis-
tic, single-trace tests without any statistical traffic analysis.

We then show that circumvention approaches that substi-
tute content using deterministic templates (such as [31]) do
not work for Minecraft. Even if the templates are obtained
from actual Minecraft games, content substitution can pro-
duce traffic traces that violate the above invariants and are
consequently easy to recognize, since they could not have
been generated by a real Minecraft session.
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(a) Player position update packets

(b) Player is dead

(c) Respawn packet

(d) Map update packets

(e) Valid game trace

Figure 3: Network traces corresponding to different Minecraft in-game events.

4.1. Game events
This section is not intended to be an exhaustive list of

events that can be inferred from encrypted Minecraft traffic.
Its purpose is to demonstrate the existence of some packet
invariants that (a) must be satisfied by any Minecraft packet
trace (Section 4.2), and (b) are violated by deterministic
content substitution (Section 4.3).
Player dead. While the player is alive in the game, the game
client periodically sends information about its position to
the game server. If the player is idle, the frequency of these
updates is about 1 packet per second, more if the player
is moving. When the player is dead, the game client does
not send any position updates until the player respawns.
Therefore, if no position update packet is observed for a
while, a network observer can infer that the player is dead.

Position update packets can be identified via their

sizes. There are two types of position update packets in
Minecraft: PositionPacket and its subclass PositionRotation-
Packet. Both contain double data fields X, Y, Z rep-
resenting the player’s coordinates, and a boolean field
OnGround, indicating if the player is on the ground. Po-
sitionRotationPacket also contains float fields Yaw and
Pitch, representing the player’s direction. Two bytes of type
information are appended during packet encoding. There-
fore, a PositionPacket is 3×8(X,Y, Z)+1(OnGround)+
2 (type) = 27 bytes long, a PositionRotationPacket is
27+2×4(Y aw and Pitch) = 35 bytes long. These packet
lengths are unique. While the player is dead, the game client
does not send any 27- or 35-byte packets. Figure 3a shows
position update packets in a Minecraft network trace.

A network observer can infer that a player is dead if it
does not observe client-to-server 27- or 35-byte packets for
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a while. Figure 3b shows the network trace of a dead player.
Player respawned. Upon the player’s death, a “You died!”
screen appears and the user cannot do anything until they
click the “Respawn” button. The click sends a 3-byte
respawn request packet to the server; upon receipt, the server
sets the player alive. This packet length is unique: the client
does not send any other 3-byte packets while the player is
dead. If a network observer observes a 3-byte packet, it can
infer that a dead player has respawned (see Figure 3c).
Map update. The game server sends map updates to the
client when the player is alive and moving (including
respawning, since the player is teleported to the spawn
point). Map-update packets are the only packets in the
normal gameplay longer than 1000 bytes (see Figure 3d).

4.2. Network trace invariants

Any Minecraft session satisfies these invariants:

Invariant 1. Once dead, a player stays dead until it
respawns.

Invariant 2. A dead player does not receive map updates.

It is easy to check if an encrypted Minecraft traffic trace
satisfies these invariants. Figure 3e shows a network trace
generated by unmodified Minecraft. Observe that the player
is dead at the beginning of the trace since there is no player
position packet. Then the client sends the respawn packet
to the server. After receiving the respawn packet, the server
begins to send information to the player, which includes
map update packets. The invariants are satisfied.

4.3. Breaking deterministic content substitution

To show that deterministic content substitution can pro-
duce traces that are impossible in a real game, we imple-
mented a strawman design of TELEPATH. It is similar to
Balboa [31], which uses a deterministic model to shape
network traffic to look like unmodified application traffic.

Our strawman design uses static traffic models (tem-
plates) generated from actual Minecraft sessions. We run
multiple, unmodified “shadow games” in advance. On both
the client and server side, for every function call from the
game logic to the network manager, we store the timestamp
and size of the arguments, thus forming a template. To send
covert data, the circumvention proxy follows one of the
templates but replaces the message content with covert data.

On both the client and server side, for every pair of
function calls C1 and C2 that the shadow game made to its
network manager, the circumvention client or server makes
C ′

1 and C ′
2 such that (1) the called functions are the same,

(2) the time between C ′
1 and C ′

2 is the same as the time
between C1 and C2, and (3) the size of the arguments
is the same. This design ensures that every message sent
through the network manager could have been generated
by some real game activity in the shadow game (except
for the actual encrypted content). As in [31], the goal is
indistinguishability under passive traffic analysis.

Unfortunately, this approach fails. Although our straw-
man design generates traffic that is statistically indistin-
guishable from some shadow game, individual traffic traces
sometimes violate the invariants from Section 4.2. The key
problem is that, like in [31], traffic templates are application-
agnostic. They produce messages of the right size at the
right time but have no information about the game state.
Therefore, client-server communication in the circumven-
tion system does not respect causal relationships between
messages. Even a slight, natural delay in the network can vi-
olate these relationships, resulting in an observable violation
of trace invariants based on the game semantics.

Figure 4 shows a network trace generated by the straw-
man design that violates the two invariants from Section 4.2.
Observe that the player is dead at the beginning of the
trace since there has been no position update packet for
a relatively long time. However, the server sends a map
update packet (#31213) before it receives the respawn packet
(#31215), which is impossible in any real Minecraft session.

Therefore, template-based content substitution in
Minecraft is easy to recognize due to occasional violations
of trace invariants when packets are out of order, which
is common in real network environments. These violations
can be detected with simple, passive, single-trace tests. An
active adversary may artificially introduce longer network
delays and/or re-order packets, which will cause more
observable violations of trace invariants.

5. Design of TELEPATH

TELEPATH is a content substitution system. Content
substitution involves running a cover application binary with
normal inputs and replacing the payloads of its network
messages with covert data at the application or transport
layer. Previously proposed cover applications have simple
finite-state machines (e.g., audio/video streaming or HTTP)
and deterministic inputs (audio/video files, Web pages).

Video games such as Minecraft, however, have complex
action space and a huge number of possible application
states. They also take nondeterministic inputs such as mouse
movements and keystrokes. As we show in Section 4.3,
existing content substitution approaches operate at the trans-
port layer and cannot be applied to game-based channels.
They may produce traffic traces that violate known game-
trace invariants and are thus easily detectable.

The key idea behind TELEPATH is non-disruptive con-
tent substitution. Instead of substituting all application con-
tent, TELEPATH substitutes only messages that do not cause
long-lived inconsistencies between the client and the server.

5.1. Identifying non-disruptive content
We identify generic categories of non-disruptive content,

applicable to many games, and explain how to substitute
them. Formal definitions for each category can be found in
Appendix A, modeling client and server as state machines.
Server sends current state to clients, clients perform actions
resulting in updates, server collects update messages, applies
them to the state, sends state to clients, etc.
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Figure 4: An impossible trace generated by the strawman design of TELEPATH. The server sends a map update packet to
a dead player before it receives the respawn request, which violates trace invariants based on the game semantics.

Visual effects. A feature of the game state is a visual effect
if client actions generate the same update message regardless
of its value. Examples are unreachable map areas, animation
information, and projectiles that don’t hit the player.

Identifying visual effects requires game-specific analy-
sis. A generic heuristic is to agree during setup that the client
will not perform certain actions. The content with which the
client will not interact can be substituted. For example, in
RPG games like Diablo 2, a player may pick up only rare
looted items and ignore others (a common scenario when
farming for valuable items). Items sent by the server but
never used by the client can be treated as visual effects.
Synchronization messages. Most online games rely on
periodic updates to synchronize clients and servers. An
update corresponding to a periodic action performed by the
client or the server is a synchronization message.

Variable update frequency is a standard technique in
client-server online games to improve performance [12, 37].
Reducing the frequency of updates doesn’t cause long-lived
inconsistencies between the client and the server. Therefore,
the client and the server can exchange update messages
with the original frequency but substitute some of them with
covert content (thus reducing the effective update frequency,
as far as the game is concerned). For example, player
position updates (inherent in video games) are a type of
synchronization message that can always be used for non-
disruptive substitution by reducing update frequency.

The content of omitted updates can often be predicted
based on the previous updates. Player prediction is a stan-
dard technique to compensate for network latency in fast-
paced online games [5, 6]. Upon receiving a periodic update
whose content has been substituted, the system can estimate
the value of the substituted content, and the game can use
these predictions to keep its state up-to-date.

5.2. Architecture of TELEPATH

Figure 5 shows the main components of TELEPATH.
The local proxy on the client side is a standard SOCKS5
proxy that accepts requests from applications such as Web
browsers and forwards them to the TELEPATH mod in-
side the Minecraft client. The remote proxy on the server
side handles requests from the client. It opens connections

to the requested addresses and forwards the responses to
the TELEPATH server mod. The client (server) mod is a
modification to the Minecraft client (respectively, server).
It consists of an encoder and a decoder and implements a
bidirectional point-to-point covert channel.
Encoder. The encoder encodes requests from the local
proxy (respectively, responses from the remote proxy) into
game messages, which are sent through the game’s network
manager. Figure 6 shows the architecture of the encoder. The
key component is the interceptor that filters all messages be-
tween the game loop and the network manager, looking for
non-disruptive messages. Once it intercepts a non-disruptive
message, it discards its content and substitutes covert data
from the local proxy. The rewritten message is then passed
to the network manager like any other game message.
Decoder. The decoder (see Figure 7) identifies incoming
packets that contain covert data. Upon receiving a packet,
the network manager dispatches it to the corresponding
handler, where the interceptor determines if it contains
covert data, extracts the data, and passes it to the proxy.
The interceptor also notifies the dummy message generator
to generate suitable dummy content for the messages whose
content was replaced by the covert data.

Next, we describe the messages substituted by
TELEPATH and explain (a) why they are non-disruptive,
and (b) how to safely substitute their content and gener-
ate appropriate dummy content without causing long-lived
inconsistencies between the client and server states.

5.3. Clientbound non-disruptive messages

Light update. Light is the attribute of Minecraft blocks
that affects visibility, mob spawning, and plant growth. A
block’s light level is an integer between 0 (darkest) to 15
(brightest). Only blocks with non-zero light level are visible
to the player. Mobs only spawn when light level is low and
plants only grow when light level is high. The light level of
a block is calculated by the server and sent to the client via
a light update message containing the light information of
all blocks in a single chunk. Light update messages account
for about 33% of Minecraft’s clientbound bandwidth.2

2. Numbers are based on our farming bot described in Section 7.1.
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Figure 5: Architecture of TELEPATH. The components of TELEPATH are highlighted in a darker shade.

Figure 6: TELEPATH Encoder.

Figure 7: TELEPATH Decoder.

Since mob spawning and plant growth are processed
by the server, light level only affects visual effects such
as rendered brightness and visibility of the blocks on the
client side. Therefore, it is safe to set the light level of all
blocks to 15 (brightest) on the client side without causing

Figure 8: Light update message layout. Red denotes data
fields replaced by covert data.

Figure 9: Chunk data message layout. Red denotes data
fields replaced by covert data.

inconsistencies between the client and server states.
Figure 8 shows the data layout of a light update message.

X and Z represent the location of the chunk, the masks
indicate if a block in the chunk has data in the following
light array. The list of light arrays contains the actual light
level information. Each 2048-byte array represents the light
level of a 16x16x16 area, in which each byte represents the
light levels of 2 blocks (e.g., levels of 5 and 15 are stored as
0x5F). To substitute the content of a light update message,
the encoder simply discards the data in the light arrays and
writes in the covert data. Upon receiving such a message,
the decoder extracts the covert data from the light arrays
and the dummy content generator fills the arrays with 0xFF,
setting the light level of all blocks to 15.

Chunk data. When the player moves to a new location,
the server loads the chunks (see Section 2.2) within the
player’s view distance into its memory and sends them to
the client to display to the user. Chunks outside the player’s
view distance are unloaded. A chunk data message contains
information about all blocks in a chunk. These messages
account for about 55% of the clientbound bandwidth.

Unlike the light level, which only affects visual prop-
erties at the client side, chunk data contains information
about the blocks that the player can interact with. Naively
substituting all chunk data would cause inconsistencies be-
tween the client and the server. For example, if blocks are
randomly assigned to a chunk, the player may stand on an
air block, which is invalid. In Minecraft, however, the player
can only interact with blocks or entities within a certain
range that is usually smaller than its view distance. Some
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Figure 10: Player’s interactive distance.

Figure 11: Changes in interactive distance.

common ranges are (1) the attack reach: the player can only
attack entities within 3 blocks, (2) the building reach: the
player can only place or collect blocks within 4 blocks, and
(3) the mob detection range: mobs within this range, which
depends on the type of mob and has the maximum of 64
blocks (Enderman), can detect and try to attack the player.

We define the interactive distance of a player as the
range that the player can interact with. We divide the loaded
chunks within the player’s view distance into two categories:
interactive chunks, i.e., the chunks within the interactive
distance, and non-interactive chunks, i.e., the chunks that
the player can view but cannot interact with. Since non-
interactive chunks have visual effects only, the correspond-
ing chunk data messages are non-disruptive and can be used
to transmit covert data. In our prototype of TELEPATH, we
set the interactive distance to 5 chunks (80 blocks), 1 chunk
more than the maximum mob detection range. Figure 10
shows the interactive distance of a player.

Since both interactive chunks and non-interactive chunks
are sent in chunk data messages, the receiver cannot distin-
guish between them without additional information. To mark
non-interactive chunks that carry covert data, we utilize free
bits in the chunk’s X coordinate. This coordinate is a 32-bit
integer with a hard-coded [-1875016, 1875016] limit due to
the world boundary in the game. Therefore, we can encode
both the chunk’s X coordinate and the covert bit into the
same integer. Figure 12 shows this encoding.

Figure 9 shows the data layout of a chunk data message.

The encoder first sets the covert bit in the X coordinate of a
non-interactive chunk, then overwrites all fields except the X
and Z coordinates with covert data. Upon receiving a chunk
data message, the receiver first decodes the X coordinate to
check if the covert bit is set. If not, the chunk is processed
by the original game code and displayed to the user. If the
covert bit is set, the decoder extracts covert data from the
message and requests a dummy chunk from the dummy
content generator. The dummy chunk is randomly selected
from the loaded interactive chunks on the client side.
Handling changes in interactive distance. Whether a
chunk is interactive or not depends on its distance from
the player, which changes as the player moves around (see
Figure 11). A non-interactive chunk may become interactive.
If a chunk was used to send covert data, it is considered
loaded at the client side, thus the server won’t send it again.

To avoid inconsistencies between the client state and
the server state, TELEPATH needs to send to the client the
chunks whose status has changed from non-interactive to
interactive without introducing extra messages. This means
they cannot be sent via chunk data messages. We solve
this conundrum by treating these newly interactive chunks
as covert data. When the player moves to a new position,
the server checks if any chunk has changed from non-
interactive to interactive. If such a chunk is found, the server
encodes the chunk data into a byte array and adds it to the
update queue. When a non-interactive chunk data message
is intercepted, the encoder first checks the update queue.
If the queue is not empty, the encoder reads the encoded
chunk byte array from the queue and sends it as covert
data. Otherwise, the encoder sends covert data from the local
proxy. Similar to the covert bit above, we use another free
bit in the chunk’s X coordinate (see Figure 12) to indicate
that the covert data is a chunk that changed its interactive
state, as opposed to the data requested by the local proxy.

Figure 12: X coordinate encoding.

Entity head look. Entity head look is a clientbound message
with the head direction of a living entity such as player,
animal, or mob. Head direction is a visual effect; the only
exception is an Enderman, a monster that can be provoked
by a player looking them in the eyes (i.e., the player’s head
direction is towards the enderman). Generation of monsters
including endermen can be disabled by setting the game
difficulty to peaceful, thus the entity head look message is
non-disruptive in peaceful games.

Figure 13 shows the data layout of the entity head look
message. The encoder discards the head direction field and
substitutes covert data. Upon receiving such a message, the
decoder extracts the covert data and the dummy content
generator randomly assigns a head direction to the entity.
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Figure 13: Entity head look message layout. Red denotes
data fields replaced by covert data.

5.4. Serverbound non-disruptive messages

Hand animation. Hand animation message is a simple
message used to notify the server that the player is swinging
its hand. The message contains a single byte indicating
which hand. As the message name suggests, it carries visual-
only information and is consequently non-disruptive. The
interactions between the player’s hand and other blocks or
entities are sent through other types of messages.

To encode covert data into a hand animation mes-
sage, the encoder simply writes 1 byte of covert data into
the hand-indication byte. After decoding the message, the
dummy content generator sets the byte to right hand.

The hand animation message is the sole visual-only
serverbound message in the game. It accounts for only about
2% of the serverbound bandwidth. To increase the capacity
of the serverbound channel, it is necessary to leverage
messages that carry non-visual information.

Figure 14: Player position interpolation.

Player position. Every game tick, the client checks the
player’s position and sends a player position message to the
server if the player has moved. It contains the player’s X, Y,
and Z coordinates and the facing direction. These messages
account for about 80% of the serverbound bandwidth.

Since the player position message changes the server
state, naively substituting these messages will cause incon-
sistencies between the client and the server. For example,
suppose the player moves to a new location and starts dig-
ging a block. If all player position messages are substituted,
the server doesn’t know that the player has moved. When the
server receives a message that the player is digging a block
far from its last known position, an inconsistency ensues.

Because player position messages are periodic updates,
we can lower their frequency and estimate positions that
have been replaced by covert data. We leverage the fact that
player movement is continuous. The player cannot move
too far within one game tick to result in an observable
inconsistency between the server and the client. The player’s
position can also be estimated from their recent updates.
We interleave unmodified position messages and substituted
messages so that the server can keep the player’s position
up-to-date without long-lived inconsistencies with the client.

The server uses interpolation (see Figure 14) to estimate the
player’s position between two unmodified updates to make
up the information lost to substitutions.

We consider two interpolation methods to estimate the
player’s position based on its recent movements. Let p⃗1 =
(x1, y1, z1) be the most recent position update from the
player, p⃗2 the penultimate update, and p⃗′ the position we
want to estimate. We assume that the intervals between game
ticks are consistent. Since we interleave unmodified position
updates and covert messages, the time between p⃗1 and p⃗2
and between p⃗′ and p⃗1 is 2 ticks and 1 tick, respectively.

• (Nearest neighbor) p⃗′ = p⃗1
• (Linear) p⃗′ = p⃗1 + (p⃗1 − p⃗2)/2

Both methods work well in our prototype and don’t
produce observable inconsistencies.

Figure 15: Minecraft connection establishment.

5.5. Bootstrapping
Figure 15 shows how connections are established be-

tween Minecraft servers and clients.
Key exchange. TELEPATH follows the unmodified
Minecraft key exchange protocol to establish an encrypted
channel. The client first sends a handshake message and
a login start message with the player’s username to the
server. The server replies with an encryption key request
message that contains the server’s public key and a random
verify token. The client generates a shared symmetric key
and sends an encryption key response message with the
shared key and the server’s verify token, encrypted under
the server’s public key. Upon receiving this message, the
server notifies the client that the channel is established.
Server authentication. In Minecraft, the server’s public
key is randomly generated when the server starts. Since a
client cannot authenticate the server, a censor could mimic
a TELEPATH server to identify TELEPATH users. We add
server authentication to TELEPATH. Instead of randomly
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generating the server’s public key, TELEPATH selects it from
a set of public keys known to both the server and the client.
During key exchange, the client verifies that the server’s
public key is in this set. Otherwise, the client does not start
a TELEPATH session and behaves like an unmodified client.
Client authentication. We leverage Minecraft’s client au-
thentication mechanism to verify that the client is a
TELEPATH user. Each Minecraft user has a unique UUID
(Universally Unique Identifier) assigned by Mojang when
the game is purchased. To connect to a Minecraft server,
the client first logs into the user’s Mojang or Microsoft
account (depending on the account type) and obtains a
credential called the access token. During the key exchange,
the client sends a join-server message, which includes the
user’s UUID, the access token, and the hash of the (shared
key, server public key) tuple to the Mojang session server.
The Mojang server verifies the access token, keeps a record
that the user is trying to connect to a server, and stores
the hash. After the Minecraft server receives the encryption
key response message from the client, it requests from the
Mojang session server the join status of the user with the
username and the hash of the key tuple. If the username
and the hash match the record in the Mojang session server,
the latter replies with a has-joined message and the user’s
UUID, so the Minecraft server can verify the identity of the
connecting client. All connections to Mojang or Microsoft
are based on TLS, thus it is not possible for a censor to either
mimic Microsoft or Mojang, or obtain the user’s credentials.

To verify that a client is a TELEPATH user, the server
stores a list of UUIDs of valid users. When a client suc-
cessfully connects to the server and finishes the user au-
thentication process, the server checks whether the user’s
UUID is on the list. If so, the server starts a covert session.
Otherwise, the server behaves like an unmodified server.

6. Implementation
Minecraft is closed-source software, but its end-user

license agreement (EULA) allows users to modify both
the client and the server under certain restrictions: (1)
the mod cannot contain a substantial part of Minecraft’s
copyrightable code or content, and (2) mod developers can
distribute mods but not modded Minecraft implementations.

Most existing Minecraft mods are based on mod loaders.
A mod developer can use the loader’s API to create and dis-
tribute mods without changing the Minecraft code directly.
Mod loaders, on the other hand, modify Minecraft. To com-
ply with the EULA, loaders are distributed as code patches,
which do not contain a substantial part of Minecraft’s code.

TELEPATH changes several aspects of the Minecraft im-
plementation, such as the map loading mechanism. Because
these changes cannot be done via the API of any exist-
ing mod loader, we implemented TELEPATH by modifying
MinecraftForge [22], a popular, open-source loader. This
enabled us to package the changes into a patch to the
Minecraft code, which does not violate the EULA.

Our proof-of-concept implementation of TELEPATH in-
volves approximately 2500 lines of Java code, includ-

ing a modification to MinecraftForge 1.15.2-31.2.50 and a
SOCKS proxy implementation. To ensure that compression
rates are not different between the real game messages and
covert messages, we turn off the compression of network
traffic by setting the compression-threshold to -1 in the
server configuration (this option is somewhat unusual but
is used in actual game servers to optimize their perfor-
mance). We also adopt an open-source Minecraft bot (see
Section 7.1) to automatically perform in-game activities that
can be used by TELEPATH to transmit covert traffic.

Implementation of Web browsing and audio streaming
benchmarks is described in section 7.4.

7. Evaluation
We evaluate TELEPATH by measuring (a) how it resists

to statistical traffic analysis, and (b) how it performs for
Web browsing and audio streaming.

7.1. Experimental setup

Unless otherwise indicated, the Minecraft client is run-
ning on an Intel i7-5960X CPU @ 3.00GHz with 16 cores
and 96 GB of memory, the Minecraft server on an AWS
EC2 t3.xlarge instance with an Intel Xeon Platinum 8259CL
CPU @ 2.50GHz with 4 cores and 16GB of memory. Both
the client and the server are running in docker containers.
The client is running in an Xvfb [44] virtual display with
1024x768 resolution. We use a Python script with PyAuto-
GUI [28] to automate the interaction with the game’s GUI.
The server is running in the headless mode.

We are not aware of any representative datasets or plau-
sible models of real-world Minecraft traffic. Therefore, we
designed TELEPATH to be indistinguishable from a specific
Minecraft bot. TELEPATH does not aim to resist detection
of automated behavior. Automated gameplay is common
in Minecraft because resource collection is time-consuming
and repetitive. For example, to obtain a diamond gear set
(best in the game) in survival mode, the player must mine
over 30,000 blocks, requiring 5 hours of repetitive mining.
Many Minecraft players thus use bots to collect resources. If
censors block automated gameplay, it would cause collateral
damage and drive many users from the game.

We use Minebot [20], a Minecraft mod that controls
the player and automates its activities, for a simple farming
bot which repeatedly searches for the nearest fully-grown
wheat crop, harvests it, and places a wheat seed on the same
tile. We constructed a survival farm (see Fig. 16) for this
bot to operate on. It includes a 44 × 44-block wheat farm,
22 × 44 sugar-cane farm, 44 × 23 cow farm, and 22 × 23
sheep farm. Each individual farm is surrounded by wood
fences to restrict the tiles that the bot can interact with.

TELEPATH is based on the MinecraftForge mod
loader [22], which sends extra messages between the client
and the server to support its modding API. Therefore, to run
the bot, we use Minecraft with unmodified MinecraftForge
installed; otherwise, a traffic classifier may mistakenly use
the extra messages to “distinguish” TELEPATH and the bot.
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Figure 16: The Minecraft farm used in our evaluation.

7.2. Traffic analysis methodology
We adopt the methodology of [1, 2] to determine if a

passive network observer can distinguish TELEPATH traffic
from that of the farming bot from Section 7.1. Our results
are thus a conservative over-estimate of how distinguishable
TELEPATH would be in the presence of Minecraft traffic
generated by diverse gameplays.

Following [1, 2], we extract two sets of features from
the network traffic between the client and the server: (1)
summary statistics of packet sizes and packet inter-arrival
times, and (2) quantized packet sizes. We use these features
to train random forest [4] classifiers because similar decision
tree-based classifiers have been successful at identifying
the traffic of previously proposed censorship circumvention
systems [1]. For each experiment, we train the classifier
using 10-fold cross-validation in Scikit-learn [27].

To measure if these classifiers can distinguish TELEPATH
traffic from bot-generated traffic, we follow [1, 2] and calcu-
late the true positive rate (TPR), false positive rate (FPR),
and the area under the Receiver Operating Characteristic
(ROC) curve. TPR is the fraction of TELEPATH traces that
are correctly identified by the classifier among all TELEPATH
traces. FPR is the fraction of bot traces that are erroneously
classified as TELEPATH traces. ROC plots TPR against
FPR at different thresholds. The area under the ROC curve
(AUC) measures the performance of the classifier. A perfect
classifier would achieve AUC=1.

We evaluate TELEPATH on datasets that are equally
balanced between TELEPATH and bot traces. In a real-
world deployment, covert communication would account for
a negligible fraction of the overall Minecraft traffic, thus any
non-zero false positive rate would overwhelm the adversary.
In the balanced setting, however, even random guessing has
AUC=0.5. Our reported AUC values are thus conservative
over-estimates of the classifier’s real-world performance.

We generate 100 TELEPATH traces and 100 bot traces in
random order. For each run, our client connects to the game
server, waits 40 seconds for the game content to load, then
starts the bot. The bot runs for 60 seconds, then disconnects.
We restart the client and the server after every run and reset
the game world to prevent the large number of new items
created by the bot from crashing the server.

For each TELEPATH run, we randomly select 1 website
among Google, Wikipedia, CNN, BBC, NYTimes, and Red-

dit (all are commonly blocked by state-level censors), and
execute Firefox to browse it through the TELEPATH proxy.
We set the maximum loading time for each webpage to 60
seconds (pages load partially before they time out). Network
traffic is captured using Wireshark’s tshark [43].

7.3. Traffic analysis evaluation

Baseline. For the baseline experiments, we run the server in
the AWS region closest to the client. Figure 17a shows ROC
curves for our classifier when distinguishing TELEPATH traf-
fic from the bot traffic. AUC=0.59 whether using summary
statistics or quantized packet sizes, thus an adversary who
tries to use this classifier to detect TELEPATH traffic would
incur significant collateral damage. For example, when TPR
is 0.6, FPR exceeds 0.5, i.e., to block 60% of TELEPATH
traffic, more than half of the “genuine” bot traffic will also
be erroneously blocked. If TELEPATH were a small fraction
of the traffic, the false positive rate would be prohibitive.

The classifier slightly outperforms random guessing. We
analyzed the per-feature distribution and found that the
leakage mainly comes from the features related to packet
inter-arrival times. We conjecture it is caused by delays
due to the encoding of covert messages into game packets.
We also conjecture that delays may slightly change the
packetization of game messages. This minor leakage is not
unusual [31] and, with a high false positive rate, does not
provide a way to reliably identify TELEPATH traffic.

Next, we investigate how TELEPATH resists traffic anal-
ysis under different network conditions.

High latency. We use remote AWS servers in the US-west
and Singapore regions to measure how TELEPATH resists
traffic analysis under intra-continental and inter-continental
network latency, respectively.

Figures 17b and 17c show ROC curves of our classifier.
With summary statistics as features, the classifier achieves
AUC of 0.64 (US-west) and 0.60 (Singapore) vs. 0.62 and
0.62, respectively, with quantized packet sizes. This is better
than the baseline but significantly worse than a similar
classifier achieves against Balboa [31] when network latency
is not randomized. When latency is high, both bots and
TELEPATH generate more packets (∼ 2×) than the baseline.
We conjecture that this magnifies the leakage caused by the
encoding of covert messages.

Packet loss. An active adversary may artificially drop pack-
ets to cause a circumvention system to generate distinguish-
able network traffic. We evaluated TELEPATH under 2%,
5%, and 10% packet-loss rates, using tc [35] to introduce
packet losses. Both TELEPATH and unmodified Minecraft
client disconnect when packet losses reach 5%, thus an ad-
versary cannot introduce heavy packet losses to distinguish
TELEPATH from unmodified Minecraft.

Figure 17d shows the classifier’s ROC curve under 2%
packet loss. Both summary statistics and quantized packet
sizes achieve AUC=0.52, below the baseline. TELEPATH
and bots generate fewer packets (∼ 1/3) than the baseline,
reducing the leakage.
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(a) Baseline: local server (b) Remote server: US West (c) Remote server: Singapore (d) 2% packet Loss

Figure 17: Traffic analysis results

Website US-east US-west Singapore Japan
en.m.wikipedia.org 34.7± 8.5 35.8± 11.1 33.0± 9.7 35.6± 6.9
lite.cnn.com 43.9± 11.7 44.0± 9.8 39.8± 6.8 40.2± 11.2
bbc.com Timeout Timeout Timeout Timeout
nytimes.com/timeswire 67.1± 9.4 67.1± 8.0 60.0± 14.5 63.1± 11.3
cbc.ca/lite 43.4± 8.5 46.4± 9.3 53.0± 14.8 48.0± 7.3
dw.com/en 64.3± 7.5 76.0± 14.8 75.9± 12.2 69.6± 20.1
i.reddit.com 35.0± 6.7 41.9± 14.6 40.9± 7.3 37.2± 4.4
mbasic.facebook.com 7.1± 5.1 6.9± 3.5 7.0± 3.1 4.9± 3.3
bing.com/search?q=minecraft 18.1± 3.4 18.4± 4.7 18.7± 3.7 20.6± 3.4

TABLE 1: Webpage load time through TELEPATH proxy. Values are in “mean ± standard deviation (seconds)” format.

7.4. Performance evaluation

Covert messages in TELEPATH are sent using game
messages that are closely related to the player’s move-
ment in the game (map updates, player position updates).
Therefore, performance of TELEPATH highly depends on the
player’s behavior and has high variability. When using the
farming bot described in section 7.1, TELEPATH achieves
the clientbound throughput of approximately 1300 Kbps
and the serverbound throughput of 1-2Kbps. We evaluate
the usability of TELEPATH on practical tasks such as Web
browsing and audio streaming.

Web browsing. We use a Firefox browser connected to
the TELEPATH proxy to browse nine popular websites that
are blocked by state-level censors in multiple countries.
To emulate a real-world scenario where TELEPATH users
are located in different countries, we ran clients on AWS
machines in different regions (US-east, US-west, Japan,
Singapore) and the server on an AWS machine in US-east.
To emulate a multi-player gameplay, all clients connect to
the server at the same time, and the bot is active in the
background during browsing. We browse each page 5 times
and measure the corresponding load times.

Since TELEPATH has low serverbound bandwidth, we
use the low-bandwidth (mobile or lite) version of each
website if available. To reduce the number of requests to the
server, we block images and JavaScript (a real-world user
can use a browser plugin to manually load some images and
scripts). We cut off the loading at 120 seconds.

Table 1 shows the load time of each page in different
regions. In all regions, 8 out of 9 pages loaded successfully,
6 of them in under 1 minute. BBC.com times out due to the
large number of requests it makes, but most of the content
is fetched and rendered (see Fig. 18). We conclude that

Figure 18: Partially loaded BBC.com page. Most of the
content is fetched and rendered.

TELEPATH can support the browsing of webpages that do
not include a large number of pictures or videos.
Audio streaming. An important use of censorship cir-
cumvention systems is to listen to podcasts and other au-
dio content blocked by the censors. To evaluate whether
TELEPATH can support audio streaming, we use a Rocket
Streaming Audio Server [30] to broadcast audio files with
different bitrates, and a VLC media player on the client
side that connects to the TELEPATH proxy to listen to
broadcast audio. The audio files are in the constant-bitrate
MP3 format with bitrates of, respectively, 16Kbps, 32Kbps,
64Kbps, 128Kbps, and 256Kbps. TELEPATH is able to sup-
port streaming at all bitrates, except for a very few glitches
at the beginning of the playback of the 256Kbps audio file.

8. Related work
Covert communication systems that imitate other net-

work protocols are vulnerable to traffic analysis [15, 40].
Other approaches aim to generate realistic traffic by encod-
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ing covert content in audio [16] and video [19] streams, with
a significant loss of bandwidth. They can still fail against
statistical traffic analysis [1].

There is a large body of work on traffic analysis for web-
site fingerprinting (e.g., [34]) and videostream fingerprinting
(e.g., [29, 32]). These techniques identify the specific con-
tent being transmitted, as opposed to detecting whether the
content was generated by an application or substituted by a
circumvention system. For the latter task, we use the traffic
analysis methodology of [1, 2].

State-of-the-art censorship circumvention systems like
Protozoa [2], Balboa [31], and Camoufler [33] resist traffic
analysis by substituting covert content into transport streams
generated by an existing application. In Section 4, we ex-
plained that in games such as Minecraft, these approaches
would generate traces that violate game-specific invariants
and would thus be easily recognizable.

Our approach of substituting content only into non-
disruptive messages is similar in spirit to Slitheen [3], which
substitutes “leaves” of HTML documents to preserve traffic
patterns generated by fetched Web content. Slitheen was
proposed in the context of decoy routing; our domain,
substitution method, and target application are different.

Minecruft [24] is a concurrently developed, yet-
unpublished censorship circumvention system based on
Minecraft. Unlike TELEPATH, Minecruft encodes covert data
into Minecraft packets and inject those packets into the
transport layer in addition to the Minecraft-generated traffic.
It is not clear if this approach resists traffic analysis, since
simple features such as packet counts should distinguish
Minecruft from Minecraft traces.

Other game-based censorship circumvention systems
such as Rook [39] and Castle [13] provide covert communi-
cation channels over First Person Shooter (FPS) and Real-
Time Strategy (RTS) games, respectively. Both systems have
very limited bandwidth and support text data only.

There exist provably secure steganographic techniques
for embedding covert messages into text [14, 17, 45]. In
steganography, the adversary directly observes cleartexts;
the goal is to distinguish their distribution from the distribu-
tion of “benign” texts. Provable indistinguishability in this
setting is achieved with relatively low encoding capacity,
1-4 bits per lexical token, and a significant computational
overhead. Applying this method to non-text channels (such
as games) appears non-trivial, since we do not have models
capturing conditional content distributions.

By contrast, we work in the same threat model as
Protozoa [2] and Balboa [31]. The adversary can only
observe a side channel: times and sizes of encrypted pack-
ets. Our adversary also knows some application-specific
invariants (mandatory orderings of certain events). This side
information has no equivalent in provable natural-language
steganography. It would require the existence of higher-level
invariants satisfied by any benign text (e.g., a mandatory
ordering of certain words arbitrarily far from each other in
the text) beyond conditional next-token distributions. Unlike
for natural text, we do not have generative models that cap-
ture realistic traffic distributions for a given application, and

even such hypothetical models may only match statistical
properties, not order invariants.

9. Conclusions
To the best of our knowledge, TELEPATH is the first sys-

tem that implements a covert communication channel using
a complex, popular application (Minecraft) and produces
traffic that does not violate application-specific invariants.
We showed that TELEPATH traffic resists statistical traffic
analysis and is difficult to distinguish from the traffic gen-
erated by a Minecraft farming bot.

Future research directions include (1) increasing the
bandwidth of the TELEPATH channel to support interactive
and media-rich applications; (2) using machine learning to
discover more application-specific invariants over packet
traces. Research on traffic analysis and traffic indistinguisha-
bility is hampered by the lack of real-world traffic data and
models for Minecraft or other online games. Availability of
such data could significantly advance the state of the art in
covert communication and censorship circumvention.

Decentralized, multi-player games other than Minecraft
may have potential for censorship circumvention, too.
With transport-level, end-to-end encryption now ubiquitous,
games provide high-bandwidth encrypted channels and, crit-
ically, they are often popular in countries that practice
Internet censorship. Consequently, game-based covert com-
munication systems should be resistant to whitelist filters
that block all unknown and unrecognizable traffic.

We view TELEPATH as the first step towards investi-
gating how circumvention can take advantage of popular
games while providing robust resistance to traffic analysis.
Unfortunately, unlike Minecraft, many games discourage
users from modifying clients and servers, but the general
principle of non-disruptive content substitution should be
broadly applicable to the design of covert, unobservable
communication systems.
Acknowledgements. Supported by DARPA and AFRL un-
der Contract FA8750-19-C-0079.
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Appendix A.
Definition of non-disruptive content

Online game. The game server has the game state S⃗ =
[s1 s2 ... sn], S⃗ ∈ Rn; each si is a feature that de-
scribes the state. The game client has a set of actions
A = {a1, a2, ..., ak}; an action ai is a function that
takes the game state S⃗ and generates an update message
u = ai(S⃗). The server has a function Apply that applies
multiple update messages to S and generates a new state
S⃗′ = Apply(S, u1, u2, ...).

For each game tick, the server sends the state S⃗ to all
clients. Each client chooses an action a ∈ A based on the
user’s input, generates an update message u = ai(S⃗), and
sends u to the server. The server collects update messages
ui from the clients, applies them to the current state, and
generates a new state Apply(S, u1, u2, . . .) for the next tick.
Visual effects. We call the i-th feature in the game state
S⃗ a visual effect if ∀m ∈ R, ∀S⃗ = [s1 s2 . . . sn], ∀a ∈
A, a(S⃗) = a([s1 s2 . . . si−1 m si+1 . . . sn]), i.e., for a
given game state, a client action generates the same update
message regardless of the value of this feature in the state.
Synchronization messages. If an action a ∈ A is chosen by
the game client periodically, it is a synchronization action
and its corresponding update message is a synchronization
message. Since the server periodically sends the game state
to clients, the state is a synchronization message, too.
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