
Communication Breakdown: Modularizing Application
Tunneling for Signaling Around Censorship

Paul Vines
Two Six Technologies

Arlington, Virginia, USA
paul.vines@twosixtech.com

Samuel McKay
Two Six Technologies

Arlington, Virginia, USA
sam.mckay@twosixtech.com

Jesse Jenter
Two Six Technologies

Arlington, Virginia, USA
jesse.jenter@twosixtech.com

Suresh Krishnaswamy
Two Six Technologies

Arlington, Virginia, USA
suresh.krishnaswamy@twosixtech.com

ABSTRACT
We present Raceboat, a novel framework for developing and man-
aging censorship circumvention channels. The Raceboat frame-
work simplifies using signaling channels for low-bandwidth and/or
latency-tolerant tasks like bridge distribution and authentication.
We further develop a novel decomposition of application tunneling
circumvention channels that is well suited to signaling channel
usage. This decomposition enables modular components that are
reusable across varied channels. We demonstrate the flexibility and
extensibility of Raceboat for signaling uses bymixing-and-matching
seven different channels.

KEYWORDS
censorship, networks, privacy, application tunneling

1 INTRODUCTION
Censorship of user access to the internet is growing increasingly
sophisticated and common across the globe. In response, many
approaches to circumventing this network censorship have been
developed. To combat network-level censorship (blocking at the
level of individual network connections) a number of censorship
circumvention channels have been developed over the past years
to facilitate users reaching applications from behind their censors’
firewalls. The canonical use-case is enabling browsing censored
websites, but enabling instant messaging, video streaming, and
other arbitrary internet-connected applications is also prevalent.
To serve this use case, most of these circumvention channels em-
phasize low latency and high bandwidth, and so often rely on a
direct IP connection to a circumvention channel proxy server or, in
Tor parlance, a bridge (we will use bridge throughout this paper to
avoid ambiguity, although we do not assume the server necessarily
connects the user to the Tor network). This creates a second-order
problem: censors can enumerate bridges based on a variety of tech-
niques and then block any connections to those IPs. Creating new
bridges or changing their IPs is easy, but the problem lies in how

This work is licensed under the Creative Commons Attribu-
tion 4.0 International License. To view a copy of this license
visit https://creativecommons.org/licenses/by/4.0/ or send a
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 465–477
© 2024 Copyright held by the owner/author(s).
https://doi.org/10.56553/popets-2024-0027

Open InternetCensored Network

Censored
User

Prior
Bridge

New
Bridge

Broker

Blocked-by-IP

Signaling Connection

Figure 1: Censors can block connections to bridges based on
IP address; the addresses of new bridges are distributed to
users via a broker. However, the user then needs a connection
to this broker that requires no shared secrets.

to communicate these new bridge-addresses to users that have no
connectivity to the uncensored internet (because their bridges were
blocked).

This is known as the bridge distribution problem [34] or, more
generally, a rendezvous problem (illustrated in Fig. 1): users need a
circumvention channel that remains available even when the user
and the adversary have all the same information (i.e. no secrecy is
required to prevent blocking). We refer to channels that can serve
this purpose as signaling channels. A number of channels have
been developed for this purpose; the most prominently deployed
is Domain Fronting [14] but prototype systems like Raven and
SWEET that use email [37], CloudTransport [4] that uses cloud-
storage, and even MoneyMorph that uses cryptocurrencies [24],
have been demonstrated.

A necessary aspect of signaling channels is to remain avail-
able when the censor is employing IP-blocking; therefore these
channels rely on the client-side of the channel (the user’s device)
making IP connections to a third-party server that services some
non-circumvention use-case the censor is reticent to block. We
refer to such channels as indirect since they avoid direct IP connec-
tions between channel endpoints. Indirectness implies the channel
must make a legitimate connection on the protocol served by the
intermediary server and the messages are transmitted as content

465

https://orcid.org/0009-0002-3328-6319
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.56553/popets-2024-0027


Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy
U

se
r A

pp
(C

lie
nt

, T
or

, P
si

ph
on

, B
ro

w
se

r)

Channel A

Channel C
(Composition)

Channel B

A
pp

 A
PI

C
ha

nn
el

 A
PI

Encoding

Transport

User Model

Channel D
(Composition)

Encoding

Transport
User Model

U
se

r A
pp

(S
er

ve
r, 

Br
id

ge
D

B,
 B

ro
ke

r)

R
ac

eb
oa

t C
ha

nn
el

M
an

ag
er

Channel A

Channel C
(Composition)

Channel B

A
pp

 A
PI

C
ha

nn
el

 A
PI

Encoding

Transport

User Model

Channel E

Channel F

Bridge Request 
(+ Response Address)

Bridge Response

Bidirectional
connectivity across

arbitrary shared
channels

R
ac

eb
oa

t C
ha

nn
el

M
an

ag
er

(Optional) Runtime
composition of
channels from
components

Figure 2: Example of a User App using Raceboat to perform a bridge request: the User App uses Raceboat’s App API to specify
a request-response mode, the request message, and the channels to use. Raceboat creates bidirectional connectivity with
multiple potentially unidirectional channels managed via its Channel APIs. The bridge request traverses one of these channels,
along with an address to receive the response on an entirely separate channel. Each channel can be any type of channel that
implements the Channel API, or application tunneling channels composed at-runtime from reusable modules (see Section 4).

within that protocol. Therefore, all signaling channels of this sort
fit within the application protocol tunneling [19] approach: e.g. Do-
main Fronting tunnels within the TLS protocol; Raven within email;
CloudTransport within cloud-stored documents; and MoneyMorph
within cryptocurrency transactions. In each case the application
protocol is unaltered but the content conveyed by the protocol is an
encoded version of the signaling channel’s messages, indiscernible
to the censor either because of application-layer encryption pre-
venting inspection or through the use of steganography.

Development of signaling channels has often been ad hoc; e.g.
TorBrowser’s Moat functionality uses meek [14] (domain fronting)
to fetch bridge addresses and is packaged as a Pluggable Transport
[25]. However Snowflake, another Pluggable Transport that uses
short-lived proxies, also needs rendezvous functionality and thus
re-packages its own implementation of domain fronting within
its codebase. The alternative signaling channels listed above are
each implemented as standalone prototypes and, at best, adopt the
Pluggable Transports (PT) specification as their application inter-
face. Even the use of the PT interface is a hindrance because it is
designed for continuous socket-like connections (and, in its widely
adopted original interface, is explicitly supposed to expose a SOCKS-
proxy interface). In contrast, signaling channel tasks are often much
lighter-weight - e.g. sending a single client request and receiving a
single response. Additionally, there is no reason why the same chan-
nel needs to be used for both directions of communication (indeed
some signaling use cases may only need a unidirectional push of
information). However, existing solutions always seek to function
as standalone channels providing bidirectional connectivity even
when this does not suit the channel.

In the case of application protocol tunneling signaling channels,
development is also hampered by an ad hoc one-off approach. Look-
ing across many such systems we observe that there are marked
similarities in internal functionality that hint at opportunities for
abstraction, modularization, and re-use.

Fig. 2 illustrates the end-to-end usage of the Raceboat system and
highlights our contributions: we formalize the properties and func-
tionalities of signaling channels and then design and implement the

Raceboat framework1 to provide a more flexible interface for signal-
ing channels that supports a variety of use cases, including seamless
mixing-and-matching of unidirectional channels. Additionally, we
formalize a decomposition of application protocol tunneling chan-
nels into components and design and implement the decomposed
application tunneling framework for dynamically assembling these
components to synthesize functional channels. These contributions
can both drastically increase re-use of research products and de-
crease developer effort when extending the existing capabilities of
channels.

Our contributions in this paper are as follows:
• Formalization of signaling channel functionalities
• Implementation of a generic multi-channel interface for mul-
tiple signaling use cases

• Formal decomposition of application tunneling channels into
modular components

• Implementation of a framework for runtime construction
and use of application tunneling channels based on modular
components

• Implementations of exemplar components providing varying
signaling functionality over email, AWS S3, and redis services

2 BACKGROUND
In this section we provide background on the censorship circumven-
tion layers Raceboat innovates in: the bridge distribution problem;
the generalized type of circumvention channels needed; and appli-
cation tunneling.

2.1 Bridge Distribution and Signaling
Most circumvention channels are developed with an assumption
that some secret information can be exchanged out-of-band and
assumed unknown by the censor. These "shared secrets" can vary
in number and nature but, for almost any channel that uses a direct
network connection between endpoints, it includes the IP address
of the bridge. If the censor knows this IP then they can apply an

1https://github.com/tst-race/raceboat-pets2024
466



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

Application Tunneling ChannelApplication Tunneling Channel

ApplicationUser App (Tor,
Psiphon, Browser)

M
es

sa
ge

Application
Server

ApplicationApplication
Handler

Content
Encoder

C
on

te
nt Application

Handler
Content
Encoder

User App (Bridge,
Proxy, Server)

C
on

te
nt

M
es

sa
ge

Figure 3: Application content tunneling at a conceptual level: all such channels take user app messages, encode them in a valid
format for the application (not necessarily covert), then inject the content into the application in some manner for a second
application instance to receive, extract, and decode the content.

IP-based block of all connections to it. This is indeed the way most
circumvention communications are blocked - by enumerating and
blocking bridges by their IP address [12].

Bridge servers can rotate to new IP addresses, but this creates
the problem that they must share this new secret to their users. This
forms the lowest-layer of the bridge distribution problem: how to
get users a bridge address when the reason they need the bridge is
because their internet access is censored. Further concerns exist
around how to decide to allocate bridge addresses [8, 30], but these
are out of the scope of Raceboat’s contribution.

Existing methods for bootstrapping bridge information include
a mix of "out-of-band" methods and domain fronting. Examples
of the former include Tor-run email and telegram accounts which
users can message specific "bridge request" messages to, receive
responses back, and copy these responses into their Tor bridge
settings [11]. These require many specific user interactions: get-
ting the information about where to send a message and the exact
content of that message; manually sending the message; and manu-
ally copying data back from the response to their circumvention
application. Domain fronting approaches, specificallymeek [14] for
the TorBrowser, offer more automation: they automatically run the
meek pluggable transport to a static domain-fronted URL and then
employ a CAPTCHA service to try to prevent censors from obtain-
ing all the bridge addresses. In this case the request and response
are automatically handled by the user clicking a button. Overall,
bridge distribution is provided by a very small number of channels
and relies entirely on domain fronting for the most usable one.

Other circumvention apps and services similarly rely on domain
fronting for these types of tasks. We generalize the bridge distribu-
tion problem to the problem of signaling: trying to communicate
"control plane" types of information with circumvention app clients
when they may have no user-level connection to the uncensored
internet. Examples of other kinds of signaling could be communicat-
ing information about bridges being blocked, or trying to perform
authentication of some kind. In general, we assume these com-
munications are smaller, more latency tolerant, and less frequent,
than the user-driven circumvention channel uses like messaging,
browsing the web, or streaming content.

2.2 Signaling Channels
We target this signaling use case to be fulfilled by signaling channels.
We consider these to be a subset of circumvention channels that
have greater leeway for high latency, low bandwidth, and/or sparse
use. In turn, we require greater degrees of blocking resilience. Specif-
ically we require two related properties: first, we require indirect

channels, meaning endpoints connect to one or more neutral inter-
mediate hosts and not directly to one another at the IP-layer; second,
we require public addressability, meaning there is no information
that must be kept secret from the censor to initiate the connection.
Indirectness is actually a requirement produced by public address-
ability if the censor is assumed to be able and willing to block the
IP of any signaling server it learns about. Public addressability is
necessary because it allows for indiscriminate distribution of the
signaling server address without compromising its reachability.

Various systems meeting this signaling channel definition exist:
meek and other domain fronting channels achieve this despite not
satisfying indirectness; refraction routing approaches use routing-
level indirection [16]; various channels use email [20, 32, 37]; some
use cloud storage services [4]; some use video streaming platforms
[23]. A common factor to signaling channel unblockability require-
ments is a reliance on some existing service that the censor has
either not thought to block or finds too costly to block. E.g. hiding
with an international communication application used by large
segments of the population, or hiding within hosting or routing
infrastructure shared by many important internet services. This
leaves the functioning of any given channel ultimately up to the
censor deciding blocking the channel is worthwhile after all (or
convincing the utilized service to take action on the censor’s behalf).
Individual signaling channels, then, are inherently tenuous and it
is therefore valuable to have more of them to reduce the impact
to circumvention (and thus also reduce the value to the censor) of
blocking any individual channel.

2.3 Application Tunneling
Application tunneling refers to a circumvention channel that func-
tions by running a legitimate application and tunneling covert mes-
sages through its existing network connections in some manner.
This can and has been done in many different and application-
specific ways [2, 3, 15, 17, 18, 21, 23, 26–28, 31, 32, 37]. However,
to satisfy our signaling channel properties we are particularly in-
terested in indirect application tunnels: the covert data is actually
tunneled not just from the application client to a server, but through
that server and on to another instance of the application client,
while assuming no modification to the intermediary server(s).

This distinction is important because it requires the content to be
fully valid application content that is properly processed by a server.
E.g. this excludes approaches like balboa [26] or rook [31] that inject
and extract covert data below the application layer, as well as those
that rely on directly peer-to-peer applications like FreeWave [18].
We observe that these content-based channels largely perform four
operations:

467



Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy

• Control running an application
• Encode and decode (often steganographically) covert mes-
sages into/out-of valid application content

• Inject encoded content into the application input interface
• Address content to enable the other side to receive it

We make use of this abstraction in Section 4 to decompose ap-
plication tunneling channels into modularized interoperable com-
ponents to decrease development time and multiply the impact of
novel research developments.

2.4 Domain Fronting and Refraction Routing
Domain fronting and refraction routing both function by "tunnel-
ing" a connection at or below the IP-layer. These are both valid
methods for obtaining the unblockable public addressability re-
quirements stated above. However, they also both rely on at least
tacit cooperation from the relevant infrastructure providers (host-
ing and internet service providers, respectively). Therefore, we seek
to improve the development of additional signaling channels.

3 RACEBOAT CHANNEL MANAGER
This section describes the design and implementation of the chan-
nel management layer of Raceboat, which handles using multiple
channels simultaneously.

3.1 Definitions and Concepts
First, we define a few higher-level concepts used to abstract signal-
ing channels and design Raceboat (but applicable to communica-
tions more broadly):

3.1.1 Channel. We use the term channel to refer to an abstract im-
plementation of communications such that two or more instances of
the channel can instantiate a link between them and communicate
(potentially only unidirectionally).

3.1.2 Creators, Loaders, Addresses, and Directionality. We define
two new terms, loader and creator, to capture the roles in estab-
lishing a link. These terms avoid the ambiguity of the overloaded
terms client and server, and establish semantics that information is
only ever needed to be transferred from one side (the creator side)
to the other (the loader side). This required information is called
a link-address and is generated by the creator and consumed by
the loader. This is analogous to a traditional socket connection: the
creator is the server-side that binds the socket, the link-address
is the <IP, port, protocol> tuple, and the loader is the client-side
which connects to the socket. The channel is publicly addressable if
this link-address can be known by the censor without harm; in this
traditional socket analogy, the channel is not publicly-addressed
because if the censor knew the link-address they could block access
via IP/port-blocking.

The second concept is the directionality of links relative to the
creator and loader. That is, is the link bidirectional, or unidirectional
from creator to loader or from loader to creator. These seemingly
trivial semantics actually have significant implications on how
channels can be used in practice when out-of-band communication
is limited and public vs. secret information is critical to viability.

Directionality of
New Link

"Out-of-band" message

Creator Loader

Link-Address
(shared secrets)

Creator-to-Loader

Loader-to-Creator

Bidirectional

Figure 4: The semantics of link creation: a creator called
to instantiate a new link creates new Link-Address that is
shared via some pre-existingmethod to the loader; the loader
uses just this Link-Address as a source of shared secrets for
completing the link. The directionality of the new link is
based on the directionality of the channel.

3.2 Bridge Request/Response Use Case
We examine how these semantics impact signaling channels in the
common use-case of bridge distribution: a client within the censor’s
sphere of control, with a copy of publicly available software and no
shared secret information, needs to successfully send a request to a
broker and get a response containing a bridge-address back. The
lack of shared secrets immediately implies several conditions:

The client cannot use a direct IP connection to the broker because
the censor would know this IP and block connections to it. Using
an indirect connection implies an application tunneling approach
because there must be (one or more) 3rd-party servers facilitating
the client-to-broker connection. The request and response need not
traverse the same channel. The broker-to-client connection can use
a shared secret, so long as the client creates it.

Current approaches take this scenario and a novel application
tunnel and develop a bespoke set of messages over that tunnel in
both directions to provide a publicly-addressable link. On occasion,
some systems [33] have explicitly designed asymmetric hybrid
connections that employ different uplink/downlink channels but
these are always rigidly built to support a specific pair of channels,
effectively just creating a doubly-complex channel.

In contrast, Raceboat abstracts over arbitrary signaling channels
implementing the creator/loader semantics above. We are able to
state exactly the channel primitives sufficient to handle the use-case
- which are not restricted to a publicly-addressable bidirectional
channel (that is sufficient, but not necessary). Instead, we require
a loader-to-creator publicly-addressed channel for the client-to-
broker request and either a publicly-addressed creator-to-loader or
just a loader-to-creator channel for the response. In the latter case,
we can piggyback on the client request to also pass a link-address for
the broker to respond on (semantically a “reply-to address”). Note
that this still collapses to a single publicly-addressed bidirectional
channel if that use of such a channel is desired, and Raceboat makes
no requirement that multiple channels be used.

468



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

This may initially seem like unnecessary additional theory, and
all that is really useful is a common interface for using one-of a
suite of signaling channels. However, there are often practical con-
siderations of usability and scalability that can make some channels
infeasible to use in a bidirectional manner.

3.3 Communication Modes
Raceboat supportsmore than just the single-request single-response
“protocol” above. There are actually four modes that drive use of
channels:

(1) Unidirectional Push
(2) Request-Response
(3) Socket
(4) Bootstrapping Socket

(1) Unidirectional Push is just a one-sided version of (2) Request-
Response, described in more detail above. This again may seem a
trivial use-case, but explicitly building support for it means Race-
boat avoids performing any unnecessary (and potentially more de-
tectable or resource-wasting) handshakes as e.g. a SOCKS-wrapped
implementation of a channel would. Similarly the request-response
mode explicitly avoids more than a single round-trip of messages.
The (3) Socket mode is provided for completeness in cases where
a continuous connection is desired. Finally, the (4) Bootstrapping
Socket is a specialized case in which Raceboat bootstraps a socket-
like connection with shared secrets from a publicly-addressed initial
channel, illustrated in Figure 5. This is equivalent to embedding
both the bridge request and subsequent bridge connection into a
single application-level step and could be used when larger amounts
of data needs to be conveyed in either direction.

3.4 Implementation
We implemented Raceboat with a simple CLI-based application
layer to perform any of its four communication modes (see above)
and take a configuration bundle of channel names and special
parameters (e.g. account credentials required for account-based
services, etc.) as either CLI-arguments or a manifest file. Raceboat
can also be directly included as a C++ library. Internally, Raceboat
implements a plugin-based architecture where each plugin provides
one or more channels (or components of decomposed channels,
see Section 4.2 below). These plugins are dynamically loaded at
runtime to support flexible deployment scenarios and minimize
difficulty updating.

Note, for the purposes of mobile use, plugins are not run as
separate processes but are all run within the Raceboat process (or a
parent process, if Raceboat itself is included as a library).

Plugins implement a straightforward asynchronous API covering
activation/deactivation of a channel, creating/loading/destroying
links and connections, sending/receiving packages, and callbacks
to update the status of the channel, links, or packages. This API is
slightly more complex than the Pluggable Transports API, but also
allows support for more nuanced use of the channels and better
handling of error conditions.

3.4.1 Cross-Language Bindings. While the Raceboat framework is
implemented in C++, we have built language bindings for Python,

ServerClient

Create Link

Public Channel A

Load Address

Public Channel A

Receiving
Link

Public
Address

Sending
Link

Receiving
Link

Sending
Link

Receiving
Link

Create Link

Channel B

Create Link

Channel C

Sending
Link

Out-of-Band Public Sharing

Secret
Address

Load Address

Channel B

Public
Address

Public
Address

Secret
Address

Secret
Address

Secret
Address

Secret
Address

Load Address

Channel CSecret
Address

Secretly
Addressed

Bidirectional
Connectivity

Figure 5: Bootstrapping-socket protocol that constructs a
secretly-addressed bidirectional connection from an initial
publicly-addressed unidirectional link. Illustrated channels
are all loader-to-creator but bidirectional and creator-to-
loader channels can also be used.

Java, Rust, and Go to seamlessly support running plugins in those
languages.

The cross-language implementation varies depending on the
language: Python and Go are handled via SWIG auto-generated
bindings [29]. Java and Rust bindings are both explicitly built as
bidirectional translation layers. This is more time consuming to
develop, but also provides greater transparency over SWIG’s auto-
generated translation layers.

3.4.2 Communication Modes. Raceboat provides several distinct
communication modes to support different use cases and imple-
ments these as separate protocol state machines for easier exten-
sibility. Each state machine manages the asynchronous use of the
channels involved in the connection. We will now walk through
the state machine for the complex bootstrapping-socket case (see
Fig 5): first it activates each channel involved in the protocol (up to
three in this case); then links are created or loaded as appropriate
for their role in the protocol (sending and/or receiving) and direc-
tionality (see Fig 4). For links that are created, their link-addresses
are extracted and concatenated with User App messages: this en-
ables bootstrapping a new link in-band of an existing one. Finally,
User App messages are batched into a minimum number of channel
sends based on a reported maximum-transmission-unit (MTU) for
the channel being used.

The protocol transparently multiplexes Raceboat control mes-
sages (namely, link-addresses of new links) with User Appmessages
to minimize channel usage. Since some links cannot exist until after
the connection starts (e.g. in-band bootstrapped links) the proto-
col state machines encompass the entire connection, not just an

469



Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy

Encode
EncodingTransport

Actions
User Model

Application

Raceboat / User App

DecodeEvents

Figure 6: High-level relation of components. Raceboat
sends/recvs messages through the encoding. The user model
emits actions. The transport executes actions using data from
the encoding and passes received data back to be decoded.

internal initialization logic phase on each node. For less complex
communication modes, the state machines are effectively subsets
of the bootstrapped-socket case, in which fewer channels and links
are used and fewer (or no) control messages are necessary.

4 DECOMPOSING APPLICATION TUNNELING
We observe that application tunneling channels have a common set
of functionalities required for their use. This orthogonality should
mean that an advancement in one functionality can be applied to
improve, or more often extend, existing channels by “swapping in”
the new version for the old. However, the current bespoke one-off
nature of channel implementations mean this development looks
like source-code level reuse at best, and often design-level reuse
that involves reimplementing all the shared functionality.

4.1 Components
There are likely many ways to modularize application tunneling
channels - our design divides channels into three components and
aims to enable swapability of components without impacting the
ability to express novel application tunneling techniques or do-
mains. Additionally, we sought to separate the concerns of the com-
ponent developers to allow experts in one area to contribute novel
components while using existing versions of other components.
We observe that application tunneling protocols broadly function
as: managing use of an application; encoding/decoding messages
into/out-of application content; interfacing with the application
to send and receive content. We will use a running example of an
application tunneling channel based on sending emails contain-
ing steganographic image attachments throughout the following
descriptions of our design.

4.1.1 User Models. The user model component controls when and
what application actions are executed. Conceptually this is targeted
at user-level behaviors - e.g. when an email is sent, how large it
is, whether it has an attachment or not. Many existing application
tunneling channels do not include any functionality of this sort.
However, as recent research shows [32], this can leave a significant
gap in security because it causes the cover application usage to be
shaped by the user (whether a human or a circumvention applica-
tion). Breaking this linkage provides behavioral independence [32]
and enables evaluating the security of a channel independent of its
eventual communications usage.

User models represent application usage as a timeline of actions.
These actions correspond to implementations provided by the trans-
port component and can contain parameters about the actions. E.g.
our email user model specifies a timeline of send-email actions,
the size of the body text, and whether there should be an attach-
ment or not. This is fairly simple, but more complex behaviors are
expressible in the user model framework: in particular, the set of
action types is only restricted by what the transport component
implements.

In some use cases, true behavioral independence is unnecessary
and introduces significant performance loss. E.g. an email channel
operating in a permissive network environment may only need to
avoid exceeding some sending limit rather than make its messages
adhere to a rich model of real user behavior. For these cases we
provide an optional “on-demand” API that informs the user model
of new data to send and allows it to provide a set of “supplemental”
actions to facilitate sending. Even in this case the user model may
still add nuance to its response, e.g. providing delayed sending
actions or sometimes responding with supplemental actions and
sometimes sticking to its original timeline.

In addition to actions, there are events that are produced by the
transport and consumed by the user model. This feedback path
enables reactive user models that could, e.g., update the action
timeline to include a new send action for a fraction of new emails
received (to mimic a user sending more replies when they receive
more emails). Again the space of events is only constrained by
the implementation choices of the user model and transport. This
means an arbitrarily complex user model can be expressed, such as
the very-reactive OUStralopithicus model [22].

Despite requiring the user model and transport agree on the
types of actions and events there is still value in separating them:
it enables independent development, distribution, and use of new
intercompatible versions: e.g. once a single email transport and user
model are developed, new user models can be built and deployed
with no interaction with the email transport code or developer
knowledge. Imposing a formal separation also encourages modular
code that is more easily built upon: e.g. adapting an approach taken
in one user model is easier when its code is not deeply intertwined
with other functionalities.

4.1.2 Transports. The transport component handles all interac-
tions with external entities; e.g. the email transport includes a
library which functions as a client for 3rd-party email servers and
handles actually sending and receiving emails. As described above,
the transport implements translating user model actions into in-
teractions with the cover application and detecting and sending
events back to the user model.

Transports can define their actions and events arbitrarily, but to
maximize utility we encourage transports of similar types to share
actions and events as much as possible. e.g. a Twitter transport and
a Mastodon transport will need independent implementations to
deal with different application APIs, but ideally they can provide
identical action and event types to enable user model interoper-
ability. We could have pushed the decomposed design further and
explicitly built multiple types of transports with different interfaces
to enforce this pattern. However, that could restrict the expression
of new transports.

470



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

The transport is also responsible for handling “addressing.” Con-
ceptually, this is how a message sent by one transport instance is able
to be (efficiently) received by a counterpart instance and it requires
implementing the semantics of link-addresses described above (Sec-
tion 3.1.2). E.g. the email transport straightforwardly implements
this by simply sending emails to specific email addresses. How-
ever, something like publicly posting to a series of pseudorandomly
rotating hashtags (and the receiver polling the same) can make
this logic more complex. Theoretically the addressing functionality
and the application interaction could be decomposed into separate
components. However, addressing is often deeply intertwined to
application-specific implementations, even among similar applica-
tions: e.g. Twitter supports searching for an intersection of multiple
hashtags while Mastodon only supports searching for single hash-
tags, so a hashtag-based addressing scheme would need be different
as well.

Execution of actions is how messages are ultimately sent and re-
ceived. However, since all data is being sent through an application
tunnel, the actual messages must be encoded into valid application
content before being transmitted. Thus, in addition to consuming ac-
tions from the user model, the transport also consumes content from
the encoding (see below). The transport provides a specification
about what content (if any) is suitable to include in the execution
of an action and the encoding provides content that satisfies this
specification. E.g. the email transport receiving a send-email action
for a message with an attachment would, in turn, request a body of
natural language text and an image from the encodings to support
execution of the action.

4.1.3 Encodings. The encoding component is the most straightfor-
ward: it encodes messages into application content according to
a specification or, in reverse, decodes messages from application
content. As with the user model and transport, the encoding and
transport can operate over any agreed set of content. However,
the intention is to support generic types of content used across
many applications: i.e. common image and video formats, natural
language text, and base64 strings. The transport can specify more
complex parameters for content, such as the size of an image, or the
length of a body of text. Within this context, arbitrarily complex
encodings can also be constructed, e.g. an image encoding that
takes a genre parameter for what type of image content to return.

In addition to encoding and decoding messages, the encoding is
also responsible for providing requested content even when there
is no message to send. E.g. if the transport is instructed to send
an email with an attachment but there is no message to send, the
encoding is still required to provide an image to attach, and said
image simply will not have any data encoded in it.

4.1.4 Expressibility of Existing Circumvention Channels. The bene-
fits of the decomposed approach are clear: re-usability and elimina-
tion of redundant development. However, a valid concern would
be whether adopting the decomposed framework restricts the po-
tential circumvention channels that can be built. To assess this, we
surveyed 8 recent circumvention channels and assessed if-and-how
they would be suitable to decompose. We also note that in many
cases an existing channel does not already contain representative
functionalities from all three component types but would be stronger
if it did.

Camoufler [27]. Camoufler communicates over digital instant
messenger platforms - transporting messages through the text and
attachment features of WhatsApp, Signal, Telegram, Slack, and
Skype. In a decomposition, each of these applications would be its
own transport but they could share a generic "instant messenger
user model." The camoufler system as-published does not perform
any encoding of data, but the authors explicitly note a need for
steganography if the application does not provide end-to-end en-
cryption (E2EE) and the censor can access or influence the service.
Hence, decomposing could immediately resolve this by enabling
text and multimedia encodings to be seamlessly added in for appli-
cable cases. Further, we believe a more realistic user model could
be necessary in cases where the censor can profile user behavior
and the user app is performing significant data transfer.

Collage [5]. Collage communicates over image-posting websites
- encoding messages into images and then posting those images
on particular image hosting services and microblogs. Collage also
uses the concept of tasks to specify both when and where an image
should be posted or searched for in order to both retain realistic
application usage and enable receiving to find sender content. The
image generation of the collage system naturally decomposed to an
image-based encoding. The task-based posting and polling system
is more complex, and would best decompose into both a user model
and transport component, or potentially multiple such components.
The usermodel timeline fits with the "when andwhere" task scheme,
and the transport would simply need to implement taking the en-
coded content and posting it to a particular service. We also note a
decomposition of Collage particularly shows the expressibility of
our decomposition: e.g. Collage stipulates a connection between
a task (post an image with "#flowers") and the content for it (the
image posted should contain flowers). This connection is provided
for by the user model and transport’s ability to specify arbitrary
parameters, like an image genre, to the encoding for each content
generation request.

CovertCast [23]. CovertCast communicates over video stream-
ing services - encoding messages into valid video content formats
and publishing them via livestream services like YouTube. This
system neatly decomposes into an encoding piece that generates
video data and a transport component that interfaces with YouTube.
The "encoding" used is focused on bandwidth not covertness and
could easily be detected if inspected, thus there would be a benefit
to having alternative video encodings to use in scenarios with a
stronger adversary. Inversely, the encoding could benefit from ad-
ditional transports for other livestreaming services where YouTube
may be blocked. Finally, a user model could improve covertness,
particularly to prevent detectable behavior patterns in streaming
clients.

FreeWave [18]. FreeWave communicates over audio streaming
services - encoding messages into audio data via frequency manip-
ulation and streaming it between endpoints via Skype. This system
decomposes into an encoding component to produce the audio data
and a transport component to control Skype and inject/extract au-
dio content. Decomposing to an abstracted and reusable encoding
component could make it easier to handle fixed and variable length
audio codecs (a noted challenge for the authors). Decomposing

471



Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy

would also have enabled easier adaptation to other audio streaming
applications (e.g. see Protozoa WebRTC transport below). Finally, a
user model would again improve covertness against censors that
can employ behavioral profiling.

Format Transforming Encryption (FTE) [9]. FTE was originally
employed in a protocol-mimicry channel. However, we identify
that the underlying mechanism of encoding messages into arbi-
trary regex-defined (or otherwise rankable) languages is a valid
steganographic technique for many types of content (particularly
machine-generated content). A number of specialized FTE instances
could be built as encodings for use with various transports (e.g. see
Camoufler transports above).

Protozoa and Stegozoa [3, 15]. Protozoa and Stegozoa both com-
municate over WebRTC video connections. Protozoa encodes mes-
sages in a high-bandwidth manner but is easily detected if the
WebRTC video content can be inspected; Stegozoa encodes mes-
sages using a steganographic encoding that reduces bandwidth
but provides security against content inspection. These would be
decomposed as a shared WebRTC-based transport component and
two separate encoding components. It is clear the authors took this
modular approach in developing both systems, so we argue the
advantage of Raceboat’s decomposition is in pushing for a more
flexible modularization that would enable these encoding compo-
nents to be effortlessly used for various other transports with video
application content (e.g. see CovertCast YouTube transport above).
Similarly, a WebRTC transport could be used with other encodings
that might provide situational advantages in bandwidth or secu-
rity. Finally, a user model would again improve covertness against
censors that can employ behavioral profiling.

Raven [32]. Raven communicates over email services - it en-
crypts messages using GPG and then sends them to the recipient.
The main innovation in Raven is introduction of a strict timeline
of email (send-time, size) tuples to produce realistic behavior that
is independent of (and thus unable to be violated by) the user app
demands to send and receive messages. This timeline is based on
sampling a sophisticated GAN model of real human email usage.
Raven would be decomposed into an email client transport, a GPG-
based encoder (or simply a GPG-formatter), and a user model that
generates the timeline of sending actions. Decomposing would be
beneficial by enabling raven to swap in more sophisticated encod-
ings (i.e. if the censor can inspect email content then GPG emails
will likely be blocked or a source of suspicion).

4.2 Implementation
As with "unified" channels described above (see Section 3.4) De-
composed channels are also implemented as plugins, where each
plugin provides one or more components (see Fig. 7). Components
are dynamically assembled into a composition at runtime. This en-
ables extremely lightweight mixing-and-matching of components,
e.g. the user or calling program can specify a new channel simply
by modifying a JSON file to switch which components are used.
Furthermore, the same component can be used simultaneously by
multiple compositions - we explicitly designed component instan-
tiation to enable resource-intensive pieces (like a generative AI
model) to only be loaded once in these cases.

Raceboat

Plugin

Composition

...

...

Channel

Channel

...

Component

Component

Plugin

...

Component

Component

Plugin

...

Channel

Channel

Manager

Composition

Manager

Figure 7: Relationship of Raceboat, plugins, channels, compo-
nents, compositions and managers. Each component can be
used in multiple compositions, including sharing singleton
resources.

4.2.1 Composition Manager and Execution Flow. Internally, each
composition is run by a manager which coordinates: fetching and
scheduling a timeline of actions from the user model; requesting
content from the encoding(s) for actions based on parameters the
transport provides; passing encoded content to the transport; and
finally pushing the scheduled actions to the transport for execution.

The call-paths for sending and receiving in a composition are
shown in Fig. 8. These paths abstract-out the role of the manager
in making each of these API calls, handling callbacks, and passing
data between components. The manager has two inputs that drive
its behavior: the timeline of actions provided by the user model
((1), getTimeline) and the queue of user app messages to-be-sent
((3), sendPackage). The action timeline dictates when the manager
makes calls to doAction in the transport. Actions are intended to
drive all transport behavior, so they include not only actions like
"post an image" (to send messages) but also "view the newest post
with this hashtag" (to receive messages) and "post an innocuous
comment" (to be a more convincing user).

In cases where content is required for an action (e.g. posting an
image), the enqueued user app messages (if any) are involved. First,
the manager transforms an action into a set of content parameters
via the transport ((2), getActionParams)). These parameters can in-
clude details specified by the user model (carried over from the
action) and by the transport, which most importantly is a MIME-
type field to state what type of content is required. An action can
also require multiple pieces of content of different types (e.g. an
image and text). A composition can contain multiple encodings (e.g.
a text encoding and an image encoding) and the manager selects
from among the encodings for a given piece of content based on
the MIME-type field of the parameters. Once selected, the manager
passes the parameters and enqueued user app message bytes to the
encoding ((4), encodeBytes). Fragmentation and batching of user app
messages is handled by the manager based on the covert data ca-
pacity for a piece of content reported by the encoding. If a message
is too large then it is fragmented over multiple pieces of content,
potentially spanning multiple actions. Conversely, messages that

472



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

ReceiveSend

Raceboat / User App

sendPackage
3

Raceboat / User App

Application

User Model

Encoding

Ti
m

el
in

e

Action
Action
Action

Action

Transport
ParamsgetActionParams

doAction

encodeBytes

enqueueContent ContentgetTimeline

onEvent

Content

1
2

4

5

6

7

Application

User Model

Encoding

Ti
m

el
in

e

Action
Action
Action

Action

Transport
getActionParams

doAction

encodeBytesenqueueContent

Content

getTimeline

onEvent

8

decodeBytes9

receiveEncPkg
10

decodeBytes

Figure 8: Decomposed channel component interactions to send and receive messages. Arrows between components are calls
and callbacks facilitated by the composition manager (not explicitly show). Both the sender and receiver executions will be
co-occurring on an execution single instance, but are split apart for clarity. Numbers correspond to API calls highlighted in
Section 4.2.1.

are smaller than the capacity are batched together into a single
piece of content. If there are no messages to encode, the encoding is
expected to produce a valid piece of content, and it will simply lack
any covert data. When the encoding finishes it passes the encoded
content back to the manager, which passes it to the transport for
use with a particular action ((5), enqueueContent).

When the timestamp of an action comes, the manager calls the
transport to execute it ((6), doAction). The action has already been
checked for content requirements, and if any content is required
then it has already been enqueued in the transport (see Section
4.2.2 below for complexities). Thus, the transport should execute
the action immediately, preserving a high-fidelity to the user model
timeline. The interaction between transport and "application" is
entirely internal to the transport: this could be requests against a
remote server API (e.g. using an email client library) or manipula-
tion of a locally running application (e.g. injection of data into a
browser). At any time, the transport can also issue an event reflect-
ing some application-level change (e.g. a service outage or a new
email received) that is passed to the manager and then on to the
user model ((7), onEvent); this enables arbitrarily complex, reactive,
user models for cases where that type of covertness is necessary.

Receiving data follows much the same path, except typically
there is no content required from the encoding. Rather, the transport
executes an action ((8), doAction) that involves receiving content.
These pieces of received content are passed to the manager which
again passes them to an encoding based onMIME-type for decoding
((9), decodeBytes). The content is decoded into user app message
data and a header (for handling fragmentation) and passed back to
the manager to be reassembled and pushed to the user app as one
or more new received messages ((10), receiveEncPkg).

4.2.2 Scheduling. A critical challenge to composition usage is han-
dling potentially conflicting timings between when user models
dictate actions should occur and how long encodings take to gen-
erate content for those actions. Failing to properly engineer these
steps could disrupt the security and/or performance of a composi-
tion in several ways.

If encodings are too slow then the transport could either be forced
to execute actions without necessary content or wait and violate the
user model timeline of action occurrences. A potential heuristic to
minimize this problem would be eagerly encoding content as soon
as new message data exists to encode. However, this heuristic has
two flaws: 1) new messages arrive for encoding within an existing
sequence of actions, we ideally want to send the message on the
soonest possible action, but we need a way to know if the soonest
action is too soon for the encoding to complete in time; 2) if we
eagerly encode as soon as the first new message arrives then we
miss the opportunity to batch subsequent messages into the same
content for the soonest action. For some compositions and use cases
this sort of batching can be critical for usable performance, and
we do not want to force the user app to understand these details
when it decides whether and how to concatenate or fragment its
messages.

Relatedly, we give the option for the user model to update its
timeline in case, for security reasons, the user model needs to adjust
its near-future actions based on events received from the transport.
When an update occurs, actions must potentially be removed, which
cascades into the need to re-encode messages originally encoded
for those actions into new content for new actions.

We overcome these challenges by using an estimatedmax-encoding-
time for each encoding component. The manager then uses this
as a basis for estimating how soon before an action will execute
that encodings must be called to generate content for the action.

473



Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy

Table 1: Components Implemented

User Model Transport Encoding
FileScript RedisClient NOOP
OnDemand EmailClient Base64

S3Bucket JEL Image

This way the transport is never delayed waiting for content, but
neither are messages that could have been batched instead put into
separate actions and bandwidth wasted.

4.2.3 Intercomponent Data Structures. There are naturally several
points at which components need to produce data to be consumed
by other components. The structure of these data are often obvious
when working through a single example, but quickly become varied
when the components involve change in their character. e.g. an
email transport can essentially take arbitrary content for attach-
ments, but an imageboard transport must take images (and possibly
images of specific size and type if server-side conversions are to be
avoided).

4.3 Component and Channel Implementations
In collaboration with other performer teams on the DARPA RACE
program we have developed an initial set of components (see Table
1) designed to act as a combination of real world circumvention
channel components and as exemplars for aiding independent devel-
opment. We believe some of these components have novel value on
their own, but leave this information to independent publications
for brevity.

We also have a suite of non-decomposed channels that have been
wrapped to support the Raceboat channel APIs. These include wrap-
pers around several higher-bandwidth direct channels (Obfs [35],
Snowflake [7], and Balboa [26]), as well as seven lower-bandwidth
indirect channels suitable for signaling use (using a variety of social
media or email services and varying image-based steganographic
methods).

5 EVALUATION
We consider the design and development of the Raceboat framework
to be our main contribution, not the performance or security of
any individual channel or composition that it can run. Therefore,
we focus our evaluation on demonstrating the flexible capabilities
described in the above design. We use a set of channels, some
constructed as compositions from components and some built as
monolithic channels, to demonstrate Raceboat’s capabilities, and
briefly describe them below for context and to demonstrate the
range of channels Raceboat can enable to interoperate.

Obfs. Weuse a version of Obfswrapped in a Raceboat-compatible
wrapper written in Go. It imports the standard Obfs Go module
which is a direct channel and so likely not usable for many signaling
use cases, but for higher-bandwidth communications.

Snowflake. Weuse a version of Snowflakewrapped in a Raceboat-
compatiblewrapperwritten inGo. It imports the standard Snowflake

module which, like Obfs, is direct and useful for non-signaling use
cases.

S3Bucket. This is a transport based on reading and writing to
publicly-permissioned AWS S3 objects. This is inspired by Cloud-
Transport, but uses permissions to enable public put/get without
list to enable secret addressing as well as public addressing. Net-
work traffic appears as generic HTTPS traffic to an S3 region, not
associated with the specific bucket. A null encoding is used for this
threat model, but arbitrary content encodings can be used since S3
will accept any type of object data.

Email+Base64. This channel is a composition of an email trans-
port and user-model with a simple base64 encoder. The composition
sends and receives by encoding data into the body of the email and
sending emails to particular recipients. It is essentially equivalent
to Raven or SWEET but written within the decomposed framework.

Email+JEL. This channel is a composition of the email trans-
port and user-model (above) combined with jpeg steganographic
encoder based on the JEL technique [6]. It encodes data into jpegs
that are sent as attachments instead of the body of emails.

Flickr+JEL. This channel uses the above JEL encoder but rather
than transporting them via email it uploads them to Flickr with
pseudorandomly chosen hashtags. Receivers then poll these hash-
tags to check for new covert message. Upload and polling rates are
controlled to avoid Flickr API limits.

Tumblr+JEL. This channel uses the JEL encoder and a similar
pseudorandom hashtag scheme but uploads and polls on the Tumblr
service rather than Flickr.

5.1 Bridge Distribution Evaluation
One of the primary use cases identified for Raceboat is facilitating
bridge distribution. Recent research on the Lox system [30] shows
the development of more elaborate bridge distribution protocols
may be necessary for preventing adversary exhaustion of bridges
via enumeration. Therefore we decided to demonstrate the flexi-
bility and performance of Raceboat by empirically evaluating the
latency for completing the equivalent of a Lox bridge fetch and
invitation acceptance protocol. This consists of a single 346B re-
quest and a 1.3KB response that bundles together a Lox invitation
redemption and bridge request from client-to-server and a Lox re-
sponse and bridge address from server-to-client. We evaluate this
sequence across a combination of channels and compositions used
as upstream and downstream links to demonstrate the ability to
run arbitrary combinations of channels. We mark channels with
an asterisk(*) that are likely inappropriate for this use case, usually
due to using direct IP connections that would be enumerated and
blocked by a censor, but include them to demonstrate compatibility
in the Raceboat framework.

All connections were run on a laptop with 6-core 2.6GHz CPU
and 32GB of RAM. Where channels required accounts with appli-
cation services (e.g. email channels requiring email addresses) we
created temporary accounts for testing.

474



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

Table 2: Latency of a Lox-based Bridge Request + Invitation Redemption (346B request + 1.3KB response) using different
combinations of upstream and downstream channels. * indicates direct channels likely unsuitable for signaling; N/A indicates
technical incompatibility of underlying channel software.

Downstream
Upstream obfs* snowflake* S3Bucket+NOOP Email+Base64 Email+JEL Flickr+JEL Tumblr+JEL

obfs* 1.47s 0.96s 2.54 11.28s 14.11s 89.4s 69.34s
snowflake* 0.75s 0.47s 2.52 11.34s 15.17s 66.25s 66.14

S3Bucket+NOOP 3.15 2.99 6.58 24.54 26.73 90.10 71.42
Email+Base64 11.93s 6.7s 14.51 16.54s 21.48s 89.51s 52.13
Email+JEL 9.81s 10.46s 18.56 19.3s 20.50s 89.51s 55.13
Flickr+JEL 62.59s 55.61s 65.13 47.91s 54.90s 90.58s N/A
Tumblr+JEL 32.91 27.59 32.88 47.24 49.73 N/A 80.94

5.2 Results
The results shown in Table 2 demonstrate that Raceboat is capable
of flexibly using a variety of very different channels to achieve
a core signaling use-case. Purely in terms of performance some
channels clearly make stronger cases for use than others. However,
the point of Raceboat is that different channels will be suitable
for different threat scenarios: snowflake and obfs are (expectedly)
the fastest but are also not actually usable in most signaling use
cases. Further, the very existence of multiple seamlessly-swappable
channels is a compelling strength because it forces a censor to split
attention and resources blocking many different channels before
benefits can be gained.

6 RELATEDWORKS
6.1 Pluggable Transports
Pluggable Transports(PT) [25] is the current de facto standard in-
terface for exposing circumvention channels to user apps. There
are multiple active versions of the PT specification, including the
original subprocess-oriented version and the newer V2.0 suited for
inclusion as a library. There is direct overlap in the effect of the PT
and Raceboat interfaces: both provide a simple and uniform way
to use a circumvention channel with socket-like semantics. How-
ever, PTs are designed to be implemented on the basis of individual
and independent channels - even if some PT libraries implement
multiple channels, a given connection can only use one at a time. For
example, the obfs4proxy [1] software provides both obf4s and meek
[14], but there is neither an interface nor internal logic to use both
for a given connection. Moreover, the single-channel orientation
of PT means there are no semantics around which to build a fully
expressive multichannel library like Raceboat: i.e. there is no ex-
isting formalism around a channel providing anything other than
bidirectional connectivity, and no uniform way to generate new
links on channels based on a desired set of properties. We address
the topic of compatibility with the PT interface in Section 7.2.

6.2 Turbo Tunnel
Raceboat incorporates some concepts already expressed by the
Turbo Tunnel [13] design, namely automatically applying fragmen-
tation and ordering to user app messages. However, Turbo Tunnel

presents itself as a design pattern to be applied to individual chan-
nels. This inherently assumes continuing the "one channel at a time"
paradigm in which the user app is expected to use a single chan-
nel for a given bidirectional communication task. Some of Turbo
Tunnel’s suggestions, like using sessions to seamlessly shift among
short-lived proxies, are reminiscent of Raceboat’s desired channel
agility; the difference is that Turbo Tunnel applies these goals at
the level of each channel independently, while Raceboat aims to
enhance communication by flexibly shifting between channels.

Implementing Turbo Tunnel’s approach inside a channel does
not impact Raceboat’s use of that channel, so we consider Turbo
Tunnel to be orthogonal to our work, operating at the channel layer.
We believe Turbo Tunnel’s suggestions mostly apply to the trans-
port component of our decomposed channel design. Furthermore
some of its approaches, like packetizing and providing ordering,
are actually automatically implemented by the Raceboat manager
and so do not need to be implemented by each individual transport.

6.3 Marionette
Marionette [10] is spiritually similar to Raceboat’s channel decom-
position. However, the two are fundamentally different: Marionette
explicitly rejects application tunneling in favor of a more sophisti-
cated version of protocol mimicry. The main shared features are an
emphasis on building a modular framework with developer use and
plugin re-use as major goals. Marionette does not engage with the
topic of flexibly shifting between channels or specifying multiple
simultaneously, rather trying to mimic on the fly. If the advanced
protocol mimicry was still wanted by a user, it could be wrapped
into a usable Raceboat channel.

7 DISCUSSION
7.1 Other Signaling Channel Use Cases
We have referred to bridge requests as the exemplary case for
signaling channel usage throughout this paper. However, we believe
there are a number of other immediate use cases for them.

Recent bridge distribution schemes [8, 30] introduce nontriv-
ial amounts of latency-tolerant "control traffic" between censored
clients and uncensored infrastructure. Reporting bridge blockages
or other censorship telemetry from the client is a similar case. In
these cases signaling channels are beneficial if there is either a

475



Proceedings on Privacy Enhancing Technologies 2024(1) Paul Vines, Samuel McKay, Jesse Jenter, and Suresh Krishnaswamy

significant chance the client knows no reachable bridges or if there
is a cost to using a bridge (increasing likelihood of discovery) that
is only justified for servicing actual user requests.

Signaling channels can also have roles outside of large-scale
circumvention infrastructures. For example, we have built-in a
bootstrapping mode in which a publicly addressed channel is used
for a single upstream message, which then bootstraps secretly ad-
dressed links in each direction (or a single bidirectional one). This
combines the conceptual elements of bridge distribution and bridge
use; very similar to Snowflake’s use of a domain-fronted broker
mediating connection to ephemeral proxies, but abstracted to any
suitable combination of channels Raceboat supports.

Finally, signaling channels are potentially suited for any other
latency-tolerant uses. Asynchronous messaging akin to social me-
dia can be accomplished, as prior systems have shown [20]. Higher
latencies also do not always imply low bandwidth: e.g. stegano-
graphic videos uploaded to 3rd-party streaming sites can involve
lengthy encoding and upload delays but provide megabytes of data
transfer at a time without using a direct connection to a bridge. Use
cases for such channels could include distributing static censored
content to users, pushing content from users, or even distributing
software updates for circumvention tools.

7.2 Pluggable Transport Compatibility
There are two sides to the Pluggable Transports interface: the user
app and the channel (or "transport" in PT parlance). Raceboat al-
ready demonstrates the ability to wrap the channel interface to
allow a PT-compatible channel to be used by Raceboat (see use of
Obfs4 and Snowflake).

The user app interface is different in that the PT interface speci-
fies a subset of Raceboat functionality. A PT connection is equiv-
alent to Raceboat in continuous connection mode with a single
channel for send and receive and static link addresses. Therefore,
Raceboat can be wrapped in a PT-compliant wrapper for use by
existing PT-based user apps. However, that eschews most of the
benefits of the Raceboat framework: the continuous connection
mode is a poor fit for short-lived signaling uses; the restriction to
bidirectional channels removes flexibility and security gains from
including unidirectional channels.

7.3 Security of Composed Channels
We have focused on Raceboat as an intermediary capability that
includes dynamically creating compositions from modular compo-
nents. We have detailed the interfaces of those components and
which areas of security each is responsible for, but have not ad-
dressed the actual security of a composition. Ultimately we consider
this out-of-scope of this work, aside from ensuring our framework
does not weaken the security provided by each component. E.g.,
Raceboat never generates its own actions for a transport to execute:
only the user model component can do so. Therefore, Raceboat
cannot violate behavioral independence unless the user model does
so. Similarly, Raceboat never provides content for transport actions,
only the encoding does.

We do not guarantee the security of any given component, and
therefore the security of any given composition. Rather, the varying
landscape of threats and frequent tradeoffs between security and

performance would make this overly restrictive. E.g. we include a
"NOOP" encoding component that simply returns the bytestream
given to it; this is useful in cases where a transport is assumed
secure from adversarial inspection but is a gross security flaw oth-
erwise. We recommend newly developed components are designed
and evaluated as they are now: with specific threat models and
evaluations. Insofar as the authors plan to maintain a library of
components and compositions, the relevant threat models for each
will be clearly and prominently documented to avoid misunder-
standings that could endanger users.

7.4 Value of User Models
Related to threat models, a reasonable question is whether the user
model component is necessary or, if not, brings any value along
with its added complexity. Current reports on censors do not show
the use of application behavior profiling to block circumvention
channels [36]. Despite this, we argue including user models is valu-
able for several reasons: first, behavioral profiling is not yet in use,
but a censor could begin using it in the near future (particularly on
a smaller or more focused scale than whole-of-nation). We argue it
is better to have proactively designed user models now than sud-
denly require a major reworking of components, almost certainly
breaking backwards compatibility, to incorporate them later.

Additionally, in the case of transports that interact with applica-
tion servers, e.g. email or social media transports, user model-style
rate limitationsmay be necessary.Most such services have denial-of-
service, spam, and/or bot detection protections; Raceboat transports
do not aim to act maliciously with respect to the application server,
but if interaction is driven based on the user app then the transport
could still fall afoul of these protections. In these cases, even if a
realistic user model is not necessary, a throttling user model may
be necessary to avoid automatic blocking by the server.

8 CONCLUSION
We have presented Raceboat, a framework for flexibly developing
and using censorship circumventing signaling channels. We have
provided a formalized definition and implementation for circum-
vention channel link establishment that enables a flexible mix-and-
match approach to upstream and downstream communications,
including the concepts of public vs. secret addresses and indirect vs
direct channels. We have designed an expressive modular decom-
position of application tunneling channels into orthogonal compo-
nents to enable faster development and greater research reuse. We
have implemented both of these innovations in a framework and
shown its capability to use both new and existing circumvention
channels, based on adaptation of Pluggable Transports compatibil-
ity, to conduct useful signaling channel tasks, e.g. supporting use
of a cutting edge bridge distribution approach.

ACKNOWLEDGMENTS
This material is based upon work supported by the AFRL-RI and
DARPA under Contract No. FA8750-19-C-0501. Any opinions, find-
ings and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views
of the AFRL-RI and/or DARPA. “A” (Approved for Public Release,
Distribution Unlimited).

476



Communication Breakdown Proceedings on Privacy Enhancing Technologies 2024(1)

REFERENCES
[1] Yawning Angel. 2023. obfs4: The obfourscator. https://gitlab.com/yawning/obfs4

Access on 5/30/2023.
[2] Dustin Bachrach, Christopher Nunu, Dan S. Wallach, and Matthew Wright. 2011.

#h00t: Censorship Resistant Microblogging. Technical Report. Rice University and
University of Texas at Arlington. https://arxiv.org/pdf/1109.6874v1.pdf

[3] Diogo Barradas and Nuno Santos. 2020. Towards a Scalable Censorship-Resistant
Overlay Network based on WebRTC Covert Channels. In Distributed Infrastruc-
ture for Common Good. ACM. https://www.gsd.inesc-id.pt/~nsantos/papers/
barradas_dicg20.pdf

[4] Chad Brubaker, Amir Houmansadr, and Vitaly Shmatikov. 2014. CloudTransport:
Using Cloud Storage for Censorship-Resistant Networking. In Privacy Enhanc-
ing Technologies Symposium. Springer. https://petsymposium.org/2014/papers/
paper_68.pdf

[5] Sam Burnett, Nick Feamster, and Santosh Vempala. 2010. Chipping Away at Cen-
sorship Firewalls with User-Generated Content. In USENIX Security Symposium.
USENIX. https://www.usenix.org/event/sec10/tech/full_papers/Burnett.pdf

[6] Chris Connolly. 2015. libjel – JPEG Embedding Library. https://github.com/SRI-
CSL/jel Access on 5/30/2023.

[7] Tor Documentation. 2023. Snowflake: pluggable transport that proxies traffic
through temporary proxies using webrtc. (2023). https://trac.torproject.org/
projects/tor/wiki/doc/Snowflake

[8] Frederick Douglas, Rorshach, Weiyang Pan, and Matthew Caesar. 2016. Salmon:
Robust Proxy Distribution for Censorship Circumvention. Privacy Enhancing
Technologies 2016, 4 (2016), 4–20. https://censorbib.nymity.ch/pdf/Douglas2016a.
pdf

[9] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimpton. 2013.
Protocol Misidentification Made Easy with Format-Transforming Encryption. In
Computer and Communications Security. ACM. https://eprint.iacr.org/2012/494.
pdf

[10] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. 2015. Marionette: A Pro-
grammable Network-Traffic Obfuscation System. In USENIX Security Symposium.
USENIX. https://www.usenix.org/system/files/conference/usenixsecurity15/
sec15-paper-dyer.pdf

[11] email-bridges 2023. Get Bridges for Tor. https://bridges.torproject.org/ Accessed
on 5/30/2023.

[12] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver,
and Vern Paxson. 2015. Examining How the Great Firewall Discovers Hid-
den Circumvention Servers. In Internet Measurement Conference. ACM. http:
//conferences2.sigcomm.org/imc/2015/papers/p445.pdf

[13] David Fifield. 2020. Turbo Tunnel, a goodway to design censorship circumvention
protocols. In Free and Open Communications on the Internet. USENIX. https:
//www.usenix.org/system/files/foci20-paper-fifield.pdf

[14] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. Privacy Enhancing
Technologies 2015, 2 (2015). https://www.icir.org/vern/papers/meek-PETS-2015.
pdf

[15] Gabriel Figueira, Diogo Barradas, and Nuno Santos. 2022. Stegozoa: Enhancing
WebRTC Covert Channels with Video Steganography for Internet Censorship
Circumvention. In Asia CCS. ACM. https://dl.acm.org/doi/pdf/10.1145/3488932.
3517419

[16] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin Vander-
Sloot, Rod Hynes, Adam Kruger, Michalis Kallitsis, David G. Robinson, Steve
Schultze, Nikita Borisov, J. Alex Halderman, and Eric Wustrow. 2017. An ISP-
Scale Deployment of TapDance. In Free and Open Communications on the Internet.
USENIX. https://www.usenix.org/system/files/conference/foci17/foci17-paper-
frolov_0.pdf

[17] Bridger Hahn, Rishab Nithyanand, Phillipa Gill, and Rob Johnson. 2016. Games
Without Frontiers: Investigating Video Games as a Covert Channel. In European
Symposium on Security & Privacy. IEEE. https://people.cs.umass.edu/~phillipa/
papers/castle.pdf

[18] Amir Houmansadr, Thomas Riedl, Nikita Borisov, and Andrew Singer. 2013. I
want my voice to be heard: IP over Voice-over-IP for unobservable censorship
circumvention. In Network and Distributed System Security. The Internet Society.
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf

[19] Amir Houmansadr, Edmund L. Wong, and Vitaly Shmatikov. 2014. No Direction
Home: The True Cost of Routing Around Decoys. In Network and Distributed
System Security. The Internet Society. http://dedis.cs.yale.edu/dissent/papers/
nodirection.pdf

[20] Shuai Li and Nicholas Hopper. 2016. Mailet: Instant Social Networking under
Censorship. Privacy Enhancing Technologies 2016, 2 (2016), 1–18. https://www-
users.cse.umn.edu/~hoppernj/mailet_popets.pdf

[21] Shuai Li, Mike Schliep, and Nick Hopper. 2014. Facet: Streaming over Videocon-
ferencing for Censorship Circumvention. InWorkshop on Privacy in the Electronic
Society. ACM. https://www-users.cs.umn.edu/~hopper/facet-wpes14.pdf

[22] Anna Harbluk Lorimer, Lindsey Tulloch, Cecylia Bocovich, and Ian Goldberg.
2021. OUStralopithecus: Overt User Simulation for Censorship Circumvention.

In Workshop on Privacy in the Electronic Society. ACM. https://cypherpunks.ca/
~iang/pubs/oustral-wpes21.pdf

[23] Richard McPherson, Amir Houmansadr, and Vitaly Shmatikov. 2016. Covert-
Cast: Using Live Streaming to Evade Internet Censorship. Privacy Enhancing
Technologies 2016, 3 (2016), 1–14. https://www.cs.cornell.edu/~shmat/covertcast/
covertcast.pdf

[24] Mohsen Minaei, Pedro Moreno-Sanchez, and Aniket Kate. 2020. MoneyMorph:
Censorship Resistant Rendezvous using Permissionless Cryptocurrencies. Privacy
Enhancing Technologies 2020, 3 (2020), 404–424. https://petsymposium.org/2020/
files/papers/issue3/popets-2020-0058.pdf

[25] Pluggable Transports 2023. What Pluggable Transports do. https://www.
pluggabletransports.info/how-transports/ Accessed on 5/30/2023.

[26] Marc B. Rosen, James Parker, and Alex J. Malozemoff. 2021. Balboa: Bobbing and
Weaving around Network Censorship. In USENIX Security Symposium. USENIX.
https://www.usenix.org/system/files/sec21-rosen.pdf

[27] Piyush Kumar Sharma, Devashish Gosain, and Sambuddho Chakravarty. 2021.
Camoufler: Accessing The Censored Web By Utilizing Instant Messaging Chan-
nels. In Asia CCS. ACM. https://censorbib.nymity.ch/pdf/Sharma2021a.pdf

[28] Piyush Kumar Sharma, Rishi Sharma, Kartikey Singh, Mukulika Maity, and
Sambuddho Chakravarty. 2023. Dolphin: A Cellular Voice Based Internet
Shutdown Resistance System. Privacy Enhancing Technologies 2023, 1 (2023).
https://petsymposium.org/popets/2023/popets-2023-0034.pdf

[29] swig 2023. Welcome to SWIG. https://swig.org/ Accessed on 5/30/2023.
[30] Lindsey Tulloch and Ian Goldberg. 2023. Lox: Protecting the Social Graph in

Bridge Distribution. Privacy Enhancing Technologies 2023, 1 (2023). https:
//petsymposium.org/popets/2023/popets-2023-0029.pdf

[31] Paul Vines and Tadayoshi Kohno. 2015. Rook: Using Video Games as a Low-
Bandwidth Censorship Resistant Communication Platform. In Workshop on Pri-
vacy in the Electronic Society. ACM. https://censorbib.nymity.ch/pdf/Vines2015a.
pdf

[32] Ryan Wails, Andrew Stange, Eliana Troper, Aylin Caliskan, Roger Dingledine,
Rob Jansen, and Micah Sherr. 2022. Learning to Behave: Improving Covert
Channel Security with Behavior-Based Designs. Proceedings on Privacy Enhancing
Technologies 3 (2022), 179–199.

[33] Qiyan Wang, Xun Gong, Giang T. K. Nguyen, Amir Houmansadr, and Nikita
Borisov. 2012. CensorSpoofer: Asymmetric Communication using IP Spoofing for
Censorship-Resistant Web Browsing. In Computer and Communications Security.
ACM. https://censorbib.nymity.ch/pdf/Wang2012a.pdf

[34] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas J. Hopper. 2013. rBridge:
User Reputation based Tor Bridge Distribution with Privacy Preservation. In
Network and Distributed System Security. The Internet Society. https://www-
users.cs.umn.edu/~hopper/rbridge_ndss13.pdf

[35] PhilippWinter, Tobias Pulls, and Juergen Fuss. 2013. ScrambleSuit: A Polymorphic
Network Protocol to Circumvent Censorship. In Workshop on Privacy in the
Electronic Society. ACM. https://censorbib.nymity.ch/pdf/Winter2013b.pdf

[36] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China Detects and Blocks Fully Encrypted Traffic.
In USENIX Security Symposium. USENIX. https://www.usenix.org/system/files/
sec23fall-prepub-234-wu-mingshi.pdf

[37] Wenxuan Zhou, Amir Houmansadr, Matthew Caesar, and Nikita Borisov. 2013.
SWEET: Serving the Web by Exploiting Email Tunnels. In Hot Topics in Privacy
Enhancing Technologies. Springer. https://petsymposium.org/2013/papers/zhou-
censorship.pdf

477

https://gitlab.com/yawning/obfs4
https://arxiv.org/pdf/1109.6874v1.pdf
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_dicg20.pdf
https://www.gsd.inesc-id.pt/~nsantos/papers/barradas_dicg20.pdf
https://petsymposium.org/2014/papers/paper_68.pdf
https://petsymposium.org/2014/papers/paper_68.pdf
https://www.usenix.org/event/sec10/tech/full_papers/Burnett.pdf
https://github.com/SRI-CSL/jel
https://github.com/SRI-CSL/jel
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://trac.torproject.org/projects/tor/wiki/doc/Snowflake
https://censorbib.nymity.ch/pdf/Douglas2016a.pdf
https://censorbib.nymity.ch/pdf/Douglas2016a.pdf
https://eprint.iacr.org/2012/494.pdf
https://eprint.iacr.org/2012/494.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-dyer.pdf
https://www.usenix.org/system/files/conference/usenixsecurity15/sec15-paper-dyer.pdf
https://bridges.torproject.org/
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
http://conferences2.sigcomm.org/imc/2015/papers/p445.pdf
https://www.usenix.org/system/files/foci20-paper-fifield.pdf
https://www.usenix.org/system/files/foci20-paper-fifield.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://www.icir.org/vern/papers/meek-PETS-2015.pdf
https://dl.acm.org/doi/pdf/10.1145/3488932.3517419
https://dl.acm.org/doi/pdf/10.1145/3488932.3517419
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov_0.pdf
https://www.usenix.org/system/files/conference/foci17/foci17-paper-frolov_0.pdf
https://people.cs.umass.edu/~phillipa/papers/castle.pdf
https://people.cs.umass.edu/~phillipa/papers/castle.pdf
https://people.cs.umass.edu/~amir/papers/FreeWave.pdf
http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
http://dedis.cs.yale.edu/dissent/papers/nodirection.pdf
https://www-users.cse.umn.edu/~hoppernj/mailet_popets.pdf
https://www-users.cse.umn.edu/~hoppernj/mailet_popets.pdf
https://www-users.cs.umn.edu/~hopper/facet-wpes14.pdf
https://cypherpunks.ca/~iang/pubs/oustral-wpes21.pdf
https://cypherpunks.ca/~iang/pubs/oustral-wpes21.pdf
https://www.cs.cornell.edu/~shmat/covertcast/covertcast.pdf
https://www.cs.cornell.edu/~shmat/covertcast/covertcast.pdf
https://petsymposium.org/2020/files/papers/issue3/popets-2020-0058.pdf
https://petsymposium.org/2020/files/papers/issue3/popets-2020-0058.pdf
https://www.pluggabletransports.info/how-transports/
https://www.pluggabletransports.info/how-transports/
https://www.usenix.org/system/files/sec21-rosen.pdf
https://censorbib.nymity.ch/pdf/Sharma2021a.pdf
https://petsymposium.org/popets/2023/popets-2023-0034.pdf
https://swig.org/
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://petsymposium.org/popets/2023/popets-2023-0029.pdf
https://censorbib.nymity.ch/pdf/Vines2015a.pdf
https://censorbib.nymity.ch/pdf/Vines2015a.pdf
https://censorbib.nymity.ch/pdf/Wang2012a.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://www-users.cs.umn.edu/~hopper/rbridge_ndss13.pdf
https://censorbib.nymity.ch/pdf/Winter2013b.pdf
https://www.usenix.org/system/files/sec23fall-prepub-234-wu-mingshi.pdf
https://www.usenix.org/system/files/sec23fall-prepub-234-wu-mingshi.pdf
https://petsymposium.org/2013/papers/zhou-censorship.pdf
https://petsymposium.org/2013/papers/zhou-censorship.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Bridge Distribution and Signaling
	2.2 Signaling Channels
	2.3 Application Tunneling
	2.4 Domain Fronting and Refraction Routing

	3 Raceboat Channel Manager
	3.1 Definitions and Concepts
	3.2 Bridge Request/Response Use Case
	3.3 Communication Modes
	3.4 Implementation

	4 Decomposing Application Tunneling
	4.1 Components
	4.2 Implementation
	4.3 Component and Channel Implementations

	5 Evaluation
	5.1 Bridge Distribution Evaluation
	5.2 Results

	6 Related Works
	6.1 Pluggable Transports
	6.2 Turbo Tunnel
	6.3 Marionette

	7 Discussion
	7.1 Other Signaling Channel Use Cases
	7.2 Pluggable Transport Compatibility
	7.3 Security of Composed Channels
	7.4 Value of User Models

	8 Conclusion
	Acknowledgments
	References

