
On Precisely Detecting Censorship Circumvention in
Real-World Networks

Ryan Wails∗†, George Arnold Sullivan‡, Micah Sherr∗, and Rob Jansen†
∗Georgetown University

†U.S. Naval Research Laboratory
‡University of California, San Diego

Abstract—The understanding of realistic censorship threats
enables the development of more resilient censorship circumven-
tion systems, which are vitally important for advancing human
rights and fundamental freedoms. We argue that current state-
of-the-art methods for detecting circumventing flows in Tor are
unrealistic: they are overwhelmed with false positives (> 94%),
even when considering conservatively high base rates (10−3).
In this paper, we present a new methodology for detecting
censorship circumvention in which a deep-learning flow-based
classifier is combined with a host-based detection strategy that
incorporates information from multiple flows over time. Using over
60,000,000 real-world network flows to over 600,000 destinations,
we demonstrate how our detection methods become more precise
as they temporally accumulate information, allowing us to detect
circumvention servers with perfect recall and no false positives.
Our evaluation considers a range of circumventing flow base
rates spanning six orders of magnitude and real-world protocol
distributions. Our findings suggest that future circumvention
system designs need to more carefully consider host-based
detection strategies, and we offer suggestions for designs that are
more resistant to these attacks.

I. INTRODUCTION

With information access controls in place in over 60 coun-
tries [54], Internet censorship continues to be used to restrict
human rights and fundamental freedoms of individuals world-
wide. Recent protests in China against strict COVID-19 lock-
down policies, in Iran against the death of a woman who was
arrested for not wearing a hijab, and in Russia against its war
with Ukraine have all been met with increased censorship in
order to restrict subjects’ access to digital services and disrupt
online communication [2, 21, 74]. At the same time, the rising
trend of digital authoritarianism has compelled over 60 nation-
states to commit to a Declaration for the Future of the Internet
that promotes “a global Internet that advances the free flow of
information” and clearly communicates deep support for the
study of censorship and strategies for circumventing it [76]. We
seek to advance the principles of a free and open Internet and
better understand how to design more effective and resilient
censorship-resistant communication systems by studying how
a sophisticated censor might detect and block the use of such
systems in real-world networks.

We consider a censor whose primary objective is to
block unwanted network flows created by deployed censorship
circumvention software. To facilitate blocking, the censor first
uses a classification technique to label network flows as either
benign or circumventing. A major problem for the censor in
deploying a classifier is that the prevalence of benign flows
in their network is expected to be much greater than the
prevalence of circumventing flows [44, 75]. The extremely low
base rate of circumventing flows implies that the censor may be
overwhelmed with classification errors (false positives) even if
the classifier has what may appear to be acceptable performance
(for example, 99.9% accuracy). Thus, it is commonly assumed
that the censor is constrained to classifiers with very high
precision (which implies very low false positive rates) so that
they can effectively limit the collateral damage caused by
erroneously blocking benign flows [44, 58, 75].

Inspired by the base rate challenge, we examine the research
question: how can a censor use machine learning to detect
censorship circumvention in real-world networks with high
precision? Previous work inadequately addresses this question
due to a limited evaluation of classifier performance with respect
to base rates and network scale. We demonstrate throughout
§IV that a recent, state-of-the-art method for classifying Tor
circumventing flows [79] fails when scaling to realistic base
rates: precision decreases from 97% to 3% when the base rate of
circumventing flows decreases from an unrealistic 50% to a still
conservative 0.1%. Moreover, a common goal of circumvention
protocols is to hide among the “long tail” of traffic [84, 86,
88], but the state-of-the-art methods only coarsely analyze false
blocking rates in the tail.

In this paper, we present a new approach for detecting
censorship circumvention in real-world networks. Our key
insight is that circumvention protocols typically include a client
that communicates with a limited set of proxies or other long-
lived servers (for example, Tor bridges); as the protocols are
repeatedly used over time, circumventing flows will tend to
concentrate around these long-lived proxy server destinations.
From this insight, we examine two primary novel advances
over previous work on detecting censorship circumvention
protocols. First, we transform the circumventing flow detection
problem into many circumventing host detection problems,
each of which is much smaller in scale and thus considerably
more manageable. Second, our detection methods incorporate
information from many flows over time for each destination host;
our classifiers become more precise and we gain confidence in
them as we accumulate information over time.

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.23394
www.ndss-symposium.org



Our host-based detection methods accumulate temporal
information from flow-based classifiers. We consider the use of
deep learning methods to classify each host’s flows, including
convolutional neural networks (CNNs) and a stacked denoising
auto-encoder (SDAE), because these were found to work
particularly well at fingerprinting encrypted website traffic in
Tor [1, 14, 57, 66, 68]. We find that the deep-learning classifiers
improve flow-based classification by orders of magnitude
relative to the state-of-the-art techniques [79]. Furthermore, we
find that deep-learning methods (which do not require manual
feature engineering) generalize better than classical techniques
(which are tuned to a specific circumvention protocol), but
do not scale well enough to be applied in isolation without
host-based augmentation.

Our circumventing host detection methods are designed to
predict whether or not a host is involved in a circumvention
protocol after a configurable confidence threshold is reached.
Our primary method for computing confidence is based on
standard statistical analyses, and the classification with rejection
strategy [15] is used in order to reduce false classifications. By
augmenting the deep-learning classifiers with our host-based
detection methods, we find that a censor can significantly im-
prove classifier performance—after observing at most 38 flows
for each host, false positive classifications are eliminated, but
circumventing hosts are still caught with perfect recall.

Our host-based detection methods do require that we store
a small amount of additional state, which we argue is minimal
and can be easily satisfied using modern hardware. Our analysis
in §VI shows that our methods require at most 14 bits of storage
per destination (address, port) pair, which means that tracking
over 4 × 109 destination services requires no more than 50 GiB
of storage.

We argue that better understanding how to defend against a
more sophisticated censor that uses machine learning to detect
circumventing flows will help circumvention system designers
develop more resilient circumvention systems. Indeed, one
of the primary takeaways of our work is that circumvention
systems that use long-term hosts as ingress points should not
behave consistently or else they will be easily detected by
host-based methods. Circumvention system designers should
consider employing adversarial examples, using ephemeral
obfuscation servers, and developing new programmable or
polymorphic obfuscation protocols to improve resilience to
host-based censorship methods.

We summarize our main contributions as follows:

· We are the first to evaluate deep-learning and host-based
censorship circumvention detection methods in real-world
networks; our study uses over 60,000,000 flows to over
600,000 destinations observed from a university campus
network.

· We present a new methodology for evaluating classifier scal-
ability that for the first time considers classifier performance
across a range of circumventing flow base rates spanning six
orders of magnitude.

· We present the first evaluation of the extent to which Tor-
based circumventing flows can be discovered with deep
learning algorithms tuned for encrypted traffic analysis.

· We present a novel application of host-based analysis tech-

niques to the problem of precisely detecting censorship
circumvention in real-world networks.

· We present insights for future work, including several pitfalls
that future researchers should carefully consider as they
evaluate their systems, and strategies for defending against
host-based censorship.

II. BACKGROUND

Internet censorship is the restriction of access to public
information or services on the Internet. Nation-states and other
organizations use Internet censorship to control the flow of
sensitive, offensive, or otherwise damaging information into and
out of the networks they operate [54, 64]. Generally, a censor
conducts Internet censorship using an apparatus consisting of
two primary functionalities [44]: (1) fingerprinting classifies
network traffic flows into allowed and prohibited classes (using
traffic analysis techniques); and (2) direct censorship actively
blocks the prohibited flows (for instance, by instrumenting
firewall rules or forging TCP RST packets). Our work focuses
on fingerprinting.

Researchers have responded to censorship by developing
censorship resistant systems (CRSes) that employ techniques
to evade fingerprinting. The goal(s) in these systems is to make
it difficult to detect the prohibited communication and/or to
increase the collateral damage (false positives) that would be
incurred when performing blocking [44]. The approaches used
by previously proposed CRSes, which we survey in §VIII,
include protocol mimicry, protocol tunneling, and protocol
randomization. Though our methods apply broadly, our work
focuses on the most popular CRS framework, Tor [23].

Tor is an anonymous communication network that can be
used to more safely browse the Internet and resist censorship.
Tor routes Internet communication through a series of three
volunteer proxy servers (the entry, middle, and exit relays)
such that the intended destination cannot be observed at any
point between the client and the exit. Because the destination
is hidden, censors are unable to effectively control access to
Internet content fetched through Tor. Therefore, censors have
focused on blocking access to the Tor network by blocking
access to its proxy servers.

Real-world censors have used IP filtering, active prob-
ing [85], and deep packet inspection (DPI) to fingerprint and
block Tor [75]. Since Tor (like most CRSes) relies on proxy
servers outside of the censor’s control, censors may identify the
IP (or IP and port) of the proxy servers and then block any flows
on its network with matching destination addresses. Typically,
the proxy server IP addresses can be discovered by running
instances of the CRS software and inspecting the destination of
the connections it creates. Additionally, the censor may actively
probe suspicious hosts by sending specially crafted packets
to them in an attempt to elicit a non-standard or identifying
response [24, 27, 32, 85]. Finally, censors use DPI to match
flows based on particular features of the network traffic. For
example, a particular byte sequence in the first few packets in
a flow has been previously used to identify the Tor protocol’s
unique TLS configuration [85].

Resisting Censorship with Tor: To combat censorship, Tor
has deployed: (1) bridge relays whose address information is

2



not publicly available and to which clients connect in place of
entry relays, and (2) a framework called pluggable transports
that enables the development of unique methods to obfuscate
the traffic between the client and bridge (that is, across the
censor’s observation point). This paper focuses on the two most
popular pluggable transports that are currently built into Tor
browser and available for users: obfs4 [88] and Snowflake [70].

The obfsproxy family of protocols (which includes obfs4)
was designed to evade application-layer fingerprints by pro-
ducing a data stream that is indistinguishable from random
bytes and uses an authenticated Diffie-Hellman key exchange to
protect against man-in-the-middle attacks [72, 73, 88]. Because
obfs4 produces a data stream that is immediately randomized
(unlike most encrypted protocols, such as TLS, which have
structured handshakes), previous work has found that the
entropy of the initial messages can be used to distinguish it
from normal traffic [79]. However, we show that such methods
yield poor precision outside of laboratory conditions (see §IV).

Snowflake is a unique pluggable transport that enables
anyone with a modern web browser to serve as a proxy between
the client and the Tor bridge [70]. Snowflake is sometimes
called a flash-based proxy technique since its proxies (which
are volunteers’ web browsers) are not fixed and proxies may
be ephemeral. Snowflake clients first find available Snowflake
proxies by contacting a broker over a domain fronted [30]
connection, and then use public STUN servers to enable
connections with proxies through NAT devices. Snowflake
clients and proxies then tunnel traffic through direct WebRTC
connections.

Adversary Model and Scope: In this paper, we examine the
detectability of the widely used obfs4 and Snowflake pluggable
transports. We run instances of the pluggable transports in a
large university network while collecting and analyzing network
traffic from the perspective of a network censor. In addition
to applying state-of-the-art detection techniques [79], we also
consider methods that are reasonably available to the censor
but not yet considered by previous work: (1) the use of deep
learning to mitigate the reliance on manual, hand-engineered
features, and (2) host-based analysis to improve classifier
performance by combining information observed from a series
of flows over time.

We assume that the censor is willing to be stateful, allowing
it to store information about a set of flows and a set of hosts
over time. As we show in §VI, censors need only to store
a minimal amount of such state in order to perform precise
host-based classification.

We consider an on-path censor, by which a passive tap
allows examination but not removal of packets [75]. IP
addresses and ports are ignored throughout our analyses as a
feature of detection.

We use traditional metrics for understanding classifier per-
formance (e.g., true/false positives/negatives, precision, recall,
etc.). Importantly, the censor’s goal of minimizing collateral
damage corresponds to minimizing false positives.

III. NETWORK TRAFFIC DATASET

To assess the ability of the censor to detect obfuscated
protocol traffic from among ordinary network traffic, a source

of realistic, benign network traffic is required. Unfortunately,
network traffic datasets collected from real users are not
publicly available due to the privacy-sensitive nature of Internet
communications. Hence, we collected a private dataset of
network flow statistics using a university-hosted1 network
observation point which receives a copy of each network packet
traversing the university’s WiFi network.

This section provides statistics describing the collected data
and details for how the data was collected. Note that in §IX we
outline the safety measures taken when handling this dataset
and further discuss the ethics of this collection.

A. Data Collection

The capture machine we used to collect network data was
provisioned with two 10 Gbps network interface cards (NICs)
receiving copies of packets traversing the campus WiFi network.
The NICs were configured to sort the packets into thirty-six
separate receiving-side scaling (RSS) queues according to each
packet’s five-tuple. An instance of packet capture software
running PF_RING with zero-copy support was attached to
each RSS queue and transferred the packets, in pcap format,
to instances of a custom packet processing program we wrote
in roughly 3,500 lines of C++ code. Only IPv4 TCP and UDP
packets were captured during our measurements.

The custom packet processing program sorts the incoming
stream of packets into flows according to each packet’s five
tuple. Up to 5,000 packets are collected for each flow. Once one
of three conditions is met, the flow is considered to be ready
to be written to disk: (1) the flow contains the limit of 5,000
packets, (2) the flow was transmitted via TCP and contained a
valid SYN/SYN+ACK/ACK packet handshake and FIN packet
shutdown, or (3) 60 seconds passed since the first packet of the
flow was transmitted. We do not directly write packet data to
disk. Instead, when a flow is ready to be written, we compute
a number of statistics describing the flow that are recorded.
First, we record general information about the flow, such as
the time that the first packet was encountered or the flow’s
five tuple. Note that IPv4 addresses are replaced with hash
values derived from a HMAC function using a key that was
discarded at the end of the capture. Second, we record summary
statistics describing the flow’s entropy, timing, and packet size
characteristics (these features are further enumerated in §IV-C).
And third, we record each packet’s payload size.

In addition to collecting background network traffic gen-
erated by hosts on the university WiFi network, we also
produced obfuscated protocol flows that were collected by
our infrastructure. We operated 8 crawler machines connected
to the WiFi network that accessed popular webpages from the
Alexa list [10]. For each request, a crawler initiated a new
instance of Tor Browser (via Selenium) and randomly selected
a site from the Alexa list according to a power law distribution
biased in favor of the most popular websites. The crawler then
fetched the chosen site via the Tor Browser.

Each crawler was configured to use either obfs4, obfs⋆ (our
tweak to obfs4 which we describe in §IV), or Snowflake. The
Snowflake crawler used the default configurations as provided in
the Tor Browser. We operated our own obfs4 and obfs⋆ bridges

1The name of the university is intentionally omitted for privacy.

3



105 106 107
No. Flows

Other49152700088
808053
389800999380
443

TC
PD

est
ina

tio
nP

ort

(a) Number of TCP flows per port when
grouped by destination port.

104 105 106
No. Flows

Other88996881800080
12319283193028801347853

UD
PD

est
ina

tio
nP

ort

(b) Number of UDP flows per port when
grouped by destination port.

103

106

TC
PF

low
s

0 2000 4000 6000 8000 10000
Destination Port

103

106

UD
PF

low
s

(c) No. of flows per port grouped by destination
port for the first 10k destination ports.

Figure 1: Distribution of the captured background flows’ destination ports. Results are presented in log scale.

to allow fairer comparisons between the classification accuracy
of obfs4 and obfs⋆, because obfs⋆ is not a deployed obfuscation
protocol. We operated eight obfs4 and seven obfs⋆ bridges,
which we hosted on Google Cloud regions in North America,
South America, Europe, and Asia. Importantly, unlike prior
work [79], the crawlers operated inside of the WiFi network, and
their traffic was collected using the same infrastructure as the
background traffic produced by the other hosts in the university.
Operating obfuscation clients within the network rather than
overlaying their traffic on top of a separate background traffic
source reduces the risk of introducing subtle artifacts (for
example, differences in network effects such as latency or packet
sizes) that could lead to artificial distinguishing characteristics
in the traffic.

B. Collection Statistics

The data collection ran between March and April 2022
for two weeks. In total, we collected 54,355,226 background
flows sent to approximately 600,000 unique (IPv4 address,
destination port) pairs. In addition, we collected 83,002 obfs4
flows; 207,975 obfs⋆ flows; and 5,894,149 Snowflake flows.

Fig. 1a and Fig. 1b show the frequency of the ten most
popular TCP and UDP flow ports, respectively, when the
background flows are grouped by destination port; the remaining
ports are bucketed into the bar labeled “other”. Unsurprisingly,
we find that HTTPS flows (TCP port 443) constitute the vast
majority of TCP flows and DNS flows (UDP port 53) constitute
the vast majority of UDP flows. HTTP (TCP port 80) and STUN
(UDP port 3478) flows occur often, but with roughly 10× less
frequency than HTTPS or DNS flows.

The “other” bar in Fig. 1a and Fig. 1b show the frequency of
flows not sent to one of the top ten most popular TCP or UDP
ports. We observe a significant number of flows on ports outside
of the top ten, indicating that the distributions are skewed and
contain a long tail. This long tail of destination ports is depicted
in Fig. 1c, which shows the number of flows collected for the
first 10,000 destination ports that are not among the top ten
most popular. (For visual clarity, the y-axis starts at 101, but
many destination ports had fewer than ten flows.) Many of
these tail ports have moderate popularity, suggesting that our
capture contains a diverse mix of traffic.

Fig. 2 shows the number of TCP flows captured per hour
over the 2 week measurement period. There is a clear diurnal

03
-25

03
-26

03
-27

03
-28

03
-29

03
-30

03
-31

04
-01

04
-02

04
-03

04
-04

04
-05

04
-06

04
-07

04
-08

04
-09

04
-10

04
-11

0
20,000
40,000
60,000
80,000

Time
Fl

ow
sp

er
ho

ur
Figure 2: Number of TCP flows captured per hour over the
measurement period.

pattern demonstrated in the volume of captured data over time.
The pattern is consistent with typical, daily computer network
use [63].

IV. LIMITATIONS OF THE STATE OF THE ART

Using the data described in §III, we review state-of-the-art
obfuscated-protocol detection methods and assess the degree
of realism they achieve.

A. Preliminaries

As suggested by prior work [44, 79], we view the prob-
lem of obfuscated protocol detection as a supervised binary
classification machine learning task. In the supervised setting,
it is assumed that the censor has access to a set of data
containing network flows with known ground-truth labels
and uses this data to train a machine learning model. In
practice, the censor can obtain labeled flows by privately
running protocol hosts or perhaps by monitoring a network
with known ground-truth behavior (for instance, a private
network composed of administratively-controlled machines). In
the binary classification setting, flow labels take on one of two
values: benign/negative (N) or circumventing/positive (P).

Given this trained model, a censor can predict labels for
new flows, outside of the training set, for which ground-truth
labels are unknown. This scenario is simulated by evaluating
the classifier over a test set of flows, disjoint from the training
set, with known ground-truth labels. For each predicted label
over the test flows, there are four possible outcomes:

True
negative:

If the predicted label was negative and the flow was
generated by a benign protocol.

4



False
negative:

If the predicted label was negative and the flow was
generated by a circumvention protocol.

True
positive:

If the predicted label was positive and the flow was
generated by a circumvention protocol.

False
positive:

If the predicted label was positive and the flow was
generated by a benign protocol.

We follow the standard convention of using TN, FN, TP, and
FP to refer to the total number of each outcome, respectively.

A classifier’s performance may be quantified according
to a number of values defined over these outcomes—in this
work, we focus on four commonly-used metrics: true positive
rate (recall), false positive rate, precision, and F1-score. These
metrics are defined as follows:

True positive rate (Recall or TPR): Defined as TP/(TP + FN).
Recall indicates what fraction of positive flows were detected
and blocked by the censor.

False positive rate (FPR): Defined as FP/(FP + TN). The false
positive rate indicates what fraction of benign flows will be
falsely flagged and blocked by the censor.

Precision (Prec): Defined as TP/(TP + FP). If it is assumed
that the censor takes a blocking action on each flow labeled
positive, then precision indicates what fraction of blocked
flows were actually generated by circumvention protocols.

F1-score (F1): The harmonic mean of precision and recall,
(2 · TPR · Prec)/(TPR + Prec). Powerful classifiers achieve max-
imal F1-score, which indicates that they can both identify
the positive flows and not falsely classify too many negative
flow as positive.

Importantly, the true and false positive rates are both values
that are unaffected by the ratio of positive and negative flows—
the base rate—in the dataset: TPR is defined with respect to
only the positive flows, and FPR is defined analogously to only
the negative flows. In contrast, precision and F1-score are both
affected by the base rate: FP, the total number of false positive
classifications and a term in the denominator of precision, is of
course dependent on the total number of negative flows present
in the dataset (i.e., high precision is trivial to achieve in sets
with few negative examples relative to the positive examples).

When examining obfuscated-protocol detection methods, it
is necessary to consider a range of realistic base rates because
of the relatively low but variable prevalence of circumvention
protocol traffic in real-world networks. (The failure to evaluate
performance over a range of base rates is a significant weakness
of prior work, as we discuss in more detail below.) We let λ be
the total number of negative examples to positive examples in
the data set. For example, λ = 100 when there are 100 benign
flows per circumventing flow in the dataset. To disambiguate
precision and F1-score calculated at different base rates, we
use the notation Precλ=x and Fλ=x

1 to make explicit the base
rate at which these values are defined. Note that Precλ (and
consequently F1

λ) can be computed analytically for any base
rate λ given only TPR and FPR as Precλ(TPR,FPR) =
TPR/(TPR + FPR · λ). Note that we eschew the use of accuracy
as a performance measurement, as it is not meaningful in
settings with large class imbalances [35].

Each of these classifier metrics takes on values between

0 and 1. From the censor’s perspective, a useful classifier should
have the following properties: (1) high precision (otherwise,
the censor will make the majority of its blocking actions
against benign flows); (2) high recall (otherwise, the censor
will inadvertently permit a large fraction of circumventing flows
it would instead prefer to block); and (3) low false positive
rate (otherwise, the censor will block large fractions of benign
flows). Consequently, a useful classifier also achieves high
F1-score values.

B. Basic Empirical Methodology

For all experiments, we created a training dataset containing
≈ 40% of the captured flows and the remaining ≈ 60% were
used as the testing dataset. For TCP flows and UDP flows, this
partitioning results in a test set consisting of 13,423,887 and
544,963 flows, respectively (TCP- and UDP-based protocols
are always evaluated separately in our experiments). The
partitioning was performed on a per-destination-host basis,
meaning that no destination host that appears in the training set
also appears in the test set. The test set also contains obfuscated
flows—56,239 for obfs4, 207,975 for obfs⋆, and 11,698 for
Snowflake

Classifiers are trained by randomly sampling 1,500 negative
flows and 1,500 positive flows from the dataset, which is
consistent with prior work [79]. The benign flow random sample
is constructed using stratified random sampling according to
flow destination port number to ensure that the sample contains
a diverse mix of traffic (otherwise, the sample would contain
TLS or DNS traffic almost exclusively). In cases when a
validation set is required to determine candidate classifiers
to evaluate on the test set, we sample 50,000 negative and
50 positive flows from the training set (but disjoint from the
1,500+1,500 training flows).

Classifier performance is calculated over the test set of
flows. Every value reported is the average of 10 repeated trials
to account for sampling error and randomness in the classifier
training process, such as random parameter initialization.

C. Validating Prior Results

Wang et al. [79] detected obfs4 using decision tree classi-
fiers. To be provided as input to the decision tree, each flow
is preprocessed into a number of manually-defined features
which fall into three categories: (1) entropy-based features, (2)
packet-header-based features, and (3) timing-based features.
The entropy-based features are summary statistics (minimum,
median, mean, and maximum) of per-packet Shannon entropy
values computed from the measured frequency distribution of
each packet’s payload bytes. The packet-header features are
statistics related to packet sizes, such as the most frequently-
occurring packet size in the flow. Lastly, the timing-based
features are normalized histogram bins measuring the time
taken between TCP ACK packets. These features are computed
from the first 30 packets in each flow. Using sample data and
code from their implementation, we verified that our custom
packet processing software computes these features identically.

Wang et al. evaluate four classifiers: a decision tree using
(1) only the entropy features, (2) only the header features,
(3) only the timing features, and (4) both entropy and header
features. In the evaluation, 1,500 benign web (HTTP/TLS)

5



Table I: Decision tree classifier performance detecting obfs4.
The yellow highlighted columns show poor performance at
more realistic values of the base rate λ.

Features TPR FPR Precλ=1 Fλ=1
1 Precλ=1k Fλ=1k

1

Entropy .98 .06 .95 .96 .02 .03
Entropy (Wang et al.)∗ .98 .003 .99 .99 .25 .39
Header .97 .05 .97 .96 .02 .04
Timing .82 .21 .80 .81 .00 .01
Entropy & Header .98 .03 .97 .97 .03 .06

∗For easier comparison, these values are estimated and reprinted from
Wang et al.’s work [79, Figure 7].

flows and 1,500 obfs4 flows are used in the training set; 3,500
benign web flows and 3,500 obfs4 flows are used in the testing
set. They found that the classifiers trained using entropy-based
features performed the best, and found that obfs4 could be
distinguished from the benign traffic with high TPR (≥ 98%)
and low FPR (≤ 0.3%).

We recreated this evaluation on our data using Scikit-
learn’s default decision tree classifier implementation [61]. In
general, we obtained similar results: shown in Table I, the
classifier using entropy-based features achieved a 98% TPR
and 6% FPR—the higher FPR may be accounted for by the
larger diversity of benign traffic in our test set compared to
the synthetically collected HTTP/TLS traffic distribution used
by in their evaluation.

D. Evaluation Pitfalls of Prior Work

Despite the prima facie acceptable performance of these
classifiers (using the λ = 1 base rate, Precλ=1 and Fλ=1

1
are nearly maximal), we argue that these results do not
accurately reflect a censor’s ability to detect obfs4 under
realistic conditions. In what follows, we describe how evaluation
pitfalls present in prior work skew performance too favorably
toward the censor, and suggest methodological improvements
that are better suited for detection in real-world networks.

1) False Positives: We re-examined the results of our
validation experiment described in §IV-C. A key insight of our
expanded analysis is that non-uniform subsets of the benign
flows experience non-uniform false positive blocking rates. An
important limitation of prior work is that reporting the false
positive rate taken only over large classes of traffic paints a
misleading picture of the classifier’s performance, especially if
that classifier is to be used in real-world networks.

Table II demonstrates this finding in two important subsets:
the open world and the tail. During real-world testing, the
classifier will encounter traffic from protocols that were not
present during training, which is notable because out-of-
distribution performance tends to suffer for many classifiers [51].
The “open world” column of Table II shows the false positive
blocking rate for benign flows with destination ports not present
in the classifier’s training set. Our results show that false
blocking rates in the open world are 14–200% higher than
the overall false positive rate.

Misclassification is even worse in the long tail of rarely
occurring protocols, where obfs4 is designed to hide [22]. The

Table II: Decision tree false positive rates when detecting obfs4.
Blocking rates are higher for benign flows with destination
ports not in the training set (open world) and for benign flows
with destination ports with low frequency ranks r.

Features FPR

All Open World Tailr>10 Tailr>100 Tailr>1000

Entropy .06 .11 .08 .15 .19
Header .05 .08 .04 .08 .10
Timing .21 .24 .19 .30 .36
Entropy & Header .03 .09 .05 .10 .13

columns marked “Tailr>x” show the false positive blocking
rates for benign flows with destination ports not in the x most
frequently occurring ports (for example, Tailr>10 is the set of
flows with destination port not in the top 10 most frequently
occurring ports, which corresponds to the “other” bar in Fig. 1a).
For instance, blocking rates for benign flows in Tailr>1000

are 71–333% higher than the overall false positive rate. It is
important to note that frequency rank does not necessarily
correspond to importance, and the flows in Tailr>1000 might
originate from critical processes with high costs of blocking.

In summary, the false positive rate is considerably worse
where it matters most: differentiating obfuscated (and random
looking) flows from unknown (but non-obfuscated) protocols.

2) Scalability: It is commonly understood that the base rate
of circumventing flows has a significant effect on classifier
performance and that the low base rates present in real-world
networks pose a challenge for the censor [44, 75]. Although
prior work discusses the effects of low base rates, their primary
evaluation does not consider that base rates can be highly
variable both within the same network or across different
networks [79]. Without considering a range of base rates, we
are unable to fully understand classifier performance trends
and limitations without additional analysis.

We argue that censorship analyses should consider a range
of base rates of circumventing flows λ as a primary component
of evaluation efforts because it yields more informative results
that are more broadly applicable. For example, although we
found acceptable performance in terms of the precision and
F1 metrics when using a high λ = 1 base rate, we found poor
classifier performance when considering even just a modest
base rate of λ = 1,000. As shown in Table I, Precλ=1000 and
Fλ=1000
1 are approaching 0, suggesting that any blocking actions

taken by the censor will be overwhelmingly false positives.
Note that we chose λ = 1,000 for illustrative purposes, but in
real-world networks, common sense suggests that the base rate
of circumventing flows will be even lower than 1 per 1,000
benign flows (in the TCP distribution, for instance, the 9th-most
frequently occurring port, 7000, has a rate of approximately
3 per 1,000 flows). Fig. 3 shows the relationship of precision to
the base rate for a much larger range of values, 1 ≤ λ ≤ 1×106.
Near-zero precision for values of λ > 1 × 103 suggests that
these classifiers will produce too many false positives (relative
to true positives) in realistic networks and at scale.

Designing a hand-tuned classifier: This situation naturally
raises a question: could the classifier be manually tuned to
improve precision, given expert knowledge of the obfuscation

6



100 101 102 103 104 105 106
No. benign flows per circumventing flow

0.00

0.25

0.50

0.75

1.00
Pr
ec
�=
x

Timing
Entropy
Header
Entropy & Header
Hand-Tuned E&H

Figure 3: Decision tree obfs4 classification precision at various
base rates of circumventing flows.

protocol? We attempted to modify the entropy-and-header
decision tree to use the features more informed by the
characteristics of obfs4. Our hand-crafted classifier, for instance,
computes the distribution of entropy values that a flow should
exhibit if each packet payload is distributed uniformly at
random, as is done by the obfs4 protocol, and compares this
theoretical distribution with the one measured in the test flow.
It performs other checks, too, such as inspecting the most
frequently-seen packet size and verifying that it matches the
size of one network MTU, which we found is characteristic of
obfs4 traffic.

The Hand-Tuned E&H line of Fig. 3 shows the result of
this manual tuning. The hand-tuned classifier scales to far
lower rates of obfuscation, by approximately three orders of
magnitude, at the expense of recall, which is reduced from
98% to 47%. (The base rate λ = 37 is the point at which F1

suggests that the manually-tuned classifier has higher utility
than the original one.) Classifier tuning may be necessary to
scale to realistic base rates, but it increases the variance of the
classifier and hence reduces generalizability.

3) Generalizability: Because the features used by the hand-
crafted classifier very precisely define obfs4, as an evader, it
becomes easier to tweak the obfuscation protocol to avoid
detection. We play out one iteration of this hypothetical arms
race, and design a tweaked obfs protocol which we call obfs⋆.
In obfs⋆, the per-packet entropy values can be configured on a
per-bridge basis. This is performed by re-encoding each obfs4
packet using an encoding scheme that biases toward a particular
bit. For example, consider the toy encoding scheme where each
0 bit produced by obfs4 is replaced with bit triple 111, and each
1 bit is replaced with 110. In practice, obfs⋆ re-encodes obfs4
packets on a bytewise basis, and chooses each replacement
string unambiguously and in a way that achieves a chosen bias
in expectation. Additionally, in obfs⋆, the distribution of packet
sizes can also be configured uniquely on a per-bridge basis.

Note that, recently, real-world nation-state censors have
been observed to detect and block obfs4, Shadowsocks, and
other randomization protocols, apparently by detecting the
randomness in the flow [4, 8, 87]. As a response, reduced
entropy encodings are actively being considered by The
Tor Project and other researchers for future circumvention
protocols [22, 87]. Additionally, the Great Firewall Report, an
organization that focuses on quantifying technical censorship
efforts in China, recently published a patch to Shadowsocks
that modifies measured packet entropy values modifying the

100 101 102 103 104 105 106
No. benign flows per circumventing flow

0.00

0.25

0.50

0.75

1.00

Pr
ec
�=
x

Tuned E&H v. obfs4
Tree E&H v. obfs⋆
Tree E&H v. obfs4
Tuned E&H v. obfs⋆

Figure 4: Precision of the entropy-and-header decision tree
with and without manual tuning detecting obfs4 and obfs⋆.

ratio of 0s to 1s in the binary representation of the packet [7].
Our independently-developed experimental protocol obfs⋆ is
very similar to this approach of reducing the entropy in each
packet by increasing each packet’s size.

The corresponding classification results for obfs⋆ are also
shown in Fig. 4. Because the hand-tuned classifier was so tightly
fit to the signature of obfs4, the obfs⋆ modifications completely
degrade classifier performance: it attains 0% precision and 0%
recall. And, our results show that the obfs⋆ tweaks do not make
the protocol any more detectable by the decision tree classifier
with respect to obfs4.

In summary, the state-of-the-art ML-based detection tech-
nique fails to perform well under conditions that more accu-
rately reflect the adversary’s environment and incidence of
obfuscation protocols. While hand-crafting a classifier to detect
a targeted obfuscation protocol may yield higher precision than
ML-based classifiers, such hand-tuned classifiers are prone to
evasion even by trivial protocol modifications.

V. DEEP LEARNING

Many of the most powerful attacks proposed for encrypted
network analysis now use techniques adopted from deep
learning [3, 14, 57, 66, 68, 69, 90]. Compared to their classical
counterparts, deep learning classifiers tend to exhibit better
classification performance and do not require complex feature
engineering, but require more powerful computational resources
to train the classifier. Deep learning techniques remain largely
unexplored in the domain of obfuscated protocol detection, and
in this section we show that they indeed constitute a more
powerful class of attacks than previously considered.

A. Experimental Methodology

For our experiments, we considered three different neural
networks considered in prior work for website fingerprinting
attacks: a stacked denoising autoencoder (SDAE) and convolu-
tional neural network (CNN) proposed by Rimmer et al. [66],
and a CNN proposed by Sirinam et al. [68]. We used the
implementations of these models which were openly available
on GitHub2, and made minor modifications, such as changing
the last-layer activation function, that were necessary to apply
these models in the binary classification setting. For the most

2The repositories are located at https://github.com/deep-fingerprinting/df
and https://github.com/DistriNet/DLWF.

7

https://github.com/deep-fingerprinting/df
https://github.com/DistriNet/DLWF


part, we used the model hyperparameters that were provided by
the original authors. However, we do vary the input dimension
of the model, discussed further below.

The original models take as input a sequence of packet
directions (d1, . . . , dn) for di ∈ {−1, 0, 1} associated with
a flow—the value 1 is used for a packet sent from the
client to the server, −1 for server to client, and the input
is 0-padded to length n if the flow contains fewer than n
packets. Packet directions are used instead of packet sizes are
used because Tor uses fixed-size cells and hence size does
not offer additional discriminative power. However, we find
that providing sizes to the model does improve performance
on the task of detecting circumventing flows. Therefore, we
modified the models to take as input a sequence of packet sizes
(p1, . . . , pn) where pi ∈ [−1, 1] is the real-valued normalized
packet size of the ith packet in the flow. As before, the sign
associated with each packet size indicates its direction in the
flow. Additionally, we found that n, the number of packets
per flow provided to the classifier, had a large influence on
performance. We experimented with four different values of n
in the set {100, 500, 1000, 5000}.

In contrast to some classical models, neural network
classifiers output a real number which can be thought of as a
probability or confidence score that the input is a circumventing
flow. A neural network classifier’s performance can accordingly
be tuned by setting a per-classifier threshold for which examples
are considered circumventing only if the confidence score is
over this threshold. We determined each threshold value by
computing the threshold that maximizes the classifier’s Fλ=1k

1
score during validation.

In addition to training and testing of flows generated by
obfs4 and obfs⋆, we also attempt to classify flows generated by
the Snowflake censorship circumvention protocol. Snowflake
generates a few different types of flows, and we considered
two: (1) the domain-fronted request to the broker (made over
TCP via TLS), and (2) the data flow communicated with the
Snowflake proxy (made over UDP via WebRTC).

B. Validation

For each circumvention protocol, we therefore have 3 mod-
els × 4 input-dimensions = 12 candidate classifiers. To
determine the best candidate classifier to evaluate over the test
set, we compared the classifiers’ performance on the validation
set of flows (which is disjoint from the testing data, see §III).
Table III reports the average classification performance. For
all circumvention protocols, the Sirinam et al.’s CNN model
performed the best according to F1-score; we use this model
with the indicated input dimension (500 for obfs4, 5,000 for
obfs⋆, and 500 for Snowflake) for classifier testing.

C. Experimental Results

Analogous to the evaluation and results we presented in
§IV, we evaluated the CNN’s performance on the testing set. In
Table IV, the performance of the CNN classifier is summarized
when detecting obfs4, obfs⋆, and Snowflake’s two flow types
(the broker flows and the data flows). For obfs4, the CNN
improves classification false-positives by an order of magnitude,
while still exhibiting a near-perfect TPR. (In Table II, the
lowest decision tree FPR is 3 × 10−2; the CNN achieves an

Table III: The best performing classifiers and input dimension
used for each circumvention protocol. Performance values
reported in this table are for the validation set.

Model Input Dim. TPR FPR Precλ=1k Fλ=1k
1

obfs4
CNN [68] 100 0.96 5.1×10−4 0.65 0.78
CNN [66] 100 0.92 7.4×10−4 0.55 0.69
SDAE [66] 5,000 0.72 2.4×10−3 0.23 0.35

obfs⋆
CNN [68] 5,000 0.99 1.7×10−4 0.85 0.92
CNN [66] 5,000 0.82 1.2×10−3 0.41 0.54
SDAE [66] 5,000 0.79 3.2×10−3 0.20 0.32

Snowflake (Data)
CNN [68] 500 1.0 6 ×10−5 0.94 0.97
CNN [66] 100 0.92 6.6×10−4 0.58 0.71
SDAE [66] 5,000 0.89 5.0×10−3 0.15 0.26

Snowflake (Broker)
CNN [68] 500 0.49 6.1×10−3 0.07 0.13
CNN [66] 100 0.32 0.017 0.02 0.03
SDAE [66] 100 0.25 0.016 0.02 0.03

100 101 102 103 104 105 106
No. benign flows per circumventing flow

0.00

0.25

0.50

0.75

1.00

Pr
ec
�=
x

obfs4
obfs⋆
Snowflake (Data)
Snowflake (Broker)

Figure 5: CNN classification precision detecting obfs4, obfs⋆,
and Snowflake at various base rates of circumventing flows.

overall FPR = 2.9× 10−3.) The performance against obfs⋆ is
even better: FPR = 7× 10−4 with 100% recall. The highest
performance is achieved detecting Snowflake’s data connections
(Fλ=1k

1 = 1.0), which tend to exhibit much longer flows than
typical UDP flows on the network, a property that can be
learned by the classifier. Detecting the TLS connections to the
broker performed the least-well among the four circumvention
protocols (FPR = 0.18), which is expected: our network
capture contains mostly TLS flows, and the Snowflake broker
connections are genuine TLS connections. Furthermore, it is
the case that the false positive rate in the tail and open-world is
lower than the overall false positive rate, which is the opposite
of the other classifiers. Again, this is due to the TLS flows,
which are less present in the tail or open-world of protocols.

While it is the case that deep learning improves performance,
the false positive rates are still prohibitively high to scale to
realistic base rates. Fig. 5 plots Precλ as a function of the base
rate λ. For more realistic base rates, such as λ > 1× 106, the
precision attained by any of the classifiers is near-zero.

D. Computational Performance

While deep learning classifiers offer improved performance
with respect to their classical counterparts, they also require

8



Table IV: Summary of CNN classifier performance against obfs4, obfs⋆, and Snowflake.

Protocol TPR FPR Precλ=1 Fλ=1
1 Precλ=1k Fλ=1k

1

All Open World Tailr>10 Tailr>100 Tailr>1000

obfs4 1.0 2.9×10−3 3.8×10−3 2.4×10−3 4.9×10−3 5.8×10−3 1.0 1.0 0.26 0.41
obfs⋆ 1.0 7 ×10−4 1.6×10−3 1.0×10−3 2.1×10−3 2.5×10−3 1.0 1.0 0.59 0.74
Snowflake (Data) 1.0 5.7×10−5 5.4×10−4 5 ×10−4 4.1×10−4 3.7×10−4 1.0 1.0 0.95 0.97
Snowflake (Broker) 0.98 0.18 9 ×10−3 7.1×10−3 9.8×10−3 3.6×10−3 0.85 0.91 0.01 0.01

Table V: Deep learning classifier performance. The train
time measures the amount of time required to perform one
epoch of training over 100,000 input examples. The “test rate”
column shows classifier throughput on a single GPU, and
“parallel test rate” shows classifier throughtput using four GPUs.

Input Dimension Train Time (s) Test Rate (per s) Parallel Test Rate (per s)

C
N

N
[6

6] 100 7 5,600 23,000
500 8 5,100 20,000

1,000 9 4,500 17,000
5,000 20 2,300 8,800

SD
A

E
[6

6] 100 16 8,600 34,000
500 17 8,200 31,000

1,000 17 7,700 31,000
5,000 20 6,300 25,000

C
N

N
[6

8] 100 24 4,100 15,000
500 23 4,200 16,000

1,000 25 4,000 15,000
5,000 47 3,500 13,000

greater computational power. In this section, we briefly evaluate
and discuss the performance costs of the deep learning
classifiers we considered.

We measured the cost of using these classifiers on a bare-
metal server configured with 2 Intel Xeon Platinum 8260
CPUs clocked at 2.40 GHz and four NVIDIA Tesla V100
GPU accelerator cards. Table V gives a summary of classifier
performance when each classifier is given 100,000 input
examples. We report (1) the time required to train for one
epoch (2) the number of examples that can be classified per
second on one GPU for a trained classifier, and (3) the number
of examples that can be classifier per second using all four
available GPUs.

In all cases, the training time is minimal—only a few sec-
onds per epoch, and in practice, classifier training could occur
relatively infrequently (but must be performed periodically in
order to account for concept drift). Each classifier required
fewer than 50 epochs to train, but the number of training
epochs could be increased to potentially improve classifier
performance.

More importantly, Table V reports classification throughput.
The best performing CNN classifier (Sirinam et al.) using
the largest input dimension (5,000 packets) can achieve a
throughput of approximately 3,500 flows per second using
a single GPU, and 13,000 flows per second parallelized across
four GPUs. To put this rate into context, The Center for Applied
Internet Data Analysis (CAIDA) monitors an internet backbone
OC129 fiber link for a Tier 1 ISP [71]. On any given link,
they never report more than 150,000 flows per second, which

would require at most 50 GPUs to classify at line rate. Today,
these cards cost approximately 5,000 USD [55], and hence the
total cost to monitor such a link is no more than 250,000 USD
(and likely even less if custom hardware is used). The most
powerful nation state censors are estimated to spend billions
of dollars to perform internet censorship [28], and so this cost
appears to be feasible for moderately-sized to large censors.

E. Discussion

It is perhaps surprising that the CNN classifiers outperform
the classical approaches using only packet sizes and directions.
obfs4 and obfs⋆ do employ unique packet patterns on the wire—
by design, they send bursts of roughly MTU-sized payloads
followed by a randomly sized chaff packet [88]. Previous work
has shown that packet burst sequences may carry a lot of
information about the purpose of a flow [66], and deep neural
networks can detect these complex patterns. The designers of
obfuscated protocols tend to focus on shaping packet payloads.
However, this detection method suggests that protocol designers
need to also account for payload sizes and burst shapes as well.

It is likely that refinements could further improve perfor-
mance of the deep learning classifiers. First, although we were
not able to evaluate the risk in this work (we did not collect
or store packet payload values), it seems likely that packet
payload values can be provided to these classifiers to further
improve performance, which is a strategy recently suggested
by Holland et al. [38]. Next, we used a fairly small training
set size (1,500 positive and 1,500 negative flows) to keep
the results comparable to the classical classifiers of Wang
et al. [79]; larger training sizes might yield improved results.
Finally, new neural network architectures and deeper models
may be good candidates for further improving performance.
Recently, transformer networks have been successfully applied
to encrypted traffic classification tasks [48, 62, 90], achieving
better performance than prior work..

VI. HOST-BASED ANALYSIS

In § IV, we confirmed that classical machine learning
methods do not offer enough precision at realistic rates of
circumventing flows in the network to be useful to a censor
at scale. Deep learning approaches are a natural candidate to
improve classifier performance. However, while state-of-the-art
CNNs do significantly improve classification performance, they
still appear unlikely to succeed at scale and under a realistic
base rate of circumvention.

Both of these approaches are myopically focused on
classifying and blocking flows. However, censors need not
employ this strategy: many censors instead focus on identifying
hosts taking part in a circumvention protocol [75]. Focusing

9



on classifying hosts presents new opportunities for a censor, as
hosts may exhibit durable and measurable patterns of behavior
over time, at the expense of maintaining some state per host.

In this section, we present a straightforward host-based
classification scheme that is bootstrapped from a flow-based
classifier. The host classifier works by simply tracking the
fraction of positive classifications that are made with respect to
each host. If a sufficient number of classifications is made and
the fraction of positive classifications exceeds a threshold, then
the host is classified as circumventing (and benign otherwise).
In §VI-A, we provide a theoretical basis for this approach in
ideal conditions. In §VI-B, we show that an implementation of
this approach eliminates nearly all false positive classifications
while still detecting all obfs4 and obfs⋆ bridges.

A. Analytical Method

Over some period of time, let p be the total number of
positive classifications made with respect to a benign server3,
and m be the total number of classifications made with respect
to that server. Consider the fraction p/m for a benign host,
which represents the percentage of positive classifications made
for flows sent to that host. In our host classification scheme,
we will use this fraction to classify hosts: for a threshold
0 ≤ τ ≤ 1, we will label the host as benign if p/m ≤ τ and
otherwise as circumventing.

If we assume each classification made with respect to the
host is an iid Bernoulli random variable with success probability
equal to the FPR, then E[p/m] = FPR. For some positive real-
valued ε < 1, we would like to bound the probability that p/m
is more than ε-distance away from the false positive rate. This
is depicted as follows:

τ
FPR TPR

)(ε ε

where τ = (TPR + FPR)/2 is chosen to be the point that
maximally separates FPR (E[p/m] for a benign host) and TPR
(E[p/m] for a circumventing host).

Hoeffding’s inequality [37] provides such a bound: the prob-
ability that p/m is more than ε-far away from FPR is bounded
loosely by 2e−2ε2m. Letting ε = (τ − FPR) = (TPR − FPR)/2
and rewriting the expression in terms of m yields the inequality

m ≥ ln(4/α2)

(TPR− FPR)2
(1)

for a given error probability 0 < α ≤ 1. Expressing this bound
in terms of m suggests a means to employ this attack: fix
an error rate α based on the network size under observation,
determine a threshold for the number of observations η =

⌈ ln(4/α2)
(TPR−FPR)2 ⌉, and only classify hosts for which m ≥ η. This

strategy—classification with the reject option—is a known
technique to reduce false classifications [15, 81], and is the
strategy we propose for a host-based attack.

In the following parts of this section, we will apply this
analysis and construct a intuitive host-based classification

3A symmetric argument applies to circumventing servers.

Table VI: Values of η computed given a value of α for various
TPR and FPR values obtained for the deep learning classifiers
during validation.

α η

TPR = 0.96 TPR = 0.79 TPR = 0.25
FPR = 5.1× 10−4 FPR = 3.2× 10−3 FPR = 0.016

1 × 10−3 17 25 278
1 × 10−6 32 47 530
1 × 10−9 47 70 783
1 × 10−12 62 92 1,035
1 × 10−15 77 114 1,288

technique. Here we conclude with a few remarks about this
analysis:

· The observation threshold η scales logarithmically in α. The
values of η obtained from the classifiers in §V are concretely
small. For example, for α = 1× 10−6, η = 32 for the CNN
detecting obfs4. We provide more precomputed values for η
in Table VI.

· The bound produced by Hoeffding’s inequality is not tight.
A perfect classifier with a true TPR = 1 and FPR = 0
should be able to perfectly classify hosts after only a single
observation. However, Equation 1 may require more than
one flow even for a perfect classifier. In practice this isn’t
problematic, as the concrete values of η determined by this
equation are small.

· The analysis makes no assumption about the base rate of
benign and circumventing hosts in the network—the error
probability α bounds the probability of making a false positive
or false negative classification. (A union bound may be
applied to determine a value of α that will yield an overall
desired error rate.) For simplicity, we will use α = 1× 10−6.

· The assumption that classifications results are iid is unlikely
to hold perfectly in practice. However, our empirical results
do generally follow the behavior that is predicted by our
analysis.

· The denominator of Equation 1 suggests that, given a choice
of multiple classifiers, the one that maximizes TPR− FPR
(which is the same as maximizing Youden’s J statistic [89])
produces the classifier requiring the least state.

B. Implementation and Results

Algorithm 1 presents a procedure to carry out the host-based
attack, which simply tracks the number of total and positive
classifications that are associated with any given host (that
is, address-port pair). Note that the attack is computationally
inexpensive to mount—even for α = 1× 10−15, the better per-
forming classifiers do not require more than 128 observations.
Hence, 2 × 7 bits of state (i.e., 2 × log2(η)) is required per
host. In the worst case, if state is maintained for each of the
232 IPv4 addresses and 216 TCP ports, this amounts to roughly
500 TiB of storage, which is well within a censor’s capabilities
(a single consumer-grade hard drive disk may store 20+ TiB
today). However, dynamically allocated storage and sketch data
structures, such as a counting bloom filter, could be used in
practice to significantly reduce this storage cost and scale the

10



Algorithm 1 Host meta-classification algorithm
In: Let x be a flow, and x.{IP, Port} be the IP address and destination port

of the flow.
Let F be a classifier, F .{TPR, FPR} be the classifier’s validation
true/false-positive rate, and F (x) be F ’s output label on flow x.
Let α be a desired error rate, 0 < α ≤ 1

State: Let S be an associative array mapping (IP, Port) pairs to pairs of
non-negative integers which are default initialized to (0, 0).

Out: Benign or Obfuscated or Reject

1: function HOSTCLASSIFY(x,F ,α)
2: η ← ⌈ln(4/α2) · (F .TPR− F .FPR)−2⌉
3: τ ← (F .TPR + F .FPR) · 1

2
4: ▷ τ and η may be pre-computed if the classifier and α are fixed
5: m, p← S[(x.IP,x.Port)]
6: m← m+ 1
7: if F (x) = 1 then { p← p+ 1 }
8: label← Reject
9: if m ≥ η then

10: if p/m ≥ τ then
11: label← Obfuscated
12: else
13: label← Benign
14: end if
15: end if
16: S[(x.IP,x.Port)]← (m, p)
17: return label
18: end function

attack to larger address spaces, such as IPv6, at the cost of a
few additional false positives.

We ran Algorithm 1 to detect obfs4 and obfs⋆ in our
test dataset. Note that the attack requires knowledge of the
classifier’s TPR and FPR. Although the classifier’s “true” test-
time TPR and FPR are unknown to the censor, it can use the
values obtained during validation, which is how we instantiate
the attack.

The results of the experiment are shown in Fig. 6. There
are 410,911 destination hosts represented in the test set—
importantly, no host in the test set was included in the training
set (no example in the testing set influenced any parameter
learned by the classifier or used in the host-based attack). First,
Fig. 6a shows the number of hosts that will be classified for a
particular value of η. The distribution is highly right-skewed,
meaning that many destination hosts have just a few flows, but
there is a significant tail of popular destinations with many
flows in our dataset.

Fig. 6b and Fig. 6c show the absolute number of false
positive host classifications made by the classifier. (As was the
case with our previous empirical evaluations (§IV-B), the results
reported are the average of ten independent trial runs.) The red
line labeled with η in each plot shows the value computed by
the algorithm for the CNN’s validation TPR and FPR, and
for α = 1× 10−6. In both figures, we see the expected trend,
which is an exponential drop in false-positive classifications
versus the number of flows observed. Note that the decrease
in total false positives spans three orders of magnitude—e.g.,
in Fig. 6b at x = 1, y is greater than 103, but at x = 20,
y is approximately 1. However, the total number of hosts
classified (that is, not rejected) only decreases by a single order
of magnitude (Fig. 6a).

For both obfs4 and obfs⋆, the total number of false positive
classifications drops to less than 1 on average after no more
than 30 flows have been observed—the absolute number of
false positives reaches 0 after 38 flows have been observed for
obfs⋆. The actual host false positive rate achieved is 2.4 × 10−6

for obfs4 and 1.5 × 10−6 for obfs⋆, which nearly matches the
desired error rate α =1 × 10−6. This host error rate is two
orders of magnitude smaller than the flow error rates achieved
for these classifiers, and there are many orders of magnitude
fewer hosts in a network than there are flows. Furthermore, a
more conservative setting of α can further reduce the error rate
at the expense of higher state costs.

In this evaluation, we focused only on the false positive
classifications. It was indeed the case that all of our self-
hosted bridges in the network were identified, although we
did have an overall small number of bridges (15) with which
we experimented.

C. Discussion

A few limitations apply to the host-based classification
method we proposed. First, the method will detect only servers
that have handled sufficiently-many flows in a given period of
time (the classifier “refuses” to classify hosts with fewer than
η flows). This likely is acceptable for a censor who will still be
able to readily block the most popular bridges accessed by users
in the network. Second, this host-based classification technique
is appropriate for only bridge-based circumvention systems with
static bridges; it relies on consistent behavior being exhibited
over time with respect to a given destination. Moreover, this
technique does not apply to circumventing clients, which may
exhibit a wide variety of both benign and circumventing activity.

Some prior work has considered similar host-based tech-
niques. In 2004, Jung et al. proposed the threshold random
walk algorithm to detect malicious port scanning [43]. Their
approach is based on sequential hypothesis testing [78] and
similarly aggregates multiple independent observations into
a single host-level classification. Recently, Amich et al. [5]
applied the threshold random walk algorithm to the censorship
domain, using it to detect probing flows generated by the
Geneva circumvention system [16]. This is another noteworthy
host-based approach that could be used to leverage multiple
observations into improved classifier precision.

In this work, focus on an approach that uses multiple
independent observations made a by a flow-based classifier
to achieve multiplicative improvements in performance with
each additional observation. This is one possible approach, but
many other possibilities exist in the broader space of host-based
approaches and can be exploited by censors. As an example, a
neural network classifier might be given a collection of flows
to classify as a single input example. Providing the classifier
with multiple flows might allow it to detect the presence of a
fixed handshake for a protocol like TLS or the lack of one for
a protocol like obfs4. Similar ideas have been explored in the
domain of malware detection, but are under-explored in the
domain of censorship and circumvention [6].

Overall, we believe that host-based techniques constitute a
significant threat to bridge-based approaches. The host-based
paradigm is more aligned with the goal of real-world censors,
which tends to be focused on blocking particular hosts rather

11



0 10 20 30 40 50
No. Flows

104

105

No
.H

ost
sw

ith
≥x

Flo
ws

(a) Distribution of hosts with at least x flows

0 10 20 30 40 50
No. Flows Before Classification

100

101

102

103

No
.F

als
eP

osi
tiv

es

� = 32

(b) False positives detecting obfs4

0 10 20 30 40 50
No. Flows Before Classification

100

101

102

103

No
.F

als
eP

osi
tiv

es

� = 30

(c) False positives detecting obfs⋆

Figure 6: Results of the host-based attack using a CNN to detect obfs4 and obfs⋆.

than flows. Moreover, real-world networks have orders-of-
magnitude fewer hosts than flows, which makes the problem of
classification at scale more tractable. In light of these findings,
we believe that new directions for circumvention protocols
ought to be explored; we give recommendations in §X.

VII. DISCUSSION

Our results highlight the importance of realism when evaluat-
ing the performance of censorship resistant systems. A censor’s
ability to distinguish between benign and circumventing flows
may be understated or overstated if the set of assumptions
made during training or testing are far from reality. Research
that assumes unrealistic base rates or evaluates CRSes only in
closed-world settings could easily incorrectly conclude that a
CRS is secure when it is not, or that a censor is effective when
it is not.

In comparison to prior work, we are less convinced that
an adversary could effectively use a flow-based classifier at
Internet scale to detect obfs4 traffic. For classifiers with even
relatively low false positive rates, precision will vanish even at
optimistic base rates (e.g., 10−3). This means that a censor will
inadvertently block thousands or more benign tail flows for
every circumventing flow that is blocked, a level of collateral
damage that may be unpalatable for the censor.

On the other hand, detecting hosts seems like a more viable
strategy for a censor. Under realistic conditions—low base rates
in an open-world setting—host-based analysis performs far
better than flow-based detection. Detecting hosts is also a more
natural approach for a censor, because its likely end goal is to
curate a list of IP addresses used for circumvention that it can
block wholesale. An important implication of our findings is that
CRSes that depend both on not-publicly-advertised static ingress
points and a fixed circumvention protocol may be defeated by a
censor who performs host-based analysis. Our findings motivate
the development of CRSes that avoid dependencies on fixed
protocols and network locations.

An appeal for more research: Research in designing elusive,
hard-to-detect transports is unfortunately underdeveloped. De-
ployed CRSes rely on circumvention techniques that appear to
(mostly) work [31, 59], but lack rigorous scientific evaluation. In
contrast, website fingerprinting (WF) has received considerably
more study, with WF attacks now considering a deep-learning
adversary and new WF defenses designed to defeat such an

adversary. The development of obfuscated protocols might
benefit from some of these advances (for example, using
adversarial examples to confuse a classifier), but more research
is needed.

This paper argues that more faithful and realistic evaluations
of CRSes are needed to accurately understand their security
and privacy properties. In order to empirically evaluate a
system’s ability to hide, background data is required. A serious
impediment to such evaluation is the dearth of background
data; there are unfortunately few datasets available that are
appropriate for this task.

The sensitivity of real-world network data make it especially
challenging to construct useful background traffic datasets for
evaluating CRSes. Collecting the campus dataset used in this
paper was a massive, complex, and time-consuming undertaking.
We strongly encourage research that explores privacy-preserving
methods of collecting and then publishing network flow
datasets. Just as the WF literature is beginning to converge on
standardized datasets, research in traffic circumvention could
significantly benefit from the availability of background traces,
both as a means of comparing CRSes and as a method of
accelerating the pace of circumvention research.

We believe the research community should more strongly
consider host-based analyses. The attacks described in §VI
are technically simple and could presumably be implemented
by a censor today. We posit that host-based approaches that
are even more effective than those described in this paper
could be constructed by examining hosts’ network activity as a
whole—for example, by considering the differences in protocol
interactions (e.g., with DNS) between circumventing and benign
flows on a suspected host. In general, host-based analysis is both
under-explored and a significant threat to CRSes, warranting
additional research in this area.

Defenses: Our work suggests several interesting directions for
defenses. As mentioned previously, defending circumventing
protocol traces with adversarial examples could be an effective
strategy against a machine-learning censor.

Our findings show that if an circumvention protocol host has
a fixed network location (IP) and a censor can observe some of
its flows, it will likely be identified and subsequently blocked.
One way to mitigate the effects of host-based analysis is to
design circumvention systems to use multiple ephemeral bridges
over time rather than a few long-term static bridges, similar to

12



the design of Snowflake. This would enable client connections
to be spread across more bridges, and clients could more quickly
switch if an ephemeral bridge is discovered and blocked by a
censor. If the ephemeral bridges see low connection rates, the
adversary might prefer to focus on identifying the client host
rather than the bridge host. However, in this case, the client may
have a considerable amount of background traffic not related to
the circumvention protocol, and this background traffic could
serve to confuse the host-based classification. Further study of
host-based analysis to detect clients rather than bridges is an
interesting area for future work.

Finally, programmable or polymorphic circumvention pro-
tocols, such as Marionette [26] or Proteus [77], could also
benefit evasion. For example, if the adversary develops a
classifier to detect one particular subprotocol in a polymorphic
protocol family, then only the endpoints running that particular
subprotocol will be blocked. Using a polymorphic protocol
would force the adversary to develop a classifier to detect
the entire polymorphic protocol family, which is a more
difficult task and could be frustrated by frequently changing
the polymorphic protocol over time.

VIII. RELATED WORK

Many nation-states engage in censorship across a variety of
topics using centralized and decentralized infrastructure. Some
censorship techniques seen in real-world studies include host-
based filtering, DNS hijacking, throttling, keyword blocking,
DNS poisoning and injection, TCP RST injections, forced
timeouts, IP and/or port blocking, HTTP filtering, internet
blackouts, and SNI-based censorship [9, 65, 67, 75].

Numerous systems have been designed to resist censor-
ship [44], including those based on mimicry [25, 26, 52, 80,
83], tunneling [11, 17, 29, 30, 39, 41, 47, 50, 52, 53, 70,
80, 91], and randomization [84, 86, 88]. Some obfuscators
have been deployed as Tor pluggable transports, including
Dust [84], Flashproxy [29], StegoTorus [83], FTE [25], and
ScrambleSuit [86]. However, currently only obfs4 [88], and
Snowflake [70] are officially supported in Tor Browser. Re-
cent work has introduced formalism to help researchers and
developers reason about the security of CRSes [42].

There have been numerous works presenting attacks on
censorship circumvention systems. Houmansadr et al. argue
that unobservability by imitation is fundamentally flawed [40],
while Frolov and Wustrow showed that even systems attempting
to mimic popular TLS versions (such as those used in web
browsers) may still be identified using TLS fingerprints [33].
Censors can distinguish tunneled streams carrying covert traffic
from those that do not using basic traffic analysis [40] or
more sophisticated machine learning techniques [12] that can
even operate at line speed directly on network switches [13].
Common problems are that mismatches between the use of
a tunnel and its covert protocol enable identification [34],
particularly during protocol initialization as in the case of
attacks on obfs4 [79] and Snowflake [49]. Active probing
may also be used to identify systems whose response (or lack
thereof) is distinguishing [24, 27, 32].

Website fingerprinting is a related area of study in which the
goal is to identify specific websites being visited, even when
encryption is employed. Early methods use naïve-Bayes and

other supervised learning algorithms to identify sites [18, 36, 60,
82]. More recently, deep learning has been applied to increase
website fingerprinting accuracy [1, 14, 57, 66, 68], although
these methods require large quantities of training data and must
be regularly retrained [68]. Sirinam et al. reduce the amount of
data needed to perform deep learning for fingerprinting purposes
and aim to create a portable classifier using n-shot learning [69];
this approach has been used in a study of fingerprinting attacks
on the real-world Tor network [20].

Another related area of study is application-based finger-
printing in which application-specific behaviors produce side
channels [19] that can be detected by a network observer and
used to learn potentially sensitive information about users [56].
Similar to our host-based approach, the observable behaviors
when exercising multiple distinct parts of an application over
time can be combined to produce more accurate predictions [46],
even in the face of application multiplexing and other chal-
lenges [45].

IX. DATA PROTECTION AND ETHICS

Safety Measures: The data was collected on a university
wireless network over a two week period during March and
April 2022. The captured data included circumventing flows we
generated along with normal campus wireless traffic. To ensure
the privacy of campus users we took steps to minimize the data
we collected, anonymize the data we did collect, and restrict
access to that data. (We present the details of these steps below.)
We did not collect any personal identifiable information and did
our analysis over anonymized statistics that were computed over
the data we captured. For our collection we used an existing
network capture setup and data protection protocol that were
approved by the campus institutional review board (IRB) and
network operations staff.

To protect the collected data the capture was done by
a machine that only allows network access from a small
number of other campus machines and requires multi-factor
authentication for access. In addition, the capture machine is
located in a secure campus machine room with limited physical
access. To protect the privacy of campus users the capture
machine cryptographically anonymized all campus-based IP
addresses originating or terminating captured connections. The
anonymization of the IPs for the background traffic was done
with a temporary, distinct key for each collection. §III. The key
was immediately discarded at the completion of the collection
so IP addresses could not be deanonymized.

On the capture machine the anonymized packets were
reconstructed into flows and we extracted summary statistics
about each flow including source and destination port, payload
entropy, and packet size and direction, and saved only these
statistics for analysis. Payload data was held in memory to
compute per-flow statistics and then immediately discarded,
never being written to persistent storage. Therefore, only
flow data and packet headers, both containing anonymized
IP addresses, were retained. Only this processed data ever
left the secure capture machine. Furthermore, for all but one
experiment even these anonymized IP addresses were removed
and flows were identified solely by a randomly generated unique
identification number. Identifying flows by their anonymized
IP address was only used for the host-based network analysis

13



and for this only one member of the team had access to the
mapping of anonymized IP addresses to flow ID numbers to
allow grouping by IPs.

The background data we collected on the network was
exclusively used to compare against circumvention protocol
flows to see whether we could distinguish benign flows
from our self-generated, circumventing traffic. Throughout the
experiments all data remained on the campus network.

Disclosure: The goal of our work is to move censorship
research in new directions that will lead to the development
of stronger circumvention systems. We have been working
closely with members of the Tor Project’s anti-censorship team
to improve obfs4 and Snowflake and will continue to share our
research findings with them.

X. CONCLUSION

We explore 3 main areas in which we improve realism
with respect to a censor attempting to detect circumvention
protocols: (1) the environment in which the censor operates;
(2) the precedence of circumvention protocols in the network
(i.e., the base rate); and (3) the censors’s capabilities. Using live
network experiments, we find that the state-of-the-art censorship
techniques are overwhelmed with false positives (>94%) at
even conservatively high base rates (10−3). We explore how a
recent deep learning approach from the website fingerprinting
literature can improve precision under high base rates, and find
that while precision does improve, it does not improve enough
to be practical in realistic environments. We explore the effects
of applying host-based analysis methods to the detection of
circumvention protocols. We find that considering many flows
from a host over time both significantly reduces the base rate
under which an adversary must operate while at the same time
increasing the precision in identifying the host as running a
circumvention protocol. We conclude that host-based analysis is
crucial for real world adversaries employing machine learning
to detect obfuscated protocols.

Our work has illuminated several new directions for
censorship research, as discussed in §VII. Chiefly, host-based
analysis methods may be improved beyond our contributions
in this paper, where packet payloads could be considered
or different deep learning methods could be employed to
further improve the classification results. Importantly, we
focus on exploring realistic censorship adversaries in service
of understanding how to develop stronger CRSes. As such,
we also outline several promising directions based on our
insights for developing defenses against censorship that deserve
more attention; these include employing adversarial examples,
using ephemeral circumvention servers, and developing new
programmable or polymorphic circumvention protocols. Finally,
future work should consider applying a privacy-preserving
collection methodology to safely collect and share realistic
datasets to make censorship research more accessible. Despite
the concerning results of our evaluation, we are optimistic that
these new directions will lead to stronger CRSes that will be
increasingly difficult to block.

ACKNOWLEDGEMENTS

This work has been partially supported by the Office
of Naval Research (ONR), the Defense Advanced Research
Projects Agency (DARPA) (including under Contract No.
FA8750-19-C-0500), and the Callahan Family Chair Fund.

REFERENCES

[1] K. Abe and S. Goto, “Fingerprinting attack on Tor anonymity
using deep learning,” Proceedings of the Asia Pacific Advanced
Network, vol. 42, 2016.

[2] A. Akbari, “Shutting down the internet is another brutal blow
against women by the Iranian regime,” The Guardian, 2022.
[Online]. Available: https://www.theguardian.com/commentisfr
ee/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminis
ts-morality-police.

[3] I. Akbari, M. A. Salahuddin, L. Ven, N. Limam, R. Boutaba,
B. Mathieu, S. Moteau, and S. Tuffin, “A look behind the
curtain: Traffic classification in an increasingly encrypted web,”
Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 5, no. 1, 2021.

[4] Alice, Bob, Carol, J. Beznazwy, and A. Houmansadr, “How
China detects and blocks Shadowsocks,” in Proceedings of the
2020 ACM Internet Measurement Conference, (Virtual Event,
USA), ACM, 2020.

[5] A. Amich, B. Eshete, V. Yegneswaran, and N. P. Hoang,
“DeResistor: Toward detection-resistant probing for evasion
of Internet censorship,” in Proceedings of the 32nd USENIX
Security Symposium, (Anaheim, CA), USENIX Assn, 2023.

[6] B. Anderson and D. McGrew, “Identifying encrypted malware
traffic with contextual flow data,” in Proceedings of the 2016
ACM Workshop on Artificial Intelligence and Security, (Vienna,
AT), ACM, 2016.

[7] Anonymous. “Sharing a modified Shadowsocks as well as our
thoughts on the cat-and-mouse game.” Net4People BBS Forum
Posting. (2022), [Online]. Available: https://github.com/net4pe
ople/bbs/issues/136.

[8] Anonymous, K. Bock, J. Sippe, Shelikhoo, D. Fifield, E.
Wustrow, D. Levin, and A. Houmansadr, “Exposing the Great
Firewall’s dynamic blocking of fully encrypted traffic,” Open
Technology Fund, 2022.

[9] S. Aryan, H. Aryan, and J. A. Halderman, “Internet censorship
in Iran: A first look,” in 3rd USENIX Workshop on Free and
Open Communications on the Internet, (Washington, DC),
USENIX Assn, 2013.

[10] AWS top 1M sites list, Amazon. [Online]. Available: https://s3
.amazonaws.com/alexa-static/top-1m.csv.zip.

[11] D. Barradas, N. Santos, and L. Rodrigues, “DeltaShaper:
Enabling unobservable censorship-resistant TCP tunneling over
videoconferencing streams,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 4, 2017.

[12] D. Barradas, N. Santos, and L. Rodrigues, “Effective detection
of multimedia protocol tunneling using machine learning,”
in Proceedings of the 27th USENIX Security Symposium,
(Baltimore, MD), USENIX Assn, 2018.

[13] D. Barradas, N. Santos, L. Rodrigues, S. Signorello, F. M. V.
Ramos, and A. Madeira, “FlowLens: Enabling efficient flow
classification for ML-based network security applications,”
in Proceedings of the 2021 Network and Distributed System
Security Symposium, (Virtual Event), ISOC, 2021.

[14] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A data-
efficient website fingerprinting attack based on deep learning,”
Proceedings on Privacy Enhancing Technologies, vol. 2019,
no. 4, 2019.

[15] C. M. Bishop, Pattern Recognition and Machine Learning.
Springer, 2006.

14

https://core.ac.uk/download/pdf/229876143.pdf
https://core.ac.uk/download/pdf/229876143.pdf
https://www.theguardian.com/commentisfree/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminists-morality-police
https://www.theguardian.com/commentisfree/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminists-morality-police
https://www.theguardian.com/commentisfree/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminists-morality-police
https://www.theguardian.com/commentisfree/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminists-morality-police
https://www.theguardian.com/commentisfree/2022/sep/26/elon-musk-iran-women-mahsa-amini-feminists-morality-police
http://dx.doi.org/10.1145/3447382
http://dx.doi.org/10.1145/3447382
http://dx.doi.org/10.1145/3419394.3423644
http://dx.doi.org/10.1145/3419394.3423644
https://www.usenix.org/conference/usenixsecurity23/presentation/amich
https://www.usenix.org/conference/usenixsecurity23/presentation/amich
http://dx.doi.org/10.1145/2996758.2996768
http://dx.doi.org/10.1145/2996758.2996768
https://github.com/net4people/bbs/issues/136
https://github.com/net4people/bbs/issues/136
https://public.opentech.fund/documents/Exposing_the_Great_Firewalls_Dynamic_Blocking_of_Fully_Encrypted_Traffic.pdf
https://public.opentech.fund/documents/Exposing_the_Great_Firewalls_Dynamic_Blocking_of_Fully_Encrypted_Traffic.pdf
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://www.usenix.org/conference/foci13/workshop-program/presentation/aryan
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
https://s3.amazonaws.com/alexa-static/top-1m.csv.zip
http://dx.doi.org/10.1515/popets-2017-0037
http://dx.doi.org/10.1515/popets-2017-0037
http://dx.doi.org/10.1515/popets-2017-0037
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
https://www.usenix.org/conference/usenixsecurity18/presentation/barradas
http://dx.doi.org/10.14722/ndss.2021.24067
http://dx.doi.org/10.14722/ndss.2021.24067
http://dx.doi.org/10.2478/popets-2019-0070
http://dx.doi.org/10.2478/popets-2019-0070


[16] K. Bock, G. Hughey, X. Qiang, and D. Levin, “Geneva: Evolv-
ing censorship evasion strategies,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, (London, UK), ACM, 2019.

[17] C. Brubaker, A. Houmansadr, and V. Shmatikov, “CloudTrans-
port: Using cloud storage for censorship-resistant networking,”
in Privacy Enhancing Technologies: 14th International Sym-
posium Proceedings, (Amsterdam, NL), ser. LNCS, vol. 8555,
Springer, 2014.

[18] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching
from a distance: Website fingerprinting attacks and defenses,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, (Raleigh, NC), ACM, 2012.

[19] S. Chen, R. Wang, X. Wang, and K. Zhang, “Side-channel leaks
in web applications: A reality today, a challenge tomorrow,”
in Proceedings of the 2010 IEEE Symposium on Security and
Privacy, (Oakland, CA), IEEE, 2010.

[20] G. Cherubin, R. Jansen, and C. Troncoso, “Online website
fingerprinting: Evaluating website fingerprinting attacks on Tor
in the real world,” in Proceedings of the 31st USENIX Security
Symposium, (Boston, MA), USENIX Assn, 2022.

[21] H. Davidson, “China brings in ‘emergency’ level censorship
over zero-Covid protests,” The Guardian, 2022. [Online].
Available: https : / /www. theguardian . com/world /2022 /dec
/02/china-brings-in-emergency-level-censorship-over-zero-co
vid-protests.

[22] R. Dingledine, Next steps for unclassifiable protocols, Tor
Project mailing list, 2019. [Online]. Available: https://lists.torp
roject.org/pipermail/anti-censorship-team/2019-May/000015
.html.

[23] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second-generation onion router,” in Proceedings of the 13th
USENIX Security Symposium, (San Diego, CA), USENIX Assn,
2018.

[24] A. Dunna, C. O’Brien, and P. Gill, “Analyzing China’s blocking
of unpublished Tor bridges,” in 8th USENIX Workshop on Free
and Open Communications on the Internet, (Baltimore, MD),
USENIX Assn, 2018.

[25] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton,
“Protocol misidentification made easy with format-transforming
encryption,” in Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer and Communications Security, (Berlin,
DE), ACM, 2013.

[26] K. P. Dyer, S. E. Coull, and T. Shrimpton, “Marionette: A
programmable network traffic obfuscation system,” in Proceed-
ings of the 24th USENIX Security Symposium, (Washington,
DC), USENIX Assn, 2015.

[27] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver,
and V. Paxson, “Examining how the Great Firewall discovers
hidden circumvention servers,” in Proceedings of the 2015 ACM
Conference on Internet Measurement Conference, (Tokyo, JP),
ACM, 2015.

[28] R. Fedasiuk, “Buying silence: The price of Internet censorship
in China,” China Brief, vol. 21, no. 1, 2020.

[29] D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh,
R. Dingledine, and P. Porras, “Evading censorship with browser-
based proxies,” in Privacy Enhancing Technologies: 12th
International Symposium Proceedings, (Vigo, ES), ser. LNCS,
vol. 7384, Springer, 2012.

[30] D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Paxson,
“Blocking-resistant communication through domain fronting,”
Proceedings on Privacy Enhancing Technologies, vol. 2015,
no. 2, 2015.

[31] A. Filastó and J. Appelbaum, “OONI: Open observatory of
network interference,” in 2nd USENIX Workshop on Free
and Open Communications on the Internet, (Bellevue, WA),
USENIX Assn, 2012.

[32] S. Frolov, J. Wampler, and E. Wustrow, “Detecting probe-
resistant proxies,” in Proceedings of the 2020 Network and
Distributed System Security Symposium, (San Diego, CA),
ISOC, 2020.

[33] S. Frolov and E. Wustrow, “The use of TLS in censorship
circumvention,” in Proceedings of the 2019 Network and
Distributed System Security Symposium, (San Diego, CA),
ISOC, 2019.

[34] J. Geddes, M. Schuchard, and N. Hopper, “Cover your
ACKs: Pitfalls of covert channel censorship circumvention,”
in Proceedings of the 2013 ACM SIGSAC Conference on
Computer and Communications Security, (Berlin, DE), ACM,
2013.

[35] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning
(Adaptive Computation and Machine Learning). MIT Press,
2016.

[36] D. Herrmann, R. Wendolsky, and H. Federrath, “Website
fingerprinting: Attacking popular privacy enhancing technolo-
gies with the multinomial naïve-bayes classifier,” in CCS ’09
Workshops, Proceedings of the 2009 ACM Workshop on Cloud
Computing Security, (Chicago, IL), ACM, 2009.

[37] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American Statistical Associ-
ation, vol. 58, no. 301, 1963.

[38] J. Holland, P. Schmitt, N. Feamster, and P. Mittal, “New direc-
tions in automated traffic analysis,” in Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications
Security, (Virtual Event, KR), ACM, 2021.

[39] J. Holowczak and A. Houmansadr, “CacheBrowser: Bypassing
Chinese censorship without proxies using cached content,”
in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, (Denver, CO), ACM,
2015.

[40] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot
is dead: Observing unobservable network communications,”
in Proceedings of the 2013 IEEE Symposium on Security and
Privacy, (San Francisco, CA), IEEE, 2013.

[41] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer, “I want
my voice to be heard: IP over Voice-over-IP for unobservable
censorship circumvention,” in Proceedings of the 20th Annual
Network and Distributed System Security Symposium, (San
Diego, CA), ISOC, 2013.

[42] J. K. Howes IV, M. Georgiou, A. J. Malozemoff, and T.
Shrimpton, “Security foundations for application-based covert
communication channels,” in Proceedings of the 43rd IEEE
Symposium on Security and Privacy, (San Francisco, CA),
IEEE, 2022.

[43] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
portscan detection using sequential hypothesis testing,” in
Proceedings of the 2004 IEEE Symposium on Security and
Privacy, (Oakland, CA), IEEE, 2004.

[44] S. Khattak, T. Elahi, L. Simon, C. M. Swanson, S. J. Murdoch,
and I. Goldberg, “SoK: Making sense of censorship resistance
systems,” Proceedings on Privacy Enhancing Technologies,
vol. 2016, no. 4, 2016.

[45] J. Li, S. Wu, H. Zhou, X. Luo, T. Wang, Y. Liu, and X.
Ma, “Packet-level open-world App fingerprinting on wireless
traffic,” in Proceedings of the 2022 Network and Distributed
System Security Symposium, (San Diego, CA), ISOC, 2022.

[46] J. Li, H. Zhou, S. Wu, X. Luo, T. Wang, X. Zhan, and X. Ma,
“FOAP: Fine-grained open-world android app fingerprinting,” in
Proceedings of the 31st USENIX Security Symposium, (Boston,
MA), USENIX Assn, 2022.

[47] S. Li, M. Schliep, and N. Hopper, “Facet: Streaming over
videoconferencing for censorship circumvention,” in Proceed-
ings of the 13th Workshop on Privacy in the Electronic Society,
(Scottsdale, AZ), ACM, 2014.

15

http://dx.doi.org/10.1145/3319535.3363189
http://dx.doi.org/10.1145/3319535.3363189
http://dx.doi.org/10.1007/978-3-319-08506-7_1
http://dx.doi.org/10.1007/978-3-319-08506-7_1
http://dx.doi.org/10.1145/2382196.2382260
http://dx.doi.org/10.1145/2382196.2382260
http://dx.doi.org/10.1109/SP.2010.20
http://dx.doi.org/10.1109/SP.2010.20
https://www.usenix.org/conference/usenixsecurity22/presentation/cherubin
https://www.usenix.org/conference/usenixsecurity22/presentation/cherubin
https://www.usenix.org/conference/usenixsecurity22/presentation/cherubin
https://www.theguardian.com/world/2022/dec/02/china-brings-in-emergency-level-censorship-over-zero-covid-protests
https://www.theguardian.com/world/2022/dec/02/china-brings-in-emergency-level-censorship-over-zero-covid-protests
https://www.theguardian.com/world/2022/dec/02/china-brings-in-emergency-level-censorship-over-zero-covid-protests
https://www.theguardian.com/world/2022/dec/02/china-brings-in-emergency-level-censorship-over-zero-covid-protests
https://www.theguardian.com/world/2022/dec/02/china-brings-in-emergency-level-censorship-over-zero-covid-protests
https://lists.torproject.org/pipermail/anti-censorship-team/2019-May/000015.html
https://lists.torproject.org/pipermail/anti-censorship-team/2019-May/000015.html
https://lists.torproject.org/pipermail/anti-censorship-team/2019-May/000015.html
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/full_papers/dingledine/dingledine.pdf
https://www.usenix.org/conference/foci18/presentation/dunna
https://www.usenix.org/conference/foci18/presentation/dunna
http://dx.doi.org/10.1145/2508859.2516657
http://dx.doi.org/10.1145/2508859.2516657
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/dyer
http://dx.doi.org/10.1145/2815675.2815690
http://dx.doi.org/10.1145/2815675.2815690
https://jamestown.org/wp-content/uploads/2021/01/Read-the-1-13-2021-Issue-in-PDF.pdf
https://jamestown.org/wp-content/uploads/2021/01/Read-the-1-13-2021-Issue-in-PDF.pdf
http://dx.doi.org/10.1007/978-3-642-31680-7_13
http://dx.doi.org/10.1007/978-3-642-31680-7_13
http://dx.doi.org/10.1515/popets-2015-0009
https://www.usenix.org/conference/foci12/workshop-program/presentation/filast%C3%B2
https://www.usenix.org/conference/foci12/workshop-program/presentation/filast%C3%B2
http://dx.doi.org/10.14722/ndss.2020.23087
http://dx.doi.org/10.14722/ndss.2020.23087
http://dx.doi.org/10.14722/ndss.2019.23511
http://dx.doi.org/10.14722/ndss.2019.23511
http://dx.doi.org/10.1145/2508859.2516742
http://dx.doi.org/10.1145/2508859.2516742
http://dx.doi.org/10.1145/1655008.1655013
http://dx.doi.org/10.1145/1655008.1655013
http://dx.doi.org/10.1145/1655008.1655013
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1080/01621459.1963.10500830
http://dx.doi.org/10.1145/3460120.3484758
http://dx.doi.org/10.1145/3460120.3484758
http://dx.doi.org/10.1145/2810103.2813696
http://dx.doi.org/10.1145/2810103.2813696
http://dx.doi.org/10.1109/SP.2013.14
http://dx.doi.org/10.1109/SP.2013.14
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/i-want-my-voice-be-heard-ip-over-voice-over-ip-unobservable-censorship-circumvention/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/i-want-my-voice-be-heard-ip-over-voice-over-ip-unobservable-censorship-circumvention/
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/i-want-my-voice-be-heard-ip-over-voice-over-ip-unobservable-censorship-circumvention/
http://dx.doi.org/10.1109/SP46214.2022.9833752
http://dx.doi.org/10.1109/SP46214.2022.9833752
http://dx.doi.org/10.1109/SECPRI.2004.1301325
http://dx.doi.org/10.1109/SECPRI.2004.1301325
http://dx.doi.org/10.1515/popets-2016-0028
http://dx.doi.org/10.1515/popets-2016-0028
http://dx.doi.org/10.14722/ndss.2022.24210
http://dx.doi.org/10.14722/ndss.2022.24210
https://www.usenix.org/conference/usenixsecurity22/presentation/li-jianfeng
http://dx.doi.org/10.1145/2665943.2665944
http://dx.doi.org/10.1145/2665943.2665944


[48] X. Lin, G. Xiong, G. Gou, Z. Li, J. Shi, and J. Yu, “ET-BERT:
A contextualized datagram representation with pre-training
transformers for encrypted traffic classification,” in Proceedings
of the ACM Web Conference 2022, (Virtual Event, FR), ACM,
2022.

[49] K. MacMillan, J. Holland, and P. Mittal, “Evaluating Snowflake
as an indistinguishable censorship circumvention tool,” arXiv
preprint, 2020.

[50] R. McPherson, A. Houmansadr, and V. Shmatikov, “CovertCast:
Using live streaming to evade Internet censorship,” Proceedings
on Privacy Enhancing Technologies, vol. 2016, no. 3, 2016.

[51] J. Miller, R. Taori, A. Raghunathan, S. Sagawa, P. W. Koh,
V. Shankar, P. Liang, Y. Carmon, and L. Schmidt, “Accuracy on
the line: On the strong correlation between out-of-distribution
and in-distribution generalization,” in Proceedings of the 38th
International Conference on Machine Learning, (Virtual Event),
ser. PMLR, vol. 139, 2021.

[52] H. M. Moghaddam, B. Li, M. Derakhshani, and I. Gold-
berg, “SkypeMorph: Protocol obfuscation for Tor bridges,”
in Proceedings of the 2012 ACM Conference on Computer and
Communications Security, (Raleigh, NC), ACM, 2012.

[53] M. Nasr, H. Zolfaghar, A. Houmansadr, and A. Ghafari,
“Massbrowser: Unblocking the censored web for the masses,
by the masses,” in Proceedings of the 2020 Network and
Distributed System Security Symposium, (San Diego, CA),
ISOC, 2020.

[54] A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Razagh-
panah, N. Christin, and P. Gill, “ICLab: A global, longitudinal
Internet censorship measurement platform,” in Proceedings of
the 2020 IEEE Symposium on Security and Privacy, (Virtual
Event, USA), IEEE, 2020.

[55] “NVIDIA Tesla v100 16gb,” Amazon. (2022), [Online]. Avail-
able: https://a.co/d/3ExzAjE (visited on 08/16/2023).

[56] S. E. Oh, S. Li, and N. Hopper, “Fingerprinting keywords in
search queries over Tor,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, no. 4, 2017.

[57] S. E. Oh, S. Sunkam, and N. Hopper, “p-FP: Extraction,
classification, and prediction of website fingerprints with deep
learning,” Proceedings on Privacy Enhancing Technologies,
vol. 2019, no. 3, 2019.

[58] Open Internet Tools Project, “Collateral freedom: A snapshot
of Chinese internet users circumventing censorship,” 2013.

[59] Open Observatory of Network Interference. “Tor bridge reach-
ability.” (Ca. 2020), [Online]. Available: https://ooni.org/nettes
t/tor-bridge-reachability/ (visited on 08/25/2023).

[60] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization networks,”
in Proceedings of the 10th Annual ACM Workshop Privacy in
the Electronic Society, (Chicago, IL), ACM, 2011.

[61] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and É. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, no. 85, 2011.

[62] J. Piet, A. Sharma, V. Paxson, and D. Wagner, “Network
detection of interactive SSH impostors using deep learning,”
in Proceedings of the 32nd USENIX Security Symposium,
(Anaheim, CA), USENIX Assn, 2023.

[63] L. Quan, J. Heidemann, and Y. Pradkin, “When the Internet
sleeps: Correlating diurnal networks with external factors,”
in Proceedings of the 2014 ACM Internet Measurement
Conference, (Vancouver, CA), ACM, 2014.

[64] R. S. Raman, A. Stoll, J. Dalek, R. Ramesh, W. Scott, and
R. Ensafi, “Measuring the deployment of network censorship
filters at global scale,” in Proceedings of the 2020 Network
and Distributed System Security Symposium, (San Diego, CA),
ISOC, 2020.

[65] R. Ramesh, R. S. Raman, M. Bernhard, V. Ongkowijaya,
L. Evdokimov, A. Edmundson, S. Sprecher, M. Ikram, and
R. Ensafi, “Decentralized control: A case study of Russia,”
in Proceedings of the 2020 Network and Distributed System
Security Symposium, (San Diego, CA), ISOC, 2020.

[66] V. Rimmer, D. Preuveneers, M. Juarez, T. Van Goethem, and
W. Joosen, “Automated website fingerprinting through deep
learning,” in Proceedings of the 2018 Network and Distributed
System Security Symposium, (San Diego, CA), ISOC, 2018.

[67] K. Singh, G. Grover, and V. Bansal, “How India censors the
web,” in Proceedings of the 12th ACM Conference on Web
Science, (Southampton, UK), ACM, 2020.

[68] P. Sirinam, M. Imani, M. Juarez, and M. Wright, “Deep fin-
gerprinting: Undermining website fingerprinting defenses with
deep learning,” in Proceedings of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security, (Toronto,
CA), ACM, 2018.

[69] P. Sirinam, N. Mathews, M. S. Rahman, and M. Wright,
“Triplet fingerprinting: More practical and portable website
fingerprinting with n-shot learning,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, (London, UK), ACM, 2019.

[70] “Snowflake,” Tor Project. (Ca. 2018), [Online]. Available: http
s://snowflake.torproject.org/ (visited on 05/13/2022).

[71] Statistical information for the CAIDA anonymized internet
traces, Center for Applied Internet Data Analysis, 2019.
[Online]. Available: https://www.caida.org/catalog/dataset
s/passive_trace_statistics/.

[72] The Tor Project, obfs2 (the Twobfuscator), Protocol specifica-
tion, version 2bf9d096, 2015. [Online]. Available: https://gitla
b.torproject.org/tpo/anti-censorship/pluggable-transports/obfs
proxy/-/blob/master/doc/obfs2/obfs2-protocol-spec.txt (visited
on 05/13/2022).

[73] The Tor Project, obfs3 (the Threebfuscator), Protocol specifi-
cation, version 225e420c, 2013. [Online]. Available: https://git
lab.torproject.org/tpo/anti-censorship/pluggable-transports/obf
sproxy/-/blob/2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc
/doc/obfs3/obfs3-protocol-spec.txt (visited on 05/13/2022).

[74] A. Troianovski and V. Safronova, “Russia takes censorship to
new extremes, stifling war coverage,” The New York Times,
2022. [Online]. Available: https://www.nytimes.com/2022/03/0
4/world/europe/russia-censorship-media-crackdown.html.

[75] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson, “SoK:
Towards grounding censorship circumvention in empiricism,”
in Proceedings of the 2016 IEEE Symposium on Security and
Privacy, (San Jose, CA), IEEE, 2016.

[76] US Department of State, “A declaration for the future of the
internet,” 2022. [Online]. Available: https://www.state.gov/dec
laration-for-the-future-of-the-internet.

[77] R. Wails, R. Jansen, A. Johnson, and M. Sherr, “Proteus:
Programmable protocols for censorship circumvention,” in Free
and Open Communications on the Internet 2023, (Lausanne,
CH), 2023.

[78] A. Wald, “Sequential tests of statistical hypotheses,” The Annals
of Mathematical Statistics, vol. 16, no. 2, 1945.

[79] L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and T. Shrimpton,
“Seeing through network-protocol obfuscation,” in Proceedings
of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, (Denver, CO), ACM, 2015.

[80] Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and
N. Borisov, “CensorSpoofer: Asymmetric communication
using IP spoofing for censorship-resistant web browsing,” in
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, (Raleigh, NC), ACM, 2012.

[81] T. Wang, “High precision open-world website fingerprinting,”
in Proceedings of the 2020 IEEE Symposium on Security and
Privacy, (Virtual Event, USA), IEEE, 2020.

16

http://dx.doi.org/10.1145/3485447.3512217
http://dx.doi.org/10.1145/3485447.3512217
http://dx.doi.org/10.1145/3485447.3512217
http://dx.doi.org/10.48550/arXiv.2008.03254
http://dx.doi.org/10.48550/arXiv.2008.03254
http://dx.doi.org/10.1515/popets-2016-0024
http://dx.doi.org/10.1515/popets-2016-0024
https://proceedings.mlr.press/v139/miller21b.html
https://proceedings.mlr.press/v139/miller21b.html
https://proceedings.mlr.press/v139/miller21b.html
http://dx.doi.org/10.1145/2382196.2382210
http://dx.doi.org/10.14722/ndss.2020.24340
http://dx.doi.org/10.14722/ndss.2020.24340
http://dx.doi.org/10.1109/SP40000.2020.00014
http://dx.doi.org/10.1109/SP40000.2020.00014
https://a.co/d/3ExzAjE
http://dx.doi.org/10.1515/popets-2017-0048
http://dx.doi.org/10.1515/popets-2017-0048
http://dx.doi.org/10.2478/popets-2019-0043
http://dx.doi.org/10.2478/popets-2019-0043
http://dx.doi.org/10.2478/popets-2019-0043
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://www.upturn.org/static/files/CollateralFreedom.pdf
https://ooni.org/nettest/tor-bridge-reachability/
https://ooni.org/nettest/tor-bridge-reachability/
http://dx.doi.org/10.1145/2046556.2046570
http://dx.doi.org/10.1145/2046556.2046570
http://jmlr.org/papers/v12/pedregosa11a.html
https://www.usenix.org/conference/usenixsecurity23/presentation/piet
https://www.usenix.org/conference/usenixsecurity23/presentation/piet
http://dx.doi.org/10.1145/2663716.2663721
http://dx.doi.org/10.1145/2663716.2663721
http://dx.doi.org/10.14722/ndss.2020.23099
http://dx.doi.org/10.14722/ndss.2020.23099
http://dx.doi.org/10.14722/ndss.2020.23098
http://dx.doi.org/10.14722/ndss.2018.23105
http://dx.doi.org/10.14722/ndss.2018.23105
http://dx.doi.org/10.1145/3394231.3397891
http://dx.doi.org/10.1145/3394231.3397891
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3243734.3243768
http://dx.doi.org/10.1145/3319535.3354217
http://dx.doi.org/10.1145/3319535.3354217
https://snowflake.torproject.org/
https://snowflake.torproject.org/
https://www.caida.org/catalog/datasets/passive_trace_statistics/
https://www.caida.org/catalog/datasets/passive_trace_statistics/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/master/doc/obfs2/obfs2-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/master/doc/obfs2/obfs2-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/master/doc/obfs2/obfs2-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc/doc/obfs3/obfs3-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc/doc/obfs3/obfs3-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc/doc/obfs3/obfs3-protocol-spec.txt
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/obfsproxy/-/blob/2bf9d096bb45a4e6c69f1cbdc3d2565f54a44efc/doc/obfs3/obfs3-protocol-spec.txt
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
https://www.nytimes.com/2022/03/04/world/europe/russia-censorship-media-crackdown.html
http://dx.doi.org/10.1109/SP.2016.59
http://dx.doi.org/10.1109/SP.2016.59
https://www.state.gov/declaration-for-the-future-of-the-internet
https://www.state.gov/declaration-for-the-future-of-the-internet
https://www.state.gov/declaration-for-the-future-of-the-internet
https://www.state.gov/declaration-for-the-future-of-the-internet
https://www.petsymposium.org/foci/2023/foci-2023-0013.php
https://www.petsymposium.org/foci/2023/foci-2023-0013.php
http://dx.doi.org/10.1214/aoms/1177731118
http://dx.doi.org/10.1145/2810103.2813715
http://dx.doi.org/10.1145/2382196.2382212
http://dx.doi.org/10.1145/2382196.2382212
http://dx.doi.org/10.1109/SP40000.2020.00015


[82] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website fingerprint-
ing,” in Proceedings of the 23rd USENIX Security Symposium,
(San Diego, CA), USENIX Assn, 2014.

[83] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, S.
Cheung, F. Wang, and D. Boneh, “StegoTorus: A camouflage
proxy for the Tor anonymity system,” in Proceedings of the
2012 ACM Conference on Computer and Communications
Security, (Raleigh, NC), ACM, 2012.

[84] B. Wiley, “Dust: A blocking-resistant Internet transport proto-
col,” University of Texas at Austin, Tech. Rep., 2011.

[85] P. Winter and S. Lindskog, “How the Great Firewall of China
is blocking Tor,” in 2nd USENIX Workshop on Free and Open
Communications on the Internet, (Bellevue, WA), USENIX
Assn, 2012.

[86] P. Winter, T. Pulls, and J. Fuss, “ScrambleSuit: A polymorph
network protocol to circumvent censorship,” in Proceedings
of the 12th Annual ACM Workshop Privacy in the Electronic
Society, (Berlin, DE), ACM, 2013.

[87] M. Wu, J. Sippe, D. Sivakumar, J. Burg, P. Anderson, X.
Wang, K. Bock, A. Houmansadr, D. Levin, and E. Wustrow,
“How the Great Firewall of China detects and blocks fully
encrypted traffic,” in Proceedings of the 32nd USENIX Security
Symposium, (Anaheim, CA), USENIX Assn, 2023.

[88] Yawning Angel, obfs4 (the obfourscator), Protocol specifica-
tion, version c0898c2, 2019. [Online]. Available: https://githu
b.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt (visited
on 05/13/2022).

[89] W. J. Youden, “Index for rating diagnostic tests,” Cancer, vol. 3,
1950.

[90] R. Zhao, X. Deng, Z. Yan, J. Ma, Z. Xue, and Y. Wang,
“MT-FlowFormer: A semi-supervised flow transformer for
encrypted traffic classification,” in Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, (Washington, DC), ACM, 2022.

[91] H. Zolfaghari and A. Houmansadr, “Practical censorship
evasion leveraging content delivery networks,” in Proceedings
of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, (Vienna, AT), ACM, 2016.

17

https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/wang_tao
http://dx.doi.org/10.1145/2382196.2382211
http://dx.doi.org/10.1145/2382196.2382211
https://www.freehaven.net/anonbib/cache/wileydust.pdf
https://www.freehaven.net/anonbib/cache/wileydust.pdf
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
https://www.usenix.org/conference/foci12/workshop-program/presentation/winter
http://dx.doi.org/10.1145/2517840.2517856
http://dx.doi.org/10.1145/2517840.2517856
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://www.usenix.org/conference/usenixsecurity23/presentation/wu-mingshi
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://github.com/Yawning/obfs4/blob/master/doc/obfs4-spec.txt
https://doi.org/10.1002/1097-0142(1950)3:1%3C32::AID-CNCR2820030106%3E3.0.CO;2-3
http://dx.doi.org/10.1145/3534678.3539314
http://dx.doi.org/10.1145/3534678.3539314
http://dx.doi.org/10.1145/2976749.2978365
http://dx.doi.org/10.1145/2976749.2978365

	Introduction 
	Background 
	Network Traffic Dataset 
	Data Collection
	Collection Statistics

	Limitations of the State of the Art 
	Preliminaries
	Basic Empirical Methodology
	Validating Prior Results
	Evaluation Pitfalls of Prior Work
	False Positives
	Scalability
	Generalizability


	Deep Learning
	Experimental Methodology
	Validation
	Experimental Results
	Computational Performance
	Discussion

	Host-based Analysis 
	Analytical Method
	Implementation and Results
	Discussion

	Discussion 
	Related Work 
	Data Protection and Ethics 
	Conclusion 

