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ABSTRACT

Internet censorship by governments is an increasingly common
practice worldwide. Internet users and censors are locked in an arms
race: as users find ways to evade censorship schemes, the censors
develop countermeasures for the evasion tactics. One of the most
popular and effective circumvention tools, Tor, must regularly adjust
its network traffic signature to remain usable.

We present StegoTorus, a tool that comprehensively disguises Tor
from protocol analysis. To foil analysis of packet contents, Tor’s
traffic is steganographed to resemble an innocuous cover protocol,
such as HTTP. To foil analysis at the transport level, the Tor circuit
is distributed over many shorter-lived connections with per-packet
characteristics that mimic cover-protocol traffic. Our evaluation
demonstrates that StegoTorus improves the resilience of Tor to
fingerprinting attacks and delivers usable performance.

Categories and Subject Descriptors: C.2.0 [Computer-Commu-
nication Networks]: Security and protection; K.4.1 [Public Policy
Issues]: Transborder data flow

General Terms: Algorithms, Design, Security

Keywords: Anticensorship, Circumvention Tools, Cryptosystems,
Steganography

1. INTRODUCTION
Freedom of speech and decentralization are bedrock principles

of the modern Internet. John Gilmore famously said that “the Net
interprets censorship as damage, and routes around it” [31]. It is
more difficult for a central authority to control what is published on
the Internet than on older, broadcast-based media; in 2011, the Inter-
net’s utility to the “Arab Spring” revolutions prompted a spokesman
for the US Department of State to label it “the Che Guevara of the
21st century” [63]. Nonetheless, national governments can easily
inspect, manipulate, and block nearly all network traffic that crosses
their borders. Over a third of all nations impose “filters” on their
citizens’ view of the Internet [16]. As the Internet continues to grow
in scope and importance, we can expect that governments will only
increase their efforts to control it [13].

Tools for evading online censorship are nearly as old as the cen-
sorship itself [33, 56]. At present, one of the most effective circum-
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vention tools is “Tor” [24]. Tor provides anonymity for its users by
interposing three relays between each user and the sites that the user
visits. Each relay can decrypt just enough of each packet to learn
the next hop. No observer at any single point in the network, not
even a malicious relay, can know both the source and the destination
of Tor traffic.

Although Tor was not designed as an anticensorship tool, it works
well in that role. Repressive governments respond by blocking Tor
itself. In 2010 and 2011, Iran attempted to block Tor traffic by
scanning TLS handshakes for Diffie-Hellman parameters and/or
certificate features that were characteristic of Tor [20, 48]. China
employed a similar technique but enhanced it with active probing
of the suspected Tor relay, mimicking the initial sequence of Tor
protocol messages in detail [70]. The Tor developers defeated these
blocks with small adjustments to their software.

For a few days in early 2012, Iran blocked all outbound HTTPS
connections to many websites [60], including Tor’s primary site.1

To evade this more drastic blockade, Tor deployed a program called
obfsproxy (for “obfuscating proxy”) [21]. Obfsproxy applies an addi-
tional stream cipher to Tor’s traffic. This frustrates any filter looking
for a specific plaintext pattern (such as a TLS handshake), but does
not significantly alter packet sizes and timing. As we will discuss in
Section 5.1, this means that Tor is still easily fingerprintable.

Contributions: In this paper, we present an elaboration on the
obfsproxy concept, StegoTorus. StegoTorus currently consists of:
• A generic architecture for concealing Tor traffic within an

innocuous “cover protocol” (Section 2).
• A novel encrypted transport protocol geared specifically for

the needs of steganography (Section 3).
• Two proof-of-concept steganography modules (Section 4).

We will demonstrate the ease of detecting un-camouflaged Tor traffic
and StegoTorus’ effectiveness at concealing it, even with the current
proof-of-concept steganography (Sections 5.1 and 5.2). We will
also demonstrate that StegoTorus imposes a reasonable amount of
overhead for what it does (Section 6).

We anticipate that censors will adapt quickly to this advance
on the circumvention side of the arms race; more sophisticated
and varied steganography modules are under active development.
Ultimately, an attacker will need to defeat all of the steganography
modules used by StegoTorus to block Tor traffic.

2. ARCHITECTURE
StegoTorus acts as a “pluggable transport” [47] for Tor, replacing

its usual direct connection to a relay server. Pluggable transport is
an extension of SOCKS [43], so StegoTorus could also camouflage
traffic produced by other applications that can use a SOCKS proxy.

1https://www.torproject.org/
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(a) Data flow. The user’s browser uses Tor as a SOCKS proxy; Tor uses
StegoTorus as its SOCKS proxy. StegoTorus disguises the Tor link as
innocuous cover-protocol traffic, perhaps split over many TCP connec-
tions, that pass through the perimeter filters and reach the StegoTorus
server. The server decodes the steganography and passes Tor traffic to
the relay network.
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(b) Internal architecture. The chopper distributes re-encrypted Tor traffic to
steganography modules, which conceal it within cover-protocol messages.
Steganography modules can also generate decoy traffic directed at unin-
volved hosts. Counterpart modules in the recipient decode the messages and
reassemble the Tor link. Both sides have access to independent covertext
databases. Overall control rests with a configurable policy engine.

Figure 1: High-level overview of StegoTorus.

Figure 1a shows how the Tor+StegoTorus system transports data
between the user’s browser and censored websites; Figure 1b shows
the internal structure of the StegoTorus client and server. StegoTorus
applies two additional layers of obfuscation to Tor traffic:

Chopping converts the ordered sequence of fixed-length “cells”
that Tor produces, into variable-length “blocks” that do not have
to be delivered in order. Each block is re-encrypted using a novel
cryptosystem geared for the needs of steganography: every byte of
its output is computationally indistinguishable from randomness.

Chopping can be used by itself for minimum overhead; since its
output has no predictable content and randomized packet sizes, this
is enough to defeat all known pattern filters and the attacks described
in Section 5. However, a pattern filter that only passes protocols
with known, recognizable headers would block it.

Chopping produces “blocks” that do not have to be delivered in
order. However, they must be delivered reliably. At present, all our
cover protocols run over TCP. StegoTorus cannot run directly over
UDP, as Dust does [71], but it could run over DCCP, or a UDP-based
cover protocol that provides reliable delivery.

Steganography disguises each block as a message in an innocu-
ous cover protocol, such as an unencrypted HTTP request or re-
sponse. Since blocks can be delivered out of order, StegoTorus can
distribute a Tor link over many cover connections, improving both
efficiency and difficulty of detection. A StegoTorus server can listen
on many IP addresses, so that its clients appear to be talking to many
unrelated servers. StegoTorus clients can generate decoy traffic to
uninvolved hosts, making detection even more difficult.

2.1 Design Goals
StegoTorus preserves Tor’s basic design goals:

Unlinkability: The censor should not be able to determine which
Internet users communicate with which remote hosts via Tor.

Performance: Unlinkable access to the Internet should not be so
much slower than “unmasked” access that users will reject
the trade-off.

Robustness: The system should preserve its other design goals in
the face of active attacks.

StegoTorus also seeks to provide:

Undetectability: The censor should not be able to determine which
Internet users are using StegoTorus.

Unblockability: The censor should not be able to block StegoTorus
without also blocking a great deal of unrelated traffic.

The terms “unlinkability” and “undetectability” are defined precisely
by Pfitzmann and Hansen [59].

2.2 Threat Model
We model a censorious adversary more or less as Infranet [27]

and Telex [72] do. A censor has a network perimeter, which cuts the
global connectivity graph into two disconnected components. One
of these components is “inside” (or “censored”) and the other “out-
side.” The censor controls all the network infrastructure inside the
perimeter, but not the software on end users’ computers. (Attempts
to mandate censorware on end users’ computers, such as China’s
2009 “Green Dam” initiative, have so far been unsuccessful [73].)

The censor wishes to prevent the censored nodes from retrieving
material that meets some definition of undesirability; we assume
that no such material is hosted inside the perimeter.

2.2.1 Perimeter Filtering
The censor programs the routers for all perimeter-crossing links

to observe all cleartext traffic that they forward. This includes any
cleartext portion of a mostly-encrypted protocol, such as IP and TCP
headers and TLS record framing. Using three general techniques,
the routers detect undesirable material and prevent it from crossing
the perimeter.

Address filters prevent all communication with the IP addresses
of servers that are thought to host undesirable material. China main-
tains a blacklist of Tor entry nodes as part of its “Great Firewall.”

Pattern filters look for deterministic patterns in cleartext that
may indicate undesirable material. As mentioned in Section 1, Iran
was able to block all use of Tor for a few weeks with a pattern
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filter looking for a particular Diffie-Hellman public modulus in TLS
handshakes.

Statistical filters look for stochastic patterns, and can take low-
level packet characteristics (size, arrival time, etc.) into account as
well as cleartext headers and payloads. While statistical filters for
Tor are easy to construct (we describe one in Section 5.1), we are
not aware of any use of them in the field, to date.

2.2.2 Limits on the Censor
Perimeter filtering must operate in real time on a tremendous

traffic volume. To give some idea of the necessary scale, the CAIDA
project’s “Anonymized Internet Traces 2011” data set [14] con-
sists of the first 64 bytes of every packet that traversed a backbone
router in Chicago for one hour on a Wednesday afternoon; there are
1.96 billion packets in the set, for a total of 116 gigabytes of data.
This corresponds to an average traffic rate of 540,000 packets per
second; a filtering router that needs an extra two microseconds to
process each packet will halve overall throughput.

The precise capabilities of commercial “deep packet inspection”
hardware are not widely advertised. We assume, in general, that a
nation-state adversary has access to equipment that can perform a
two-stage analysis. The first stage sees every packet, runs with a
hard realtime deadline, and must judge the vast majority of packets
to be uninteresting. The second stage can only examine a tiny
fraction of the TCP flows crossing the router, and may be limited
to responding after-the-fact. This is consistent with the observed
behavior of China’s active probes for Tor bridges [70].

We assume all Tor relays are outside the perimeter, and the censor
does not operate malicious Tor relays, nor does it observe traffic
among outside nodes. If any of these assumptions are false, the
censor may be able to break Tor’s unlinkability guarantee [50, 53].
StegoTorus obfuscates the traffic between the Tor client and the
first Tor relay. Since the client is inside the perimeter, and the relay
outside, StegoTorus controls what the perimeter routers observe.

We also assume that the censor does not “turn off the Internet”
(that is, disconnect from the global network). This was done by
several countries during the Arab Spring, but only for a short time,
in response to imminent existential threat, and with negative conse-
quences for those who tried it. We expect that other governments
will not repeat this mistake. Similarly, we assume that address fil-
ters prevent communication with only a relatively small number
of IP addresses. Unlike systems such as Telex and Cirripede [38],
however, StegoTorus can potentially work even if the only protocol
allowed to cross the perimeter is unencrypted HTTP.

It is difficult for two parties to communicate securely if they
have never communicated securely in the past. Tor users must first
obtain the Tor client and learn the address of at least one relay, via
some extra-Tor method. Similarly, StegoTorus users must obtain the
StegoTorus client (as well as the Tor client) and learn the address
and public key of at least one StegoTorus server. We assume that
all necessary software and an initial server contact can be smuggled
over the perimeter, via “sneakernet” if necessary.

Since we anticipate that StegoTorus servers will be aggressively
blocked with address filters, we are developing a “rendezvous”
mechanism for distributing server address updates to StegoTorus
users [45]. In this paper we assume that the user knows contact
information for server(s) that have not yet been blocked.

3. CHOPPING AND REASSEMBLY
As we described briefly in Section 2, chopping converts the traffic

on a Tor link into a more malleable format: a sequence of variable-
size blocks, independently padded and deliverable out of order.
Every byte of each block is computationally indistinguishable from

randomness, as defined in [62]; this is a baseline requirement for the
hiddentext in theoretically secure steganographic schemes. [37, 66]
The module that performs this job (and its inverse) is, naturally,
called the chopper.

The block format is shown in Figure 2a. The bulk of each block
is encrypted using AES in GCM mode [25], which provides both
confidentiality and message integrity [7]. The block header consists
of a 32-bit sequence number; two length fields, d and p, indicating
respectively how much data and padding the block carries; an op-
code field, F, discussed below; and a 56-bit check field, which must
be zero. The minimum block length is 32 bytes (128-bit header,
128-bit MAC) and the maximum is 217 + 32 bytes. Block length is
controlled by the steganography modules; the chopper will fabricate
blocks exactly as long as requested, using data if possible, padding
if there is not enough. Padding consists of binary zeroes. Blocks
containing only padding (d = 0) are generated when there is no data
available but the cover protocol requires transmission.

The sequence number permits the receiver to sort incoming blocks
into their original order. It serves the same function as a TCP
sequence number, but it always starts at zero, counts blocks rather
than bytes, and may not wrap around (see Section 3.3). It also serves
to ensure that the same header is never transmitted twice. This is
important because the header must also be encrypted to render it
indistinguishable from randomness, and needs integrity protection
to preclude chosen-ciphertext attacks [2, 9], but we can’t include it
in the data authenticated by GCM because we have to decrypt d and
p in order to know where the authentication tag begins.

Instead, we protect the header with a custom short-message au-
thenticated encryption mode that relies only on the basic AES pseu-
dorandom permutation. The check field brings the header up to
exactly the AES block size, and we encrypt it as a standalone block
with a different key from that used for the payload. Before the
receiver acts on a decrypted header, it verifies that every bit of the
check field is zero, and that the sequence number is within a 256-
block-wide receive window. An active attacker who modifies the
ciphertext of the header has less than one chance in 280 of passing
this verification. We recycle the ciphertext of the header as the GCM
nonce for the payload.

3.1 Function Codes
The F field of the block header controls how the receiver will

process the block. All presently-defined codes are listed in Table 1.
Some codes are only valid in handshakes; see below.

No. Name Semantics

0 data Application data to be relayed.
1 fin Last block of application data to be relayed.
2 rst Protocol error; close the link immediately.
3 rc Reconnect: associate this new connection with

an existing link.
4 nc New link, client side. See section 3.2 for details.
5 ns New link, server side.
6 rki Initiate rekeying; see Section 3.3 for details.
7 rkr Respond to rekeying.
8–127 Reserved for future definition.

128–255 Reserved for steganography modules.

Table 1: Codes for the F field

3.2 Handshake Messages
The first few bytes of data sent on each new connection are a

handshake message (henceforth just “handshake”), which informs
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

seq no d p F check = 0

data and padding

authentication tag

(a) Blocks consist of a header, up to 215 − 1 bytes each of data and padding,
and an authentication tag. d: data length; p: padding length; F: function
code. d + p is not required to be a multiple of 16.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pad

temporary key material

0 d≥32 p nc 0

pad

ECDH message 1

optional access token

authentication tag

(b) A new-link request consists of a Möller key encapsulation, followed by
a block encrypted with the temporary key material. Four padding bits are
copied into the “check” field to make them non-malleable.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 d=40 p ns 0

ECDH message 2

new link ID authentication tag

(c) A new-link response is a normal block, encrypted with the temporary
key material.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pad

temporary key material

link ID ! 0 0 0 rc 0

pad

(d) A reconnection request is just a key encapsulation and a modified header.
The link ID replaces the sequence number, d and p must be zero, and there
is no authentication tag.

Figure 2: Message formats before steganography. Background shading indicates encryption mode. !: header encryption; !: GCM encryption; !: GCM
authentication tag; ": Möller key encapsulation. There are 16 bytes per row of each diagram.

the server whether this connection belongs to an existing link or to a
new one. If the connection belongs to a new link, the server replies
with a handshake of its own, and both peers derive new session
keys for the link from the data in the handshakes. There are three
handshake formats, shown in figures 2b, 2d, and 2c. Handshakes
have similar overall structure to blocks, but vary in details.

Most asymmetric cryptosystems’ ciphertexts are easily distin-
guished from randomness. We use Möller’s elliptic-curve key en-
capsulation mechanism [52], which is designed to produce random
ciphertexts. It can only be used to establish a weak shared secret,
which we refer to as “temporary key material.” It has the unfortunate
property of producing 164-bit messages, which must be padded to
a whole number of bytes. The padding bits could be flipped by an
adversary without any visible effect. To prevent this information
leak, the check field of the header that immediately follows a key
encapsulation contains a copy of the padding. Also, the server must
maintain a replay cache of all key encapsulations it has seen recently,
and discard any handshake with a replayed encapsulation, even if
the data that follows is different.

Each link has a nonzero, 32-bit link ID. The server chooses this ID
during link setup, making sure that it is unique among all active or
recently-active connections to the same server. It is never transmitted
in cleartext, so it need not be random.

Key derivation, whether from the temporary key material or from
Diffie-Hellman exchanges, is done with HKDF-SHA256 [42], salted
with the server’s public key, and produces four 128-bit AES keys:
server-to-client payload key, server-to-client header key, client-to-
server payload key, and client-to-server header key, in that order.

3.2.1 New Link Handshake
Link setup is loosely based on the STS protocol [18] and provides

forward secrecy. Initially, the client knows the server’s public key.
It has no asymmetric keypair of its own, but it may have an “access
token” which will identify it to the server. This token is opaque to
the client, and its contents are outside the scope of this paper.

The client’s first message to the server is shown in figure 2b. It
begins with a randomly chosen Möller key encapsulation, followed

by a special block encrypted with the temporary key material. This
block has sequence number 0, and its F code is rc. Its first 32
bytes are an ECDH message on the NIST standard curve P-256 [54],
derived from a source of strong randomness. Only the x-coordinate
of the public point is transmitted. If the client has an access token,
it follows immediately after the ECDH message.

If the server can decrypt this handshake and finds the access token
(if any) acceptable, it replies with its own handshake, shown in
figure 2c. This is a normal block, also encrypted with the temporary
key material provided by the client. It also has sequence number 0,
its F code is rs, and its contents are another ECDH message and
the link ID for the new link. Once the client receives this message,
both sides can complete the Diffie-Hellman exchange and derive
long-lived keys for the link. Subsequent blocks are encrypted with
those keys. The handshakes count as sequence number 0 in each
direction.

3.2.2 Reconnection Handshake
For new connections to established links, the client’s handshake

needs to be as short as possible. It is shown in figure 2d. As with a
new-link handshake, it begins with a randomly chosen Möller key
encapsulation, but instead of a block, only a modified header follows.
This header has p = 0, d = 0, and F = rc, and it carries the desired
link ID in place of the sequence number. Unlike normal blocks
with p = 0 and d = 0, the GCM authentication tag is omitted. The
client may transmit blocks, encrypted with the appropriate link keys,
immediately after this handshake (that is, in the same cover-protocol
message).

3.3 Rekeying
Rekeying is very similar to key derivation for a new link, but uses

blocks rather than special handshake messages. Rekeying resets
the sequence number but does not change the link ID. Either peer
may initiate a rekeying cycle at any time by transmitting an rki
block. Peers are required to rekey before the sequence number
wraps around, and encouraged to rekey considerably sooner.

An rki block’s data section is simply an ECDH message on curve
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P-256. The recipient of this message responds with an rkr block,
whose data section is another ECDH message. Upon receipt of rkr,
both peers derive new link keys from the Diffie-Hellman exchange,
just as they would have for a new link. It is a protocol error to
transmit any blocks after rki until receipt of rkr, or to transmit
blocks using the old keys after transmitting rkr.

3.4 Link Termination
When both sides have sent and received a fin block, the link is

closed; however, both sides must remember the link ID for some
time, to guard against replay attacks or delayed block arrival. It is a
protocol error to transmit a data block with a nonzero d field after
transmitting a fin block; however, data blocks with d = 0 may still
be sent, and other function codes may be used if appropriate. For
instance, the rki block requires a response, even if the recipient has
already transmitted a fin.

4. STEGANOGRAPHY
In this section, we describe two proof-of-concept steganography

modules: one that duplicates the packet sizes and timings of en-
crypted peer-to-peer protocols, and one that mimics HTTP. These
modules illustrate the flexibility and feasibility of the StegoTorus
framework. However, they are not expected to resist sophisticated,
targeted attacks that might be launched by a nation-state adver-
sary. To underscore this, for each module we also describe potential
attacks and the level of sophistication each requires.

More diverse and resilient modules are under development, both
by us and the larger community, as the arms race continues. The
StegoTorus client can be configured to use whichever modules the
adversary has not yet blocked; therefore, ultimately, the adversary
will have to detect and block traffic generated by all of the steganog-
raphy modules in order to block StegoTorus.

4.1 Embed Module
The embed steganography module conceals Tor traffic within an

encrypted, peer-to-peer cover protocol, such as the popular Skype
and Ventrilo protocols for secure voice over IP. (Ventrilo is not
strictly a peer-to-peer protocol, but its users typically set up their
own servers, so there is no small, stable set of server IPs that could
be whitelisted.) Since the audio payload of each packet is encrypted,
we can substitute our own encrypted data without fear of payload
inspection. This leaves cleartext headers, packet sizes, and inter-
packet timings as the characteristics visible to the censor.

4.1.1 Packet Traces
This module relies on a database of packet traces, pre-recorded

sequences of packet sizes and timings from real sessions of the cover
protocol. Client and server match the recorded packet sizes exactly,
and timings to the nearest millisecond. If there is no data available
when a packet should be sent, they will fabricate padding-only
blocks to maintain the deception.

The server does not maintain its own database of traces; instead,
the client transmits its chosen trace to the server as a special control
message, immediately after link setup. Some of these traces are
distributed with the software, but users are encouraged to capture
their own use of the cover protocol, so that the censor cannot block
StegoTorus by pattern-matching against the distributed set of traces.
(Packet timings seen by the client may or may not correspond to
packet timings as actually transmitted by the server. For greater
realism, one should capture a trace from both ends, but we have not
implemented this yet.)

Potential Attacks: Some VoIP protocols permit an eavesdropping
adversary to learn much about the speech being transmitted, just

from packet sizes and timings [68]. Therefore, if traces are reused
too often, the censor might become suspicious of users apparently
having the exact same conversation over and over again.

4.1.2 Application Headers
The packet trace does not attempt to capture application headers,

as these may depend on the substituted contents. Instead, the embed
module includes emulation code for each potential cover protocol.
Unfortunately, neither the Skype nor the Ventrilo protocol has a
public specification, necessitating reverse engineering. To date this
has been done by hand, but we are investigating the possibility of
automating the process [12, 15, 44].

Potential Attacks: If the censor has access to the true protocol
specification for a protocol we have reverse engineered, they may
be able to detect deviations on our part.

Even if the censor doesn’t have this information, it might choose
to block all apparent VoIP protocols, or all peer-to-peer traffic that
appears to contain encrypted data. These are popular, but not yet
so popular that this would amount to “turning off the Internet,”
and there are plausible political cover stories for such actions by
a nation-state: preserving telephone revenue, combating copyright
infringement, etc.

4.2 HTTP Module
The HTTP steganography module simulates unencrypted HTTP

traffic. Since the censor can observe the overt content of this mod-
ule’s traffic, and protocol decoders for HTTP are ubiquitous, we take
care to mimic “real” browser and website behavior as accurately as
possible.

HTTP [28] follows a strict pattern: the client sends a request,
waits for the server to produce a response, can then send another
request, and so on. HTTP 1.1 allows the client to send several
requests in a row without waiting for responses (“pipelining”) but
this is rarely used, due to server bugs [55]. Instead, clients achieve
parallelism by opening multiple connections to the same server.
Each request contains a “method” (get, post, etc) that controls what
the server will do to prepare the response.

The HTTP module also relies on a database of pre-recorded HTTP
requests and responses; we also refer to these as “traces.” Like the
embed module’s traces, some are distributed with the program, and
users are encouraged to record their own. Unlike embed, requests
and responses are not organized into a temporal sequence, and client
and server use independent databases. However, the server generates
responses that are consistent with client requests; for instance, if a
client sends a request for a PDF document, the server will produce
a PDF covertext.

4.2.1 Request Generator
Normal HTTP client-to-server traffic consists almost entirely

of get requests. Unfortunately, these provide very little space to
conceal our hiddentexts. Here is a typical request template from our
database:

GET /<uri> HTTP/1.1
Accept: text/html,application/xhtml+xml,

application/xml;q=0.9,*/*;q=0.8
Accept-Encoding: gzip, deflate
Accept-Language: en-us,en;q=0.5
Connection: keep-alive
Host: <host>
User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:10.0)

Gecko/20100101 Firefox/10.0
Cookie: <cookie>

Nearly all of this is boilerplate that must be sent verbatim in every
request. Data can be inserted at each position marked <...>, but it
must be properly encoded.
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At present we only store hiddentext in the <uri> and <cookie>
positions, which can carry arbitrary textual data. We encode the
binary chopper output in a modified base64 alphabet [39] that
avoids characters with special meaning in URIs or cookies: ‘+’ is
replaced by ‘-’, ‘/’ by ‘_’, and ‘=’ by ‘.’. We then insert characters
at random positions in the encoded string, to make it look more like
a genuine URI or cookie header: for URIs we insert ‘/’, for cookies
we alternate between ‘=’ and ‘;’.

The <host> can theoretically also carry hiddentext, but with
more difficulty: <host> must have the form of a DNS hostname
or IP address [28], and the censor could block HTTP connections
where it was not a registered hostname for the IP address to which
the client was connected. Presently, we do not attempt this; instead
we do a reverse DNS lookup on the server’s IP address, and use the
first reported name in every request to that address.

Potential Attacks: To the human eye, the HTTP request generator’s
URIs and cookies likely look different from normal URIs or cookies.
The pattern of requests that it generates is also potentially different
from the pattern of requests generated by a visit to a real website.
Hence, it would be possible for an adversary to build a machine
classifier that can make the same judgment. The cookie string we
send changes on every request, without the server sending back
Set-Cookie: directives; this could also be a distinguisher, as a
real web browser only changes cookies when instructed to. If such
attacks become common, they we may be limited in our use of
cookies as a carrier channel. More sophisticated cookie, URI, and
request pattern generation is also possible; Infranet [27], for instance,
devotes some effort to this problem. However, substantially more
overhead will be required.

The User-Agent header identifies the browser and operating
system in use. If the same client IP address consistently produces
one user-agent, except during a handful of browsing sessions, that
handful might attract attention. Generating a database of client
requests on each user’s machine ensures that we generate user-agent
headers matching the browser that that user normally uses.

The censor may conduct active attacks by replaying HTTP re-
quests; a real web server would normally produce the same response,
but StegoTorus will not. To mitigate this we could place an off-the-
shelf HTTP “accelerator” cache in front of the StegoTorus server
so that, for a short time, replayed requests would produce the same
response as the original.

4.2.2 Response Generator
HTTP responses begin with a few headers, similar to the ones

shown above, but offering even less space for hiddentext. However,
they continue with a “response body” which is designed to carry ar-
bitrary data. That data typically conforms to some known file format,
which must be consistent with the contents of the request. We have
developed response generators that embed StegoTorus hiddentexts
in three common file formats: JavaScript, PDF, and Flash. These
data formats are complex enough to conceal hiddentexts easily, and
pervasive enough that blocking them would break far too many
popular websites to be politically tenable. Generators for HTML
and various image, audio, and video formats are under development.

JavaScript Generator: JavaScript is a programming language,
human-readable in its original form, but frequently “minified” to
reduce its size on the wire. Minification involves removing all white
space and replacing variable names with shorter machine-generated
identifiers. There is an enormous volume of JavaScript in use on the
open web: 2.5% of all bytes transferred by HTTP in early 2009 [46].

This generator picks a response containing JavaScript, scans it
for identifiers and numbers, and replaces them with characters from
the hexadecimal encoding of the hiddentext. To preserve syntactic

validity, the encoder will not change the first character of an identifier
or a number, and there is a blacklist of JavaScript keywords and
built-in functions that should not be replaced. The decoder simply
reverses the process. Our objective with this module is to produce
syntactically valid JavaScript that cannot be trivially detected by a
parser.

PDF Generator: PDF documents consist of a sequence of “ob-
jects,” which define pages, images, fonts, and so on. Many of these
objects will normally be compressed, using the ubiquitous “deflate”
algorithm, to save space. The PDF response generator locates com-
pressed objects within a PDF document from the HTTP response
database, and replaces their contents with our hiddentexts. Chopper
output is incompressible, but we apply the “deflate” transformation
to it anyway, so that each modified object’s contents is still superfi-
cially what it ought to be. The overall file structure is adjusted to
match.

SWF Generator: Adobe (formerly Shockwave) Flash is a format
for vector-graphic animations, and is also frequently used as a con-
tainer for video. Flash files consist of a sequence of tagged data
blocks, containing shapes, buttons, bitmaps, ActionScript byte code,
etc. [1] Flash files may be compressed (CWS) or uncompressed
(FWS). In the more common CWS format, the entire file (with the
exception of a short initial header, but including the block framing)
is compressed with “deflate.” The SWF response generator uncom-
presses a template CWS file, replaces block contents with encrypted
data, and recompresses the result.

Potential Attacks: The HTTP response generator attempts to pre-
serve the syntactic validity of JavaScript, PDF and SWF files that
it modifies. However, it does not attempt to preserve the semantics
of JavaScript or the original content of PDF or SWF. Therefore,
adversaries might be able to detect the use of the present HTTP gen-
erator by attempting to execute JavaScript, render PDF documents,
or play back Flash animations. However, doing so at line rate on
a border router would be quite challenging. The filter would have
to extract HTTP response bodies of interest, reassemble packets
into streams, and then parse and decode the contents of the file;
all of these are expensive and complicated operations. Providing
the appropriate execution environment for JavaScript requires the
adversary to assemble and process all the data of the surrounding
webpage, just as a browser would.

Nonetheless, we do expect that if StegoTorus comes into wide use,
filtering routers will gain the ability to detect these simple schemes.
In particular, a natural escalation of the arms race might involve the
use of cascading detectors, where a series of fast filters select traffic
to subject to more expensive analyses. If this happens, we would
have to implement more sophisticated steganography.

5. DETECTION RESISTANCE
To evaluate how well StegoTorus can conceal a Tor stream, we

developed two attacks upon Tor, which StegoTorus ought to defeat
if it is functioning as intended. We designed these attacks to be
practical in the resource-constrained environment of a perimeter
filter (as described in Section 2.2.2) so they are deliberately quite
simple. The first attack picks Tor streams out of other TCP streams,
based on a fundamental characteristic of the Tor wire protocol that
is cheap to detect. The second attack operates on known Tor streams
and extracts information about the sites being visited covertly. In
each case we will first describe the attack and how it fares against
Tor, then discuss its effectiveness against StegoTorus. As we did for
the steganography modules, we will also discuss potential improve-
ments to the attacks that might be implemented by an adversary
determined to detect StegoTorus.
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5.1 Detecting Tor
The Tor protocol [22] sends nearly all messages in the form of

“cells” with a fixed length of 512 bytes. These cells are packed
into TLS 1.0 application-data records [17] on the wire. Because of
the “empty record” countermeasure for a cryptographic weakness
in TLS 1.0 [5, 6], the overhead of TLS encapsulation is 74 bytes
per application-data record. The client will pack many cells into a
record if it has enough to say, and TCP will split large records in the
middle in order to transmit MTU-sized packets, but Tor nonetheless
winds up transmitting many TCP packets that contain exactly one
cell. These packets have a characteristic payload length of 586
bytes. A filtering router can pick Tor streams out of other traffic by
counting how often they appear.

We implemented the following concrete algorithm: let τ be the
adversary’s current estimate of the probability that a given TCP flow
is Tor, initially set to zero. Ignore packets containing only an ACK
and no payload; these are best treated as neutral [57]. Otherwise,
update τ← ατ+ (1−α)1l=586 where α ∈ (0, 1) is a tuning parameter
and 1l=586 is one if the TCP payload length l equals 586 bytes, zero
otherwise. If τ rises past a threshold value T , the TCP flow is
considered Tor traffic.

To do this, a perimeter filter must be capable of tracking TCP
flows in realtime, and maintaining one scalar value (the estimate τ)
for each; to the best of our knowledge, this is within the capabili-

ties of modern DPI hardware. Empirically, α = 0.1 and T = 0.4
identifies Tor within a few dozen packets. Figure 3 shows proba-
ble Tor flows picked out of all the port-443 traffic in the CAIDA
2011-Chicago data set [14] with this technique. (This data set only
includes IP and TCP headers for each packet captured, so we are
unable to confirm that the selected flows are actually Tor, or how
much of the background traffic is in fact HTTPS.)

To confirm the effectiveness of this attack against vanilla Tor, we
collected traffic traces from visiting the top ten Alexa sites twenty
times over vanilla Tor, obfsproxy [21], and StegoTorus with the
HTTP steganography module. In addition to non-zero TCP pay-
load sizes for each packet, we extracted the lifetime and total data
transferred (treating the two directions as independent) of each TCP
stream. Figure 4 presents a qualitative comparison of these features
in the form of empirical CDFs, with all TCP flows on port 80 of
the CAIDA 2011-Chicago data set (again, we cannot confirm this,
but port 80 traffic on the public Internet is almost surely HTTP)
for reference. Tor’s predilection for generating 586-byte packets is
clearly seen in the rightmost panel of Figure 4, and the other panels
show other characteristics that would be easy for the adversary to
detect, such as a tendency for TCP connections to last exactly 20 or
30 seconds. Obfsproxy does little to alter these features.

StegoTorus fares much better. It is not perfect, but it generates
empirical CDFs for all three features that are closer to the CAIDA
port 80 reference than they are to either Tor or obfsproxy. In par-
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ticular, it eliminates the 586-byte characteristic payload size. Still,
a determined adversary with more analytic power at its disposal
might be able to detect the remaining statistical differences between
StegoTorus-HTTP and “normal” HTTP traffic that Figure 4 reveals.
Improving our HTTP emulation will reduce these differences. If
necessary, we could also implement an explicit statistical model of
what HTTP traffic “should” be like.

5.2 Identifying Visits to Facebook
Once the censor has identified TCP streams as Tor traffic, they

would also like to learn which sites are being accessed clandestinely.
We present a simple method to determine whether a Tor user is
visiting Facebook; this site has sometimes been completely blocked
by government censors. It is a cut-down version of Panchenko
et al. [57], which can identify accesses to a small set of censored
websites within a larger Tor session. Their classifier uses a support
vector machine, which is too expensive to run on a filtering router,
even on a small number of streams. With careful optimization, our
classifier requires a handful of probability calculations per arriving
packet, plus maintenance of a sliding-window vector per stream
under surveillance; this should be acceptably cheap.

Once a stream has been identified as Tor traffic, the censor main-
tains a pair of sequences, ui and di, sliding over the last n non-empty
packets observed by the filtering router. Each ui is the cumulative
sum of payload lengths for packets 1 through i sent “upward” (client
to relay), and di is the same for packets sent “downward” (relay
to client). The censor has previously observed “typical” Facebook
traffic, and modeled the probability distributions Pr[Ui] and Pr[Di]
that one would expect to see if a trace were a visit to Facebook.
Using this model, the censor computes

log Pr [{ui}, {di} is Facebook]

=

n
∑

i=1

log Pr[Ui = ui] +
n
∑

i=1

log Pr[Di = di]

Log-probabilities are used to avoid floating-point underflow, since
the per-packet probabilities can be very small. If the overall log-
probability exceeds a threshold, the censor classifies the traffic as a
visit to Facebook.
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Figure 5: Log-probabilities reported by Facebook classifier, shifted
to place the classification threshold at zero on the y-axis. Visits to
Facebook (squares) show the shifted log-probability for the first 250
packets. Visits to non-Facebook sites (circles) show the maximum
shifted log-probability observed for a 250-packet sliding window.

We trained this classifier on the first 250 packets transmitted in
each direction over ten visits to the Facebook home page (login
screen), and modeled the probability distributions as independent
Gaussians for each position in the sequence. This is a deliberate
departure from reality: Ui+1 has a strong dependence on Ui, since
they are cumulative sums, but treating them as independent makes
the classifier robust to variation in the order of resources downloaded.
We then tested it on 20 more visits to Facebook, plus 40 visits to
other web sites chosen from Alexa’s categorized directory of popular
sites [3]. For all of the test visits, we browsed randomly until we had
somewhere between 5,000 and 30,000 TCP packets; this resulted
in a total of over 450,000 total packets and 500MB of Tor traffic.
Figure 5 shows the results. Only one of the Facebook visits is not
detected, and none of the other sites are misdetected as Facebook.

We augmented this attack to detect visits to nine of the top ten
Alexa sites.2 The classifier described above is intrinsically binary:
site-X or not-site-X. An adversary wishing to know which of some
set of sites was being visited would have to run a classifier for each
site in parallel, suffering additional resource costs proportional to
the number of sites. If the adversary cares only about visits to a
fairly small number of sites, this will not be a significant problem.

For each site, we trained a classifier using the same procedure
as described above for Facebook, using traces for ten visits to its
front page. A traffic stream generated by a real user would not stop
after loading the front page of whatever site he or she was visiting.
Therefore, we adjusted the training window size for each site to
ensure that the classifier did not simply learn the overall amount of
data involved in loading the front page. We then tested each binary
classifier on an additional ten visits to the target site, plus ten traces
for each of the other eight sites.

For test runs with “vanilla” Tor, we took the best classification
result obtained among four different window sizes: 50, 100, 150,
and 200 packets. For test runs with StegoTorus, we added a 500-
packet window, since StegoTorus-HTTP generates a much larger
volume of traffic. We present classification accuracy in Table 2, as
trapezoidally approximated AUC scores (area under the receiver
operating characteristic curve) for Tor and StegoTorus visits to
each of the nine sites. AUC scores allow evaluation of classifier
effectiveness without first having to choose a tradeoff between false
negatives and false positives.

Web Site Tor StegoTorus

Google 0.9697 0.6928
Facebook 0.9441 0.5413
Youtube 0.9947 0.4125
Yahoo 0.8775 0.7400
Wikipedia 0.9991 0.7716
Windows Live 0.9403 0.6763
Blogspot 0.9825 0.6209
Amazon 0.9841 0.8684
Twitter 0.9944 0.7366

Table 2: AUC scores for detecting visits to nine of the Alexa top ten
sites’ front pages, over Tor and StegoTorus.

An AUC score of 0.5 indicates a classifier performing no better
than random guessing, and a score of 1 indicates perfect accuracy.
Over Tor by itself, we can often obtain AUC scores better than
0.95, but over StegoTorus, the scores drop to 0.75 or less in most
cases. For real-time classification of the traffic volume seen at a
perimeter router, the adversary requires an AUC score very close to
1 to avoid being swamped by errors. StegoTorus does not reduce

2baidu.com was excluded because visits to this site did not ex-
change enough packets to perform a meaningful analysis.
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Figure 6: Overhead and resilience of StegoTorus’ HTTP steganography module, compared to Tor alone and to StegoTorus in chopper-only operation.
Each data point shows median bandwidth consumption over a 20-second interval while transferring a continuous, fixed-rate stream of traffic over a
5.6 Mbps DSL link with adjustable latency. Whiskers indicate the inter-hinge distance [49]. Tor and chopper-only StegoTorus do not suffer from latencies
up to at least 450 ms. The present HTTP module is much more sensitive to latency, and cannot keep up with high-bandwidth streams at higher latencies.

the adversary’s odds all the way to chance, but it reduces them far
enough to make the attack impractical.

A determined adversary might train additional classifiers on visits
to sites of interest over StegoTorus. However, these classifiers will
be dependent on the covertext database that the adversary used
for training, so StegoTorus users who generate their own covertext
databases will be protected from this tactic.

6. PERFORMANCE
All performance tests were conducted using a desktop PC in Cali-

fornia with a DSL link to the Internet (5.6 Mbit/s down, 0.7 Mbit/s
up) as the client, and a virtual host in a commercial data center
in New Jersey as the server. During testing, the DSL link was
otherwise idle, and round-trip latency between the two machines
was 85 ms. To ensure that our results reflect the performance of
StegoTorus itself rather than factors beyond our control (such as
the instantaneous load on the global Tor network), we configured a
private Tor network entirely within the server host, and sourced all
of the test files and streams from an HTTP server also running on
that host.

Steganographic Expansion: We performed a series of downloads
of 1,000,000-byte files and measured the amount of data actually
transferred over the network by a direct HTTP connection, Tor,
StegoTorus using the chopper alone, and StegoTorus with the HTTP
module. The results are shown in Table 3. Tor itself has a small
amount of overhead, and the chopper imposes a little bit more, but
HTTP steganography is very expensive by comparison, increasing
the amount of data sent upstream by a factor of 41, and downstream
by 12. While we have not spent much time on optimizing our
encoding, an expansion factor of at least eight (one byte per bit) is
typical for modern steganography schemes [10], so we suspect that
HTTP steganography cannot be made that much more efficient in
the downstream direction.

Goodput: Expanding on the previous experiment, we conducted
more downloads of files of various sizes, measured the time required,
and computed the mean goodput (that is, application-layer through-
put) achieved in the same configurations described earlier; the results
are shown in Figure 7. We see that the goodput of the chopper-only
configuration is comparable to Tor, and that StegoTorus-HTTP is
only able to achieve goodput of roughly 27 kB/s, which is still about
4 times better than a 56 kbit/s modem. Consistent with this, we have
been able to use StegoTorus-HTTP as-is for casual Web browsing;
subjectively speaking, it is noticeably slower than a direct broadband

To server From server
bytes × bytes ×

Direct 23,643 1 1,014,401 1
Tor 61,162 2.6 1,075,715 1.1
StegoTorus (chopper) 63,061 2.7 1,084,228 1.1
StegoTorus (HTTP) 966,964 41 11,814,610 12

Table 3: Mean number of bytes transferred in each direction in or-
der to download a 1,000,000-byte file directly, over Tor, and over
StegoTorus with and without HTTP steganography. The file was
downloaded 32 times for each test.
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file transfers.

connection, but not so slow that waiting for page loads becomes
tedious.

Resilience: Since StegoTorus may be used in locations with poor
connectivity, we also investigated its performance as a function of
network latency. We used Linux’s netem mechanism [34] to vary
the round-trip latency to the StegoTorus server from 100 to 450 ms.
For comparison, packets from California take approximately 85 ms
to reach New Jersey, 120 to 180 ms to reach East Asia or Australia,
and 300 to 350 ms to reach India or Africa.

We configured the server to generate continuous streams of data
at three different rates, thus measuring steady-state behavior, and
recorded the median bandwidth consumption over a period of 20
seconds at each latency setting. The results are shown in Figure 6.
Ideal behavior would be for each line to be perfectly horizontal, and
as close to the “Tor” line as possible.

Both Tor and StegoTorus in chopper-only mode are robust up to
450 ms of delay, suffering no measurable performance degradation.
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The HTTP module, however, can keep up with a 50 kB/s data stream
only at latencies below 200 ms. Allowing HTTP to use more parallel
connections increases throughput at low latencies, but does not help
it keep up at high latencies. We suspect this is because each chopper
block, which typically will only contain one or two Tor cells, takes a
full HTTP request-response pair to transfer to the peer. Thus we are
only transferring one or two Tor cells per round-trip cycle, despite
consuming far more bandwidth. However, we believe that the HTTP
module can be improved to handle high latency at least somewhat
better, and plan to make this a priority for future work.

7. RELATED WORK
Here we summarize related research in the areas of blocking

resistance and encrypted traffic analysis.

Address Filtering Resistance: The oldest technique for evading ad-
dress filters is the use of open proxy servers, such as DynaWeb [26]
and Ultrasurf [65]. However, with these services, users have to
rely on the proxy administrator not to betray their browsing habits.
Proxies also have publicly advertised and relatively stable IP ad-
dresses, so it is easy to block them in an address filter. While Tor
relays come and go frequently, Tor’s directory service is public, and
there is nothing to stop a perimeter filter from blocking every entry
point it lists. The obvious solution is to have many proxies whose
addresses are not published; users have to find out about them via
covert means. Köpsell and Hillig proposed these covert proxies in
2004 as an add-on to their AN.ON service [41]. The Tor Project calls
them “bridge relays” and has deployed them extensively [19, 23].

Browser-hosted proxies [29] aim to make so many proxies avail-
able that it would be hopeless for a censor to block them all; there
is still a global directory, but it is piggybacked on a cloud-storage
service that is so widely used that the censor will hesitate to block it.
Telex [72], Decoy Routing [40], and Cirripede [38] take a different
approach to address-filtering resistance: TCP streams are covertly
“tagged” to request that a router somewhere on the path to the overt
destination divert the traffic to a covert alternate destination. Telex
and Decoy Routing place the tag in the TLS handshake, whereas
Cirripede uses the initial sequence numbers of several TCP connec-
tions. All three rely on the impenetrability of TLS to prevent the
censor from making its own connections to the overt destination
and comparing what it gets with the observed traffic, and may be
vulnerable to large-scale traffic analysis as Tor is.

Pattern and Statistical Filtering Resistance: Infranet [27], like
StegoTorus, conceals traffic that would otherwise be blocked within
seemingly normal HTTP traffic. It works as a direct proxy for
the browser, and does not provide Tor’s anonymity guarantees; on
the other hand, it can take advantage of its access to unencrypted
network requests to reduce its bandwidth requirements. Dust [71]
attempts to define a cryptosystem whose output is wholly indis-
tinguishable from randomness; it is not a complete circumvention
system by itself (but is under active development as a pluggable
transport for Tor) and could theoretically be blocked by looking for
the absence of any cleartext. SkypeMorph is a pluggable transport
for Tor that makes Tor packet shape resemble Skype [51]. It is
conceptually similar to our embed module, but lacks our generic
chopper-reassembler and crypto framework. NetCamo [32] is an
algorithm for scheduling transmissions to prevent traffic analysis; it
is complementary to any of the above, and could also be deployed
within existing relay servers to enhance their resistance to global
adversaries. Collage [11] is a scheme for steganographically hiding
messages within postings on sites that host user-generated content,
such as photos, music, and videos. The sheer number of these sites,
their widespread legitimate use, and the variety of types of content

that can be posted make it impractical for the censor to block all
such messages. However, it is suitable only for small messages that
do not need to be delivered quickly, and it may be vulnerable to
steganographic stripping [30].

Encrypted Traffic Analysis: There have been a number of studies
on analyzing encrypted traffic to classify the application type [4] or
the web site being visited in an encrypted HTTP stream [8, 36, 64].
These attacks usually extract some set of features based on the
packet sizes, timings, and directions (essentially all of the available
information when encryption is used) and use machine learning
techniques to do the classification. Recently, some similar traffic
analysis work has been done for clients who are using Tor. This
naturally makes the task more difficult because Tor introduces two
defenses [24]: combining all network traffic into one TCP stream to
the first Tor router, and padding each packet to a fixed size (or a small
set of sizes). Herrmann et al. [35] use a multinomial naïve Bayes
classifier on the histogram of packet sizes and directions successfully
against VPN technologies and OpenSSH, but they achieve under
3% accuracy against Tor while classifying on a set of 775 web
sites. The work of Panchenko et al. [57], however, demonstrates
that these defenses are not enough. Using support vector machines
and a carefully selected feature set, they were able to achieve over
50% accuracy on the same classification task. This prompted the
developers of Tor to introduce an ad hoc defense in the form of
randomized pipelining [58] to defeat this type of classifier. Last,
Wang et al. [67] present a potential application-level attack that
involves serving malicious content and then observing a distinctive
traffic pattern; although relevant, we are more interested in passive
attacks that could be carried out on a large scale.

8. CONCLUSION
We described StegoTorus, a new system for improving Tor’s ro-

bustness against automated protocol analysis. StegoTorus interposes
on communications between the Tor client and the first Tor relay,
implements a custom encryption protocol and provides a suite of
steganography modules that make Tor resilient to fingerprinting
attacks. Our statistical evaluations demonstrate that StegoTorus
makes Tor traffic more resilient to site fingerprinting attacks and
and that it resembles HTTP in the dimensions of connection length,
payload size and bandwidth use. Our performance measurements
indicate that our prototype system, in its HTTP steganography mode,
delivers throughput of roughly 30 kB/s, which is about four times
that of a 56 kbit/s modem.

Future Work: There is much room for further research on expand-
ing and strengthening our suite of steganography modules. Beyond
steganography modules we plan to explore opportunities for perfor-
mance improvements and add support for redundant coding among
steganography modules.
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