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Abstract. Censorship of information on the Internet has been an increasing 
problem as the methods have become more sophisticated and increasing 
resources have been allocated to censor more content. A number of approaches 
to counteract Internet censorship have been implemented, from censorship-
resistant  publishing systems to anonymizing proxies. A prerequisite for these 
systems to function against real attackers is that they also offer blocking 
resistance. Dust is proposed as a blocking-resistant Internet protocol designed 
to be used alone or in conjunction with existing systems to resist a number of 
attacks currently in active use to censor Internet communication. Unlike 
previous work in censorship resistance, it does not seek to provide anonymity in 
terms of unlinkability of sender and receiver. Instead it provides blocking 
resistance against the most common packet filtering techniques currently in use 
to impose Internet censorship. 
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1   Introduction 

Censorship of information on the Internet has been implemented using increasingly 
sophisticated techniques. Shallow packet filtering, which can be circumvented by 
anonymizing proxies, has been replaced by deep packet inspection technology which 
can filter out specific Internet protocols. This has resulted in censorship-resistant 
services being entirely blocked or partially blocked through bandwidth throttling. 
Traditional approaches to censorship resistance are not effective unless they also 
incorporate blocking resistance so that users can communicate with the censorship 
circumvention services. 

Dust is an Internet protocol designed to resist a number of attacks currently in 
active use to censor Internet communication. Dust uses a novel technique for 
establishing a secure, blocking-resistant channel for communication over a filtered 
channel. Once a channel has been established, Dust packets are indistinguishable from 
random packets and so cannot be filtered by normal techniques. Unlike other 
encrypted protocols such as SSL/TLS, there is no plaintext handshake which would 
allow the protocol to be fingerprinted and therefore blocked or throttled. This solves a 



principle weakness of current censorship-resistant systems, which are vulnerable to 
deep packet inspection filtering attacks. 

1.1   Problem 

Traditionally, Internet traffic has been filtered using “shallow packet inspection” 
(SPI). With SPI, only packet headers are examined. Since packet headers must be 
examined anyway in order to route the packets, this form of filtering has minimal 
impact on the scalability of the filtering process, allowing for its widespread use. The 
primary means of determining “bad” packets with SPI is to compare the source and 
destination IP addresses and ports to IP and port blacklists. The blacklists must be 
updated as new target IPs and port are discovered. Circumvention technology, such as 
anonymous proxies, bypass this filtering by providing new IPs and ports not in the 
blacklist which proxy connections to blacklisted IPs. As the IPs of proxies are 
discovered, they are added to the blacklist, so a fresh set of proxy IPs must be made 
available and communicated to users periodically. As port blacklists are used to block 
certain protocols, such as BitTorrent, regardless of IP, clients use port randomization 
to find ports which are not on the blacklist. 

Recently, “deep packet inspection” (DPI) techniques have been deployed which 
can successfully block or throttle most censorship circumvention solutions [14]. DPI 
filters packets by examining the packet payload. DPI can achieve suitable scalability 
through random sampling of packets. Another technique in use is to initially send 
packets through, but also send them to a background process for analysis. When a bad 
packet is found, further packets in that packet stream can be blocked, or the IPs of 
participants added to the blacklist. The primary tests that DPI filters apply to packets 
are packet length comparison and static string matching, although timing-based 
fingerprints are also possible. DPI can not only filter content, but also fingerprint and 
filter specific protocols, even encrypted protocols such as SSL/TLS. Encrypted 
protocols are vulnerable to fingerprinting based on packet length, timing, and static 
string matching of the unencrypted handshake that precedes encrypted 
communication. For instance, SSL/TLS uses an unencrypted handshake for cipher 
negotiation and key exchange.  

The goal of Dust is to provide a transport protocol which cannot be filtered with 
DPI. To accomplish this goal it must not be vulnerable to fingerprinting using static 
string matching, packet length comparison, or timing profiling. Other attacks such as 
IP address matching and coercion of operators are outside of the scope and are best 
addressed by use of existing systems such as anonymizing proxies and censorship-
resistant publishing systems running on top of a Dust transport layer. 

2   Related Work 

Censorship resistance is often discussed in connection with other related concepts 
such as anonymity, unlinkability, and unobservability. These terms are sometimes 
used interchangeably and sometimes assumed to have specific technical definitions. 
Pfitzmann proposed a standardized terminology that defines and relates these terms 



[13]. Unlinkability is defined as the indistinguishability of two objects within an 
anonymity set. Anonymity is defined as unlinkability between a given object and a 
known object of interest. Unobservability is defined as unlinkability of a given object 
and a randomly chosen object. 

Defining properties such as anonymity and unobservability in terms of 
unlinkability opens the way for an information theoretical approach. Hevia offers 
such an approach by defining levels of anonymity in terms of what information is 
leaked from the system to the attacker [8]. Unlinkability requires the least protection, 
hiding only the message contents. Unobservability requires that no information is 
leaked whatsoever. Of particular interest is that an anonymous system of any type can 
be taken up to the next level of anonymity by adding one of two system design 
primitives: encryption and cover traffic. 

2.1   Censorship-Resistant Publishing and Anonymizing Proxies 

One approach to achieving censorship resistance on the Internet is through 
censorship-resistant publishing services such as Publius [18], Tangler [19], and 
Mnemosyne [5]. An issue with anonymous publishing systems for practical use is that 
even a system that provides maximum protection for stored files must still be 
accessible in order for those files to be retrieved. If communication to the document 
servers is blocked, then the system is not usable. This requires protection for 
communications as well as documents. Serjantov [15] proposed a the solution of 
combining anonymous publishing with anonymous proxies by running the publishing 
service as a hidden service behind an onion routing network such as Tor [3]. 

This solution passes on the problem of blocking from the publishing system to the 
anonymizing proxy. However, anonymizing proxies are also vulnerable to blocking 
attacks. While a network of proxy nodes can provide protection against destination IP 
blacklists, they are still vulnerable to various forms of DPI protocol fingerprinting. 
This problem is dealt with by Kopsell, who proposes a method to extend existing 
anonymous publishing systems to bypass blocking, a property referred to as "blocking 
resistance" [9]. In light of the work of Serjantov and Kopsell it is evident that if 
anonymous proxies are a necessary component of censorship-resistant publishing and 
blocking resistance is a necessary property of anonymous proxies then blocking 
resistance is necessary for censorship-resistant publishing. 

Kopsel’s threat model contains the assumptions that the attacker has control of 
only part of the Internet (the censored zone), that some small amount of unblockable 
inbound information can enter the censored zone (perhaps out of band), and that 
volunteers outside of the censored zone are willing to help although they may have 
differing amounts of bandwidth to contribute. The attacker is assumed to have vast 
resources, to control all links outbound from the censored zone to the Internet, and to 
be an expert in blocking-resistant system design. 

Kopsell’s solution is divided into two parts: access to the blocking-resistant 
system, and distributing information about the blocking-resistant system, such as the 
IPs of proxy nodes. The nodes in Kopsell’s system are volunteer-run anonymizing 
proxies that clients communicate with over a steganographic protocol in order to 
obtain access to a censorship-resistant publishing system. Clients obtain an invitation 



to the network, including the IP addresses of some proxy nodes, through a low-
bandwidth, unblockable channel into the censored zone. A number of ideas are 
proposed for the steganographic data channel such as SSL and SMTP protocols. For 
the unblockable channel email is used. 

Though Kopsell’s model for blocking resistance solves the real world issues facing 
anonymous publication systems and proxies, it relies on the steganographic data and 
unblockable invitation channels to have certain properties which may not be met in 
actual implementation. The essential purpose of the steganographic channel is to 
provide resistance to protocol fingerprinting. Even if the information cannot be 
recovered from the steganographic encoding, if it is discovered that the channel 
contains steganographically encoded information then it can be summarily blocked. In 
other words, the encoding must be undetectable in order to be useful. The constraint 
on the invitation channel is that it is completely unblockable, as no particular 
protection is given to information distributed on this channel. 

Real world of analysis of attacks has shown that SSL is not a suitable encoding 
against real attackers as the protocol is easily fingerprinted and summarily blocked or 
rate limited [14]. Also, Email is an unsuitable channel for invitations because it is not 
unblockable. Recent attacks have blocked the communication of IP addresses of 
proxies through email and instant messaging. Given these attacks, what sorts of 
channels are suitable for invitations and data to be communicated without being 
vulnerable to blocking? 

Information theory provides a conceptual framework that offers an answer not just 
to the question of blocking resistance but of its relationship to censorship resistance in 
general. Censorship-resistance publishing systems provide document unlinkability. 
Hevia links the definition of unlinkability to information theory through 
indistinguishability of information transmitted on the channels between the system 
and the attacker [7] and Boesgaard links document unlinkability to information 
theoretic perfect secrecy [2]. So censorship resistance is therefore a form of perfect 
secrecy by means of indistinguishability. Pfitzmann defines unobservability as a form 
of unlinkability [13] and Perng defines censorship resistance as unobservability [12]. 
In other words, censorship resistance is unobservability through unlinkability of the 
object of interest and a random object, which is equivalent in information theory to 
perfect secrecy. Viewed in this context, a censorship-resistant publishing system 
would be one in which through observation of the system the attacker cannot obtain 
sufficient information to distinguish which documents are accessed by users, in other 
words document unobservability. Anonymous proxies add a similar property, 
unobservability of the publishing system. The final step, which Kopsell calls blocking 
resistance, is unobservability of the anonymous proxy, which requires unobservability 
of the protocol by which clients communicate with the proxies. When these properties 
are combined, end-to-end unobservability is created from the client to the document. 

The ideal communication protocol is therefore one which is unobservable, meaning 
that a packet or sequence of packets is indistinguishable from a random packet or 
random sequence of packets. This is not necessarily a steganographic encoding. A 
steganography encoding is unobservable only so long as the message encoding is not 
detectable, regardless of if the message can actually be decoded. Additionally, 
steganographic channels can be blocked if the cover channel is blocked. In the cause 
of the rate limiting of Tor, SSL was being used as both encryption and steganography. 



Rate limiting of the cover occurred because all SSL traffic was summarily rate 
limited, causing a rate limiting of the embedded message as well and essentially 
failing to provide blocking resistance. 

Steganography is not the only option for unobservable protocols. Encryption is an 
equally valid means of making messages indistinguishable. Although protocols such 
as SSL are encrypted, these protocols often have an unencrypted handshake. This 
unencrypted portion of the communication is what is used to fingerprint and block the 
protocol. Additionally these protocols may leak other information to the attacker 
through packet lengths and timing. However, an encrypted protocol without a 
handshake would be resistant to handshake fingerprinting. With sufficiently secure 
encryption and a lack of unencrypted handshakes, one encrypted protocol should be 
indistinguishable from another encrypted protocol.  

In the normal use case for SSL, an entirely encrypted connection would not be 
possible as the communicating peers need to perform a public key exchange in order 
to determine the session key used to encrypt the conversation. However, unlike a 
normal SSL connection, Kopsell’s model allows for a single out-of-band invitation to 
be sent prior to the establishment of the data connection. 

2.2   Obfuscated Protocols 

Several obfuscated protocols have been developed with various goals, including 
blocking resistance. For instance, BitTorrent clients have implemented three 
encryption protocols in order to prevent filtering and throttling of the BitTorrent 
protocol, the strongest of which is Message Stream Encryption (MSE). [11]  Analysis 
of packet sizes and the direction of packet flow have been shown to identify 
connections obfuscated with MSE with 96% accuracy. [7] MSE also uses a cleartext 
DH key exchange. However, it does not include static strings in the protocol 
handshake as the handshake consists solely of the DH parameters, which are unique 
to each connection. 

Other obfuscated protocols which are not designed explicitly for blocking 
resistance also suffer from cleartext handshakes and often include static strings in the 
handshake. Obsfuscated TCP (ObsTCP) has gone through several versions, each 
using a different means to communicate the keys, including TCP options, HTTP 
headers, and DNS records. [12] The strongest of these is DNS records as TCP options 
and HTTP headers are easily blocked using static string matching, while DNS records 
are transmitted on a separate connection from the one carrying the data, requiring 
correlation between separate connections. However, Sandvine has already 
demonstrated this ability in the blocking of BitTorrent traffic by monitoring tracker 
protocol traffic to obtain the ports of BitTorrent protocol connections and then 
subsequently interfering with the (possibly encrypted) BitTorrent protocol 
connections. [17][6] A second connection from the same IP can therefore not be used 
as an out-of-band channel for the purpose of blocking resistance. A newer proposal 
similar to ObsTCP called tcpcrypt does not blocking resistance as a design goal and 
subsequently does worse than ObsTCP/DNS as it uses static strings in the handshake 
protocol. [1] 



An attempt has been made to address the cleartext handshake problem in the form 
of the obfuscated-openssh patch to OpenSSH which encrypts the SSH handshake. 
[10] An encrypted handshake for an existing encrypted protocol is a good idea as it is 
the minimal amount change necessary to achieve blocking resistance as long as the 
protocol already has resistance to packet size and timing attacks. The obfuscated-
openssh patch essentially implements its own minimal blocking-resistant protocol, 
performed before SSH starts and on the same TCP connection. This minimal protocol 
is similar to Dust in that it is designed to be resistant to static string and packet size 
matching. Unfortunately, it is not truly blocking resistant because it relies on a false 
(or perhaps outdated) assumption about the capabilities of filters. The handshake is 
encrypted with a key that is generated from a seed that is prepended to the beginning 
of the encrypted part of the handshake. The key is generated by iterated hashes of the 
seed with the iteration number chosen to be high enough that key generation is slow. 
The blocking resistance of this technique relies on key generation not being 
sufficiently scalable to do across all connections simultaneously. However, modern 
filters are capable of statistically sampling packets and processing them offline to flag 
packets and then using those results to block IPs which have sent flagged packets. 
[17] This approach is probabilistic in its ability to block connections, but is highly 
scalable. Additionally, the introduction of slow key generation may allow for even 
less expensive timing attacks in which the only information needed to block a 
connection is the timing between the first and second packets. 

3   Design 

Dust is a protocol designed to provide protocol unobservability in order to implement 
Kopsell’s concept of blocking-resistance as a necessary prerequisite to achieve 
censorship resistance. The Dust protocol is designed to protect against an attacker that 
utilizes Deep Packet Inspection (DPI) to fingerprint protocols for the purpose of 
blocking or rate limiting connections. In order to establish protocol unobservability, 
all packets consist entirely of encrypted or random single-use bytes so as to be 
indistinguishable from each other and random packets. 

In order to perform a key exchange without an unencrypted handshake, a novel 
out-of-band half-handshake technique is used. As in Kopsell’s model, a peer must 
first receive an out-of-band invitation to join the network. This invitation contains the 
IP address and public key of the receiver. The sender can then complete the 
handshake by sending a single in-band intro packet followed by any number of data 
packets encrypted with the session key that was computed in the handshake. The 
minimal Dust conversation therefore consists of two in-band packets: one intro 
packet, and one data. The protocol allows for these packets to be be chained together 
to fit inside a single UDP or TCP packet. The use of a single UDP or TCP packet for 
communication prevents timing attacks then the payload is sufficiently small. 



3.1   Protocol 

In order to accept a connection from an unknown host, a Dust server must first 
complete a key exchange with the client. The Dust server first creates an id and secret 
pair. The server then sends an out-of-band invite packet to the client, which contains 
the server's IP, port, public key, the id, and the secret. The invite is encrypted with a 
password and so is indistinguishable from random bytes. It can then be safely 
transmitted, along with the password, over an out-of-band channel such as email of 
instant messaging. It will not be susceptible to the attacks which block email 
communication containing IP addresses because only the password is transmitted 
unencrypted. If the invitation channel is under observation by the attacker, and only in 
the case that the attacker is specifically attempting to filter Dust packets, then the 
password should be sent by another channel that, while it can still be observed by the 
attacker, should be uncorrelated with the invitation channel. 

In order to complete the handshake, the client uses the IP and port information 
from the invite packet to send an intro packet to the server. The intro packet is 
prepended with the random, single-use id from the invite packet. The packet is 
encrypted with the secret from the invite and contains the public key of the client. 

When the server receives a packet from an unknown IP address, it assumes it to be 
an intro packet and retrieves the id from the beginning of the packet. This is used to 
look up the associated stored secret. The server uses the secret to decrypt the packet, 
retrieves the public key of the client, and generates a shared session key. It adds the 
session key to its list of known hosts, associated with the IP and port from which the 
intro packet was sent. This completes the second phase of the public key exchange. 
The client and server can now send and receive encrypted data packets freely. Since 
Dust packets an be chained inside of TCP or UDP packets, the intro packet may be 
followed immediately by a data packet, which may constitute the entirety of the 
conversation. 

2   Packet Format 

There are three types of Dust packets: invite, intro, and data packets. All three types 
of packets build upon the basic Dust packet format as shown in Fig. 1. 
 

 
Fig. 1. The general Dust packet format. This is also the format for data packets.  

In a Dust packet, the MAC is computed using the ciphertext, IV, and a key which 
differs depending on the type of packet. Using a MAC allows for the contents of the 



packet to be verified and corruption or tampering to be detected. The IV, or 
initialization vector, is a single-use random value used to encrypt the ciphertext and 
compute the MAC. This ensures that the ciphertext and MAC values will be different 
even when sending the same data. Since the IV is random and the MAC is computed 
using the IV, both values are effectively random to an observer. The rest of the 
packet, excluding the padding, are encrypted into the ciphertext. The ciphertext 
includes a timestamp to protect against replay attacks, lengths for the data and 
padding, and the data itself. A separate padding length (PL) value is needed because 
several Dust packets may be contained inside a single UDP or TCP packet. Finally, a 
random number of random bytes of padding are added to randomize the packet 
length. 

 
 

 
 

Fig. 2. The format of an invite packet.  

An invite packet has the format show in Fig. 2. An invite packet, being a Dust 
packet, contains all of the same fields as a data packet, such as MAC, IV, and 
padding. The key used in an invite packet to encrypt the ciphertext and compute the 
MAC is a PBKDF function using a password and a random salt value. The salt value 
is prepended to the packet. The use of both salt and a PBKDF makes it difficult to 
decrypt the packet by brute force. This protects the contents of the invite packet 
against decryption unless the password is known. 

The invite packet includes the information necessary for the client to connect to the 
server and complete the handshake. It contains the server’s public key, the IP and port 
where the peer can be contacted, a flags byte which specifies if the peer accepts UDP 
or TCP connections and whether the IP is an IPv4 or IPv6 address, and an id and 
secret pair to be used in the completion of the handshake. 

 

 



Fig. 3. The format of an intro packet.  

An intro packet has the format shown in Fig. 3. The id used in the intro packet is 
the same as the one used in the invite packet. This is effectively a single-use random 
value as when it was contained in the invite packet it was encrypted and it is only seen 
in plaintext in the intro packet. The id is used by the server to link the intro packet to 
the stored single-use random secret. This secret is used to encrypt the ciphertext and 
to compute the MAC for the intro packet. Since each id is a single-use value, only one 
intro packet can be sent for each invite packet received by the client. The rest of the 
fields in an intro packet are the same as a general Dust packet. The content of an intro 
packet is the public key of the client. 

Once the server has obtained the client’s public key from the intro packet, the key 
exchange is complete and a shared session key is computed by both sides for use in 
encrypting the data packets. The data packets are simply general data packets are 
shown in Fig. 1 with no extra fields. In a data packet, the content is the data to be sent 
and the key used to encrypt the ciphertext and to compute the MAC is the shared 
session key derived from the exchanged public keys and locally stored private keys. 

3.   Discussion 

The Dust protocol provides protocol unobservability by providing protection against 
the major methods of protocol fingerprinting through DPI. By encrypting or 
randomizing all bytes in all packets, static string matching is defeated. By 
randomizing packet length, length matching is defeated. By allow for a full 
conversation to be transmitted in a single UDP or TCP packet, timing attacks are 
defeated in the case of sufficiently small messages. Additionally, protection is 
provided against a number of specific attacks on the protocol. Packet corruption is 
defeated by use of a MAC. Replay attacks are defeated within a certain time window 
by use of a timestamp. Brute force decryption of invite packets are defeated by use of 
salt and a PBKDF. Additionally, any fields that are not encrypted are always 
randomized and single-use so that the attacker cannot gain additional information 
about the protocol even through long-term protocol observation.  

Dust is designed to protect against current attacks, which are based on matching 
fingerprints of protocols against blacklists of known protocols. An obvious counteract 
against the Dust protocol is to switch from blacklist filtering to whitelist filtering. 
This is not addressed for two reasons. First, blacklists are the method currently in 
widespread use, whereas whitelists are not. Defeating blacklists is a significant step 
towards bypassing existing censorship attempts. Second, an approach which can 
bypass a whitelist has disadvantages over an approach designed to bypass blacklists. 
Steganography must be employed to encode traffic inside of whitelist-compatible 
traffic. As has been discussed, attempting this encoding allows for the possibility of 
introducing additional information that could be used for fingerprinting, such as 
filtering of the cover. The Dust approach is more simple and efficient to implement 
than a steganographic approach and so is preferable when only blacklist filtering is 
considered relevant. 



4.   Limitations 

Dust does not attempt to protect against attacks that are already addressed by 
anonymizing proxies and censorship-resistance publishing systems. Specifically, no 
attempt is made to obscure sender or receiver IP addresses or ports or to protect server 
operators from coercion. These attacks would ideally be addressed by a system such 
as proposed by Kopsell consisting of an anonymizing proxy network allowing access 
to a censorship-resistant publishing system and using the Dust protocol as a blocking-
resistant transport protocol. 

In order for timestamps to be effective, Dust requires the client and server clocks to 
be reasonably synchronized, such as with NTP, as packets with out-of-date 
timestamps will be discarded. This is a possible area of future work for the protocol as 
clock synchronization may not always be available. Packet sequence numbers, logical 
clocks, and application-level clock synchronization are possible options to be 
considered for future revisions, although each comes with its own advantages and 
disadvantages. 

Dust does not provide retransmission or reordering of dropped or reordered packets 
and provides no mechanism for acknowledgement of received packets. This is left to 
higher level protocols built on top of Dust. The reason for this is that Dust focuses on 
a minimal design that provides maximum blocking resistance. An ideal message for 
use with the current Dust protocol would fit inside a single UDP packet as this does 
not reveal any timing information that can be used for fingerprinting. Additional 
layers must be careful to not leak timing information to the attacker. This is 
considered to be a separate but related problem in unobservable protocol design. 

No explicit mechanism for NAT hole punching is provided in the protocol. For 
IPv6 use, hole punching should not be necessary. For IPv4 use, Dust is compatible 
with and has been tested with Teredo, which provides end-to-end IPv6 connectivity 
on top of IPv4, including NAT hole punching even if both peers are behind NAT. In 
the case that Teredo has been blocked, TCP can be used instead of UDP as long as 
only the client is behind NAT. As implementing hole punching will complicate the 
protocol and open the way to timing attacks, the use case of a IPv4 server behind 
NAT without Teredo is left unsupported and would have to be implemented by 
individual applications when relevant. 

5.   Future Work 

There are a number of enhancements to the Dust protocol that could protect against 
additional attacks. An obvious addition is a reliable transmission protocol on top of 
the basic Dust protocol which included packet acknowledgements. This would require 
a randomized packet scheduler in order to avoid leaking timing information. Once 
implemented, it could protect against packet loss attacks such as dropping the first 
packet between any two IPs, which in the case of Dust is the crucial introduction 
packet. Once a reliable protocol is available, a secondary key exchange could occur 
along with periodic key rotation, allowing for forward secrecy of conversations. 



An additional area of research is how to add steganographic encoding to Dust 
packets. This would protect against whitelist attacks, but would require careful design 
to avoid leaking additional information to the attacker that could be used for 
fingerprinting. The problem of the blocking of the cover traffic would also need to be 
addressed.  

In addition to the extension of the Dust protocol to protect against further attacks, 
there is also work to be done in the evaluation of the Dust protocol in real world 
scenarios. This is the most immediate next phase of research. Actual Dust traffic will 
be evaluated against real world censorship in current use on the Internet and its 
performance compared to other protocols used in circumvention technologies. The 
distinguishable characteristics of each protocol will be compared to determine their 
degree of protocol unobservability in both theoretical and practical terms. 

6.   Conclusion 

Dust fills an important gap in the field of censorship resistance and privacy-enhancing 
technologies. By focusing exclusively on blocking resistance it solves real world 
attacks on existing censorship-resistant publishing and anonymous proxy systems. An 
ideal system combining the Dust protocol for communication, an anonymous proxy 
system for routing, and a censorship-resistant publishing system running as a hidden 
service would provide end-to-end unobservability and maximum protection against 
attackers.  

Additionally, the design of the Dust protocol furthers the state of theory in the field 
by proposing an information theoretic bridge between censorship-resistant publishing, 
anonymous proxies, and blocking-resistant protocols based on the property of 
unobservability. A relatively unexplored area of the field is opened by proposing the 
centrality of blocking resistance instead of unlinkability in censorship resistance and 
the adoption of Kopsell’s attack model in which an attacker which does not have the 
power of global eavesdropping. 

Those wishing to use the Dust protocol for academic or practical purposes can find 
the source code for its implementation at http://github.com/blanu/Dust. 
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