
Fingerprinting Obfuscated Proxy Traffic with Encapsulated TLS Handshakes

Diwen Xue∗ Michalis Kallitsis† Amir Houmansadr ‡ Roya Ensafi∗
∗University of Michigan †Merit Network, Inc. ‡ University of Massachusetts Amherst

Abstract

The global escalation of Internet censorship by nation-state
actors has led to an ongoing arms race between censors and
obfuscated circumvention proxies. Research over the past
decade has extensively examined various fingerprinting at-
tacks against individual proxy protocols and their respective
countermeasures. In this paper, however, we demonstrate the
feasibility of a protocol-agnostic approach to proxy detection,
enabled by the shared characteristic of nested protocol stacks
inherent to all forms of proxying and tunneling activities. We
showcase the practicality of such an approach by identifying
one specific fingerprint–encapsulated TLS handshakes–that
results from nested protocol stacks, and building similarity-
based classifiers to isolate this unique fingerprint within en-
crypted traffic streams.

Assuming the role of a censor, we build a detection frame-
work and deploy it within a mid-size ISP serving upwards
of one million users. Our evaluation demonstrates that the
traffic of obfuscated proxies, even with random padding and
multiple layers of encapsulations, can be reliably detected
with minimal collateral damage by fingerprinting encapsu-
lated TLS handshakes. While stream multiplexing shows
promise as a viable countermeasure, we caution that exist-
ing obfuscations based on multiplexing and random padding
alone are inherently limited, due to their inability to reduce
the size of traffic bursts or the number of round trips within a
connection. Proxy developers should be aware of these limi-
tations, anticipate the potential exploitation of encapsulated
TLS handshakes by the censors, and equip their tools with
proactive countermeasures.

1 Introduction

The recent decades have witnessed a global escalation in cen-
sorship and surveillance by various nation-state actors [76].
Among the most notorious examples is China, where the
Great Firewall (GFW) has been blocking foreign websites, fil-
tering search results, and interfering with private communica-
tions [14,28,58,74]. In Iran, the government blocks social me-
dia and throttles targeted protocols during periods of political
unrest [12, 34, 35]. In Russia, “Sovereign Internet” prevents
access to news and media during the Ukraine war, demon-

Figure 1: Channel-based Circumvention. Users’ traffic is encapsu-
lated within a cover protocol in order to pass through censors without
being directly exposed. Figure inspired by [49].⋄

strating how easily censors can create information bubbles
and isolate specific regions from the broader Internet [75, 90].

In reaction to such escalating censorship measures, users
have resorted to proxying and tunneling tools. As shown
in Figure 1, users in censored regions encapsulate their ap-
plication traffic within a cover (i.e., proxy) protocol and
transmit it to a proxy server outside the censor’s jurisdic-
tion, which then forwards the traffic to its destination. The
cover protocol encrypts its payload, so that application traf-
fic containing censored keywords does not trigger blocking.
This strategy, referred to as “channel-based circumvention”
by previous work [78], necessitates obfuscation over the
cover protocol – otherwise, the channel itself could be finger-
printed and blocked. Over the past decade, the circumvention
community has developed numerous obfuscation approaches,
either making the channels look like protocols that are al-
lowed [4,39,45,66], or disguising the channels to ensure they
do not resemble protocols that are prohibited [19, 27, 30].

On the other hand, advancements like carrier-grade deep
packet inspection (DPI) have enabled censors to evolve from
basic IP or keyword filtering to more sophisticated modes
of detection. This has led to an ongoing arms race between
circumvention proxies, who implement obfuscation mecha-
nisms to avoid detection, and censors, who aim to see through
such obfuscation: censors use active probing to identify proxy
servers, driving proxies to implement probe-resistance mech-
anisms [46, 52, 86]. Censors block circumvention proxies
by their unique TLS ciphersuites [2, 51, 86], in response to
which proxies change their ciphersuites to mimic mainstream
browsers [53]. Censors block fully encrypted proxies based

on high entropy [89]. Proxy developers then modify the byte
patterns to show less entropy [11, 20]. Such back-and-forth
interactions represent the current state of the circumvention
arms race, with censors exploiting the design and implemen-
tation flaws of individual cover protocols, and developers
patching the flaws and experimenting with new protocols. A
common assumption shared in the community is that each
new cover protocol requires its own unique set of features and
separate analysis by the censor to block [20].

What we demonstrate in this paper, however, is the feasi-
bility of a protocol-agnostic approach to proxy detection. We
observe that, despite the varying designs and implementations
of cover protocols, the fundamental concept underpinning
all forms of proxying and tunneling is that of nested proto-
col stacks, where one protocol stack is encapsulated within
the payload of another. For example, users’ web browsing
traffic (HTTPS) can be encapsulated within another TLS or
application-layer protocol, which serves both as a cover and
transport for the former, in order to pass through censors
without being directly exposed. The near-universal presence
of nested protocol stacks in proxied connections, contrasted
with the rarity of finding such behavior in direct client-server
communications, establishes them as a fingerprinting vulner-
ability that is shared across various proxy protocols and is
orthogonal to existing attacks and countermeasures.

In this paper, we focus on one specific fingerprint of this
kind, termed as encapsulated TLS handshakes, and the prac-
ticality of exploiting it in detecting obfuscated proxy traffic.
Encapsulated TLS handshakes refer to TLS handshakes that
take place within an encrypted or obfuscated cover protocol.
As shown in Figure 2 (red), these handshakes are generated by
user applications (e.g., browsers), and the proxy protocol then
encrypts and transports them to the proxy server, which in turn
forwards them to the final destination (e.g., web servers). This
differentiates them from standard TLS that has plaintext struc-
tures and is visible to network intermediaries. We explain how
the presence of encapsulated TLS handshakes indicates nested
or redundant protocol stacking, which in turn signals that the
connection carries proxied traffic. While encapsulated TLS
handshakes cannot be easily identified by protocol parsers,
we show that the packets exchanged during an (encapsulated)
TLS handshake exhibit distinct patterns in their size, timing,
and direction. These patterns remain visible even after encryp-
tion, enabling a censor to reliably identify encapsulated hand-
shakes without breaking the encryption of the cover protocol.

We evaluate the practicality of fingerprinting obfuscated
proxy traffic with encapsulated TLS handshakes, from the
perspective of a censor or an adversarial ISP. We aim to
answer: How practical is this fingerprinting attack? Can
censors deploy it at scale without significant collateral dam-
age? Addressing these questions requires not only identifying
a vulnerability but also demonstrating feasible exploits, all
while considering the real-world operating constraints of the
censors, such as their sensitivity to false positives. To this

Figure 2: Comparison with previous attacks on circumvention
tools. Prior work targeted cover or proxy protocol’s failure to achieve
indistinguishability, while this paper exploits fingerprints of the
encapsulated layers within, which are agnostic to proxy protocols.⋄

end, we develop a detection framework using similarity-based
classifiers, following a conservative censor capability model
informed by empirical studies on real-world censorship events.
Next, in collaboration with Merit, we deploy our framework
within the ISP’s network, adopting the position of a censor
to evaluate the potential impact and collateral damage if the
fingerprinting attack were to be widely deployed.

We test 23 obfuscated proxy configurations, including ma-
jor circumvention protocols used by millions around the world
like shadowsocks, vmess, trojan, and vless, and protocols pro-
posed in previous research like httpt [19, 25, 27, 54]. We
find that all tested obfuscated proxy protocols, in their stan-
dard configurations, are vulnerable to fingerprinting based
on encapsulated TLS handshakes, with true positive rates
(TPRs) all exceeding 70%. Such TPRs carry significant im-
plications (§ 3), especially as a single detection can result
in a censor blocking all subsequent connections to the corre-
sponding proxy server. Even advanced configurations that en-
capsulate proxy traffic within additional cover layers, such as
shadowsocks within websocket within TLS, provide limited
defense and only marginally lower the detection rates. Con-
trary to common belief, we find that random padding slightly
increases the fingerprinting difficulty, but not to a degree suffi-
cient to prevent the exploit. Even for more aggressive padding
schemes like XTLS-vision and obfs4, we demonstrate that cen-
sors could easily adapt their statistical models and rely only
on packet order and direction, rather than size, for detection.

During a 30-day evaluation, our deployment within Merit
processed over 110 million flows, maintaining an upper-
bound false positive rate as low as 0.0544%. Such precision
positions our fingerprinting attack on par with approaches
previously deployed by real censors [89]. Notably, our tech-
nique remains fully passive, agnostic to unpadded obfuscated
protocols, and can be adapted to identify padded variants.

Obfuscated proxies are essential tools for facilitating unre-
stricted access to information and resources on the Internet.
However, our findings suggest that traffic of obfuscated prox-
ies, even with padding and layers of encapsulation, can be
effectively detected by fingerprinting encapsulated TLS hand-
shakes. Our approach shifts the focus from the cover layer to
the encapsulated layers within, introducing a new threat di-

mension that is orthogonal and potentially complementary to
existing attacks against circumvention tools. While we show
that stream multiplexing could be a viable mitigation, we cau-
tion that obfuscations relying solely on padding and multiplex-
ing are inherently limited. Proxy developers should be aware
of the limitations of current obfuscation strategies, anticipate
the potential exploitation of encapsulated TLS handshakes by
censors, and equip their tools with proactive countermeasures.

2 Background & Related Work

2.1 Internet Censorship and Circumvention

News, anecdotes, and measurement studies collectively sug-
gest that governments have been increasingly censoring the
Internet on a global scale [68, 73, 76]. These studies docu-
ment how governments practice censorship and, in particular,
censors’ technical capabilities, ranging from blanket IP-based
blocking [24,47,69], content-based blocking [40,58,70,74], to
blocking of protocols and circumvention tools [32, 46, 86, 89,
90]. In addition to exposing otherwise covert practices of In-
ternet censorship, these measurement studies contribute to the
understanding of real-world censors and assist in approximat-
ing a realistic threat model [78]. Developers and researchers
rely on this knowledge when building circumvention tools and
evaluating the practicality of potential attacks against them.

Users from regions with restrictive censorship policies
have been seeking ways to circumvent the censorship us-
ing various approaches, which can be roughly classified into
strategy-based and channel-based circumvention. Strategy-
based circumvention [38, 43, 63, 83] involves the client or
server implementing custom packet manipulation rules, such
as dropping or injecting specially crafted packets, in order to
confuse middleboxes into not recognizing censorship triggers.
On the other hand, channel-based circumvention [78] involves
users establishing channels to forwarders located outside the
censored region, which then route the users’ traffic to its final
destination. Obfuscated proxies fall into the latter category.

Channel-based circumvention necessitates obfuscation
mechanisms. Most obfuscation mechanisms either make chan-
nels look like protocols that are allowed (i.e., mimicry), or
disguise channels so they don’t look like protocols that are
forbidden (e.g., randomization). Mimicry-based obfuscation
simulates traffic characteristics of popular, permitted proto-
cols (e.g., HTTP, Skype [45, 66, 85]). Some even take the
mimicry approach to the extreme by tunneling circumvention
traffic through actual, legitimate network services like cloud
storage, email, VoIP, and DNS [4, 39, 60, 93], resulting in
more plausible protocol fingerprints [59]. On the other hand,
randomization-based obfuscation approaches aim to eliminate
all fingerprints by encrypting traffic into bits indistinguishable
from random. Examples of these include shadowsocks, vmess,
and obfs4 [19, 27, 30], which defeat protocol parsers with the
absence of a fixed protocol structure.

2.2 Attacks on Obfuscated Circumvention Tools

Previous research has documented several active and passive
attacks by real-world censors against obfuscated circumven-
tion tools. Active attacks involve censors sending specially-
crafted probes to suspected endpoints and analyzing their
responses. The GFW was able to identify Tor, VPN, and
shadowsocks servers by sending connection requests of a tar-
geted protocol and monitoring if the responses conform to the
expected protocol behaviors [32, 46, 86]. In response, “probe-
resistant” proxies were developed, which remain silent when
probed by an unauthenticated client [52]. However, recent
work shows that it is still possible to identify a server even
without explicit server responses, due to application-specific
features at the network level, such as how and when a server
closes a connection [22, 80, 91].

Passive attacks have been used to detect both mimicry and
randomization-based obfuscations. Houmansadr et al. argue
that obfuscation by imitation is “fundamentally flawed” as
seamlessly simulating all implementation-specific behaviors
is too difficult and suggest tunneling as an alternative [59].
However, even when circumvention traffic is tunneled, de-
tection remains possible through fingerprinting implemen-
tation discrepancies of the cover protocol. Past examples
include the blocking of Tor due to the unique fingerprints
in its custom TLS implementation, such as uncommon ci-
phersuites [23, 53, 86]. Snowflake [21], a Tor obfuscation
based on WebRTC, was similarly fingerprinted by its unusual
DTLS behaviors [41,51]. Non-content features can also be ex-
ploited, such as excessive TCP ACK packets [81] or abnormal
packet size distribution [36, 56]. While randomization-based
approaches eliminate many of these potential fingerprints,
looking like random could itself become a feature. Wang et al.
demonstrate that packet length and entropy could identify
fully encrypted proxies like obfs4 [81], and more recently, the
GFW was found to block fully encrypted traffic using entropy
as one of the features [89]. In response, developers have im-
plemented several countermeasures, such as allowing users
more fine-grained control over the fingerprints and entropy of
the cover protocol [11, 20, 53].

2.2.1 Contextualizing Our Fingerprinting Approach

The fingerprinting attack discussed in this paper is orthogo-
nal to all aforementioned attacks that target circumvention
protocols. Both active and passive attacks found in previous
work exploit implementation flaws in the cover/proxy pro-
tocols (depicted in blue in Figure 2). In contrast, this work
focuses on the fingerprints generated by encapsulated appli-
cation traffic (user-generated traffic inside the tunnel, e.g.,
from browsers), illustrated in red in Figure 2. This means that
1) our attack can potentially complement existing active or
passive fingerprinting strategies targeting the cover protocols
to further improve accuracy; and 2) existing countermeasures
such as utls [53] are not effective against our approach, as

Figure 3: TLS handshakes inside TLS-based proxy. Messages
transmitted during the handshake stage are well-specified and exhibit
characteristics in their size, timing, and direction.⋄

they act on the cover protocol rather than the encapsulated
layers within. A particular point of emphasis is to distinguish
our approach from “TLS fingerprinting” as characterized in
previous work [31, 53, 61]. These previous efforts aim to
identify TLS implementations by looking at fields within
ClientHellos of the cover/surface layer (e.g., distinguishing
between TLS flows generated by Tor browsers versus those
by Chrome). In contrast, our work looks for patterns that in-
dicate the presence of TLS handshakes that are encapsulated
within encrypted/obfuscated protocols.

The works most closely related to ours are those that in-
fer the underlying protocol and protocol semantics from en-
crypted streams [33,57,72,87], using features that remain visi-
ble after encryption, such as packet size, timing, and direction.

3 Threat Model

We outline a realistic threat model for the fingerprinting attack
evaluated in this paper. Although real-world censorship prac-
tices are often covert, we approximate a conservative censor
capability model informed by previous work on the arms race
between censors and circumvention tools [32, 46, 59, 78, 89].
We assume an on-path censor performing passive traffic
fingerprinting attacks on all connections passing through
its network. The censor cannot inject, drop, or modify any
passing packets, nor actively probe suspected servers. While
the censor is stateful, it is bounded by memory and compu-
tational resources. This means the censor can maintain only
a limited number of states per connection within a limited
observation window. The censor is familiar with the targeted
obfuscated proxy protocols and can adapt its detection meth-
ods as needed. However, it cannot break the encryption or
obfuscation of the targeted protocol if standard cryptographic
primitives are used. We note that these assumptions align
with a weak adversary as defined in previous work [59].

The censor’s reactions to false positives and false negatives
are asymmetric. The censor is highly sensitive to collateral
damage – the economic costs associated with falsely blocking

legitimate traffic during censorship efforts. The censor’s reluc-
tance to cause collateral damage is essentially what enables
circumvention to be possible [49]. Furthermore, due to the
low base rate of circumvention traffic, even a seemingly low
false positive rate (1%) can still be economically impracti-
cal [81, 91]. On the other hand, a moderate false negative rate
can be considered acceptable. This is because circumvention
tools users are likely to use them on a daily basis, generating
hundreds of flows for each browsing session, and the censor
only needs to detect a single flow to block the proxy server.

4 Encapsulated TLS Handshakes

We begin by providing the intuition of how we fingerprint
obfuscated proxy traffic. Fundamental to all proxying and
tunneling activities is the concept of nested protocol stacks,
where one protocol stack is encapsulated within the payload
of another, in order to pass through network intermediaries
without being directly exposed. This observation forms the
basis of the fingerprinting attack we evaluate in this paper and
renders the approach agnostic to the choice of proxy protocols.
Nested protocol stacks are rare in regular, direct client-server
connections. In proxied connections, however, a cover proto-
col serves as a transport between the client and proxy, while
an encapsulated application protocol facilitates end-to-end
communication between the client and the final destination
server. Nested protocol stacks can result in violations of the
layering of the OSI model, such as when the same protocol
is encapsulated within itself, as in the case of a TLS-based
proxy encapsulating HTTPS traffic (i.e., TLS-over-TLS).

The presence of nested protocol stacks is indicative of
proxying. Identifying this behavior, however, can be challeng-
ing, as the cover protocol encrypts or obfuscates its payloads.
Previous work has approached this problem by modeling non-
proxied connections and detecting anomalies by comparing
their behaviors to the model [44]. Nevertheless, precisely
characterizing “legitimate” traffic can be challenging due to
the diversity of traffic and protocols on the Internet. For ex-
ample, while HTTPS constitutes a significant fraction of TLS
traffic, TLS payloads deviating from the expected HTTP be-
haviors do not always imply a second protocol stack, since
there are other protocols that use TLS for encryption.

Instead, our approach focuses on fingerprinting a unique
behavior that results from nested protocol stacks, termed En-
capsulated TLS Handshakes. Encapsulated TLS handshakes
refer to the TLS handshakes of user traffic transmitted within
an encrypted or obfuscated cover protocol (including an outer
layer of TLS). This contrasts with standard TLS with plain-
text headers and structures that are identifiable by protocol
parsers, as shown in Figure 2. The rationale for using encap-
sulated TLS handshakes as indicators of proxying is intuitive:
since TLS is designed to provide end-to-end security over an
unsecured network, an encapsulated TLS session within an
already-encrypted cover channel suggests redundant protocol

stacking and implies that the outer encryption is not carried
through to the final destination but is instead terminated ear-
lier, e.g., at the forwarding proxy server.

Several aspects of encapsulated TLS handshakes make
them an ideal fingerprint for proxy traffic. Distinct: Similar
to standard TLS handshakes, encapsulated TLS handshakes
are also well-defined, and the packets transmitted during the
handshake stage exhibit distinct size, timing, and directional
characteristics, as shown in Figure 3. For example, most
ClientHello messages typically range from 200 to 550 bytes
depending on the TLS version, whereas ServerHello mes-
sages with certificates can span several thousand bytes and
exhibit a higher degree of variation across flows. Moreover,
as each handshake message logically depends on the preced-
ing message transmitted, an on-path adversary can exploit the
order in which packets carrying these messages are observed
on the wire. These characteristics remain visible even after en-
cryption and thus allow us to identify encapsulated TLS hand-
shakes without breaking the cover protocol. Reliable: TLS is
ubiquitous on the Internet, providing a foundation for secure
communication across a variety of applications. As such,
encapsulated TLS handshakes serve as a reliable fingerprint,
as it would be impractical for proxy users to avoid generating
such fingerprints by not using TLS. Precise: As described ear-
lier, encapsulated TLS handshakes are indicative of proxied
connections. In § 7, we provide empirical evidence to demon-
strate that this behavior is fairly unique to the use of proxies.
Consequently, using encapsulated TLS handshakes as a fin-
gerprint results in minimal collateral damage for censors.

if is_obfuscated_or_encrypted(flow) :
extract: size, timing, direction from flow[payload]

if matches_TLS_handshake(size, timing, direction) :
log_as_proxy_traffic(flow)

The pseudo-method above conceptualizes how censors
could exploit encapsulated TLS handshakes for proxy detec-
tion. In the following sections, we demonstrate the practical-
ity of this approach by building a detection framework using
similarity-based classifiers and evaluating it in a real network.

5 Ethical Considerations

Research on censorship and circumvention is inherently sen-
sitive, especially when it involves raw network traffic contain-
ing real users’ data. For this, we sought approval from our
university’s IRB for our research plan. Although the IRB de-
termined that the work is “Not Regulated”, we take extensive
procedural and technical measures to minimize potential risks.

A primary ethical concern relates to the handling of raw
network traffic. We access live ISP traffic via our Monitor
within Merit to train classifiers and evaluate the proposed
fingerprinting attack. Our Monitor deployment is overseen by

Merit, who has extensive collaboration experience and well-
established ethics and privacy guidelines for such projects.
The Monitor receives only a mirrored copy of traffic without
handling the actual routing, ensuring that Merit’s service re-
mains unaffected. The raw traffic is processed by a Zeek [92]
cluster that carries out protocol parsing and feature extraction
(§ 6.2). Instead of recording raw traffic, we log only extracted
features, consisting of sequences of packet sizes and timing,
without including any packet payloads. These logs are stored
and processed on a Merit-maintained server, accessible only
to select members of the team on a least-privilege basis. We
emphasize that at no point during the project’s duration are
packet payloads recorded to disk or inspected by humans.

As with all research on attack methodologies, there is a
risk that the fingerprinting attack evaluated in this paper could
be deployed by real-world adversaries. We are currently dis-
closing relevant information to the developers of the proxy
protocols examined in our study. It is worth noting, however,
that there have already been speculations in the community re-
garding the potential exploitation of TLS handshakes by GFW
in its recent attempts to block circumvention tools [13, 37].
As these obfuscated proxies are used by millions of people
to circumvent censorship, we believe it is crucial to bring
these vulnerabilities to light, especially considering the real-
istic threat they pose, as evidenced in this paper. Our work
intends to provide users with accurate information about the
proxy tools they depend on and encourage proxy developers
to implement principled countermeasures.

6 Similarity-Based Classification

Our objective is to distinguish traffic generated by obfus-
cated proxies from non-proxied user traffic. At the same
time, it’s equally important to identify the specific features
that contribute to detection, as this knowledge will inform
future developments in obfuscated proxy protocols. For ex-
ample, although deep learning–based classifiers have been
used in previous research to evaluate the distinguishability
of proxy/VPN traffic [3, 26, 55, 65, 82], the limited explain-
ability of deep learning models makes them less suitable for
investigating specific fingerprinting vulnerabilities, such as
the encapsulated TLS handshakes in our study.

We approach our problem as a binary classification prob-
lem – determining whether (obfuscated) network traffic flows
contain TLS handshake sequences. We explored several op-
tions for classification, such as clustering or supervised learn-
ing techniques. We found that classifiers constructed with
similarity-based metrics achieve a precision level (in terms of
false positive rates) that we consider practical for a censor to
deploy, while being computationally efficient. In similarity-
based classification, similarity scores are derived for each
class by applying selected distance metrics to the test sample
and training datasets. Next, a class label is estimated for the
test sample based on its similarity scores to each class [42].

Figure 4: Merit Setup for collecting plain TLS/non-TLS traffic (1–
3:§ 6.1) as well as obfuscated proxy flows (4–5:§ 7.1.2).⋄

In this section, we collect a large training dataset compris-
ing TLS/non-TLS flow records by applying a protocol parser
to traffic passing through a major Merit point-of-presence.
Next, we build two classifiers using the training datasets and
task them with identifying TLS handshakes using only fea-
tures visible post-encryption, i.e., packet size, direction, and
inter-arrival time. We evaluate our classifiers first on plain
TLS/non-TLS traffic for both TLS version 1.2 and 1.3. In the
following section, we adapt our classifiers to detect encapsu-
lated TLS handshakes from obfuscated proxy traffic.

6.1 Data Collection

To compile a training dataset with TLS and non-TLS traffic,
we set up our monitoring station within Merit, as shown in
Figure 4, which oversees 50 Gbps of ingress and egress traffic
mirrored from a backbone router. First, a user inside Merit
initiates a TLS connection to an external TLS server (1). As
the traffic passes through the monitored router, a copy of the
traffic is sent to our Monitor (2). The Monitor operates a
cluster of 23 Zeek [92] instances running our custom script
(3). Due to the large traffic volume, we optimize our setup
with PF_Ring to enhance packet processing speed [71]. We
apply the following filtering rules when creating datasets for
training and testing: For both TLS and non-TLS flows, we
filter only TCP and require the observation of both a SYN
packet and a SYN-ACK packet in the reverse direction. This
ensures symmetric routing and that we see the beginning of
the connection, where protocol handshakes are expected to
occur. We record the first Wo data-carrying TCP packets trans-
mitted in either direction for analysis. We discard short-lived
flows with fewer packets than the observation window Wo.
For TLS flows, we differentiate between version 1.2 and 1.3
based on the Supported Version extension within ServerHello
records [17]. We filter out flows with an empty Server Name
Indication field and flows where no TLS records with Appli-
cation Data type are observed (e.g., failed handshake).

Despite the optimizations implemented to improve packet
processing speed, handling traffic at 50Gbps on a single server
still results in non-negligible packet loss due to CPU bottle-
necks. Therefore, we sample only 1/8 of all TCP flows arriv-
ing at the Monitor. This sampling is based on IP pairs. A de-
tailed breakdown of the collected datasets is shown in Table 1.

TLS flows All flows 26,500,694
TLS 1.2 10,851,340 (40.95%)
TLS 1.3 15,649,354 (59.05%)

Non-TLS flows All flows 7,020,287
Unknown Protocols 479,982 (6.84%)

Table 1: TLS/non-TLS dataset for training and testing classifiers.

6.2 Feature Extraction

Each flow is represented as a sequence of integers, where the
absolute value of each integer corresponds to the size of the
TCP payload, and the sign indicates the packet’s direction.
We use SEQ/ACK analysis to establish a total ordering in
which the packets should be processed. An example of such
a sequence is (+517,−1400,−1400,+80). Additionally, we
record the inter-arrival times between packets.

We extract n-grams from these sequences of packet sizes. n-
grams have been used in previous work to analyze encrypted
DNS and VoIP traffic [64, 77, 88]. In our case, the intuition is
that, compared to 1-grams, n-gram representations can better
differentiate between bulk transfer and interactive communi-
cations, such as protocol handshakes. Moreover, for protocols
with well-defined handshake processes like TLS, we antici-
pate that n-grams can capture patterns in size tuples during
state transitions. For example, the first 3-gram extracted
from the previous packet sequence is (+517,−1400,−1400),
which often signals an outgoing ClientHello followed by a
segmented ServerHello. Such patterns would be obscured
in a 1-gram representation. We experimented with 2-gram,
3-gram, and 4-gram, and found that 3-gram provides the best
balance between performance and memory requirements.

We augment the n-gram representation with “burst” fea-
tures, which consider packet directions and inter-arrival times.
Bursts refer to sequences of consecutive packets traveling in
the same direction, often occurring when TCP splits large ap-
plication layer write() into smaller pieces for transport. Burst
sequences are more robust to minor changes at the packet
level, as they consider only the aggregated traffic volume and
the direction in which it travels. Specifically, given an original
TCP flow record and the corresponding inter-arrival times,
we first estimate the connection’s RTT as the time elapsed
between the observation of the SYN packet and the arrival of
the first ACK packet sent from the client at the Monitor. To
construct burst sequences, we aggregate the sizes of consecu-
tive packets that 1) travel in the same direction and 2) have
an inter-arrival time less than three times the estimated RTT.

6.3 Classifiers

To make a classification, we deploy two tests – a Chi-squared
(χ2) test over the 3-gram representation, and a Mahalanobis
distance metric over the burst sequence. We classify a flow as
TLS only when both tests are satisfied. The intuition behind
this approach is that the former test captures local orders of

Algorithm 1 Chi-squared Test over 3-grams.
T0,T1:training sets; G:set of all 3-grams; δ:decision threshold
s:test sample; M:size mapping; f :dimensionality parameter

Input: T0,T1,G,δ,s,M, f
Training:

Tc = [M(x) for x in Tc],c ∈ {0,1}
Pr(c,g) = 1

(∑t∈Tc Nt)
∑t∈Tc(Nt ×Pr(t,g)),c ∈ {0,1},g ∈ G

Distinc(g) = (∑c∈{0,1}
1
|Tc| ∑t∈Tc(Pr(t,g)−Pr(c,g))2) /

(1
∑c∈{0,1} |Tc| ∑c∈{0,1}∑t∈Tc(Pr(t,g)−Pr(c,g))2+ε),g∈G

F = Sorted(G,key = Distinc(g),reverse = 1,g∈G)[0 : f]
Testing:

s = M(s)
D(s,c) = ∑g∈F

1
Pr(c,g) (Pr(s,g)−Pr(c,g))2,c ∈ {0,1}

Return D(s,1)/(D(s,0)+ ε)≥ δ

packet sequences and state-transition patterns, whereas the
latter offers a more aggregated view of a flow’s dynamics.

6.3.1 Chi-squared Test

Chi-squared test is a statistical method for determining
whether the distributions of categorical variables significantly
differ from one another, by comparing the observed frequen-
cies with the expectation for each category. Specifically, the
expected number of occurrences of each 3-gram can be found
given training sets T0 and T1 for non-TLS and TLS, respec-
tively, as well as a set of all 3-grams G. Next, given a test
sample s, Chi-squared distances for each class are derived,
and we classify the sample by comparing the ratio of the two
distances with a decision threshold δ.

However, using raw packet sizes to generate all possible 3-
grams leads to an extremely high-dimensional feature space.
For a standard MTU of 1500 bytes, the number of unique
3-gram features would be 30003. We implement two mea-
sures to reduce dimensionality. First, raw packet sizes are
discretized into groups ∈ L before generating 3-grams. We
experimented with different grouping strategies (e.g., equal-
width, equal-frequency) and found that the strongest results
are obtained when packets carrying the same semantic mean-
ings (i.e., TLS Record Type) are grouped together. Using
Zeek [92], we label handshake packets from the training
set according to their TLS handshake types. Next, given
group size |L|, we derive a custom mapping that attempts
to map sizes associated with the same TLS handshake type
into the same group. The mapping function preserves di-
rectionality; that is, same packet types in different direc-
tions are grouped together, distinguished by their respec-
tive polarities. For our analysis, we set |L| = 4 to differ-
entiate ClientHello, ServerHello, ChangeCipherSpec, which
exhibit the most distinct size patterns, from other packets.
We then search for a mapping that separates each of the
three handshake types while minimizing the packets devi-

ating from their respective groups. We use the mapping
M = [L1 : 1−160,L2 : 161−600,L3 : 601−1210,L4 : 1211+].
For example, 99.26% of ClientHellos in our training dataset
are mapped into L2. This step reduces the dimensionality to
(4∗2)3. Furthermore, inspired by [88], we only use 3-grams
that provide the best distinguishability by selecting those that
exhibit low variance among samples from the same class but
high variance among samples from different classes.

The overall training and testing process is outlined in Al-
gorithm 1, where Nt and Pr(t,g) correspond to the number
of all 3-grams and the probability of the specific 3-gram g in
flow t, respectively. The variables f and δ control the number
of 3-gram features considered in the model and the decision
threshold. c denotes the opposite class of c. As an example,
Table 2 lists the top five 3-gram features ranked by the dis-
tinguishability they provide. As expected, we observe that
3-grams most likely representing state-transition patterns are
among the top features that offer the best distinguishability.

6.3.2 Mahalanobis Distance

The Mahalanobis distance provides a method to measure
the multivariate distance between a point and a distribution,
incorporating both the variances of each variable and the
inter-variable correlations. In our use case, we apply the
Mahalanobis distance to the burst representation of a given
flow, where each burst is considered as a separate dimension.
Our rationale for this approach stems from the observation
that each phase of the TLS handshake typically forms its own
burst, as successive stages transmit packets in alternating
directions. Additionally, while individual packets within
different TLS handshakes can exhibit wider variability, the
aggregated dynamics of a flow – characterized by traffic
volume and direction – are likely more consistent across
samples. In contrast to distance metrics like the Euclidean
distance, the Mahalanobis distance effectively normalizes for
the variance within each dimension by considering the covari-
ance matrix. In other words, it takes into account the relative
importance of changes in each dimension based on their
expected variability. For example, the Mahalanobis distance
computation will inherently recognize and accommodate
the fact that the sizes of ServerHello bursts might vary more
across samples than the sizes of ClientHello bursts.

Algorithm 2 outlines the process of measuring the Maha-
lanobis distance, given a TLS training set T1, a test sample s,
a burst window Wb, and a detection threshold γ. We set Wb to
be 2×RT +1, where RT is the minimum number of round
trips required for a full TLS handshake. Therefore, for TLS
1.2 and 1.3, Wb is set to 5 and 3, respectively.

6.4 Evaluation on plain TLS/non-TLS traffic

We train and test our classifiers using the TLS/non-TLS
dataset, which is fully labeled with protocol parsers as de-

3-gram Most frequently occurring labels Distinc.

(L2,−L4,L1) (C-H, S-H+S-EX, C-EX+C-CCS) 7.226
(−L4,−L4,−L4) (S-H, S-H (cont.), S-H (cont.)) 5.886
(−L4,L1,−L1) (S-H, C-EX+C-CCS, S-CCS+S-FIN) 2.879
(−L4,−L4,−L3) (S-H, S-H (cont.), S-EX) 2.780
(L2,−L4,−L4) (C-H, S-H, S-H (cont.)) 2.416

Table 2: Example top 3-grams with TLS labels. C-:Client Sent, S-
:Server Sent, H:Hello, EX:KeyExchange, CCS:ChangeCipherSpec.⋄

scribed in § 6.1. We partition the TLS class flows based on
their respective TLS versions and train a separate classifier
for each version. The negative class consists of non-TLS
flows, shared between both classifiers. We set the observation
window as Wo = 25, a length that we found to be sufficient for
over 99.95% of TLS handshakes in our dataset. Additionally,
we set the number of 3-gram features under consideration as
f = 100. Upon completing the initial round of training, we
compute the Chi-squared distance and Mahalanobis distance
for each sample within the training set. Then, we remove out-
liers exhibiting abnormally large distances from the models
and re-derive the models with the remaining samples.

We evaluate the classifiers under varying Chi-squared and
Mahalanobis distance thresholds. Figure 9 shows the perfor-
mance of both classifiers using the parameter sets that yield
the highest TPRs under specific FPR constraints. As expected,
the TLS 1.2 classifier outperforms the 1.3 classifier across a
range of threshold configurations, especially in terms of min-
imizing the false positive rate (FPR). This can be intuitively
explained by the fact that a full handshake in TLS 1.2 requires
one additional round trip compared to version 1.3, which
manages to exchange all necessary information in the initial
round trip, resulting in shorter handshake sequences. As our
Mahalanobis classifier uses a moving window to identify
potential handshake sequences, this means that in TLS 1.3,
fewer elements need to match consecutively in the stream,
increasing the likelihood of coincidental matches. We em-
phasize that the low FPR of classifying TLS 1.2 traffic makes
it a more attractive target for censors, who tend to prioritize
minimizing collateral damage. Regarding the source of false
negatives, while we couldn’t manually inspect raw traffic due
to ethical concerns (§ 5), based on packet labels and sizes, we
conjecture that irregular handshakes resulting from optimiza-
tions such as TLS Session Resumption and False Start [15,16]
may contribute to the majority of false negative instances.

7 Detecting Obfuscated Proxy Traffic

In this section, we evaluate the practicality of exploiting en-
capsulated TLS handshakes to detect traffic belonging to ob-
fuscated proxies. In line with previous studies on censorship
and fingerprintability [91], our goal is to conduct our evalu-
ation in a realistic setting while incorporating perspectives
on how censors operate in practice. To this end, we adopt

Algorithm 2 Mahalanobis Distance over Bursts
T1:TLS training set; s:test sample; γ: detection threshold
Wb = 5 for TLS 1.2 and Wb = 3 for TLS 1.3
Input: T1,s,Wb,γ
Training:

T1 = [x[0 : Wb] for x in T1]
M⃗ = GetMeanO f Burst(T1)
C = GetCovarianceMatrix(T1)

Testing:
Dis←{}
for i in (0...|s|−Wb) do

Dis.add(
√
(s[i : i+Wb]− M⃗)TC−1(s[i : i+Wb]− M⃗))

end for
Return min(Dis)≤ γ

the viewpoint of a potential censor by deploying our detec-
tion framework within Merit. As illustrated in Figure 4, our
framework processes two types of traffic: obfuscated proxy
traffic generated from a control machine (4) to a proxy server
(5), with our Monitor positioned on-path, as well as legiti-
mate, passing network traffic produced by real users served
by Merit. Throughout this section, we aim to address three
research questions: (1) How effective is the proposed finger-
printing attack? (2) Can current countermeasures, such as
random padding and stream multiplexing, effectively defend
against the attack? (3) How practical is it for censors to de-
ploy at scale without causing significant collateral damage?

7.1 Experiment Setup

7.1.1 Selection of Proxy Configurations

We compile a list of obfuscated proxy configurations based
on previous research [32, 46, 78, 89], online censorship dis-
cussion forums [1, 9], and our experience with circumvention
tools used in regions with strict information control. We do
not include configurations that lack obfuscation, such as plain
HTTP/SOCKS proxy or VPN protocols, as they are trivially
detectable. We also exclude “stealth VPNs” as marketed by
commercial VPN providers, since previous work has shown
that most of them do not deploy standard obfuscation mecha-
nisms and can be easily probed and detected [91]. The proxy
configurations we examined are shown in Table 3.

Basic Configurations include raw protocols such as
vmess, Shadowsocks, Trojan (trojan-go), and vless [19,25,27].
These protocols are specifically designed for censorship cir-
cumvention, and as such, obfuscation is among their top pri-
orities. Shadowsocks and vmess are random-looking proxies
that use encryption to make their traffic indistinguishable from
random bytes. Trojan and vless are TLS-based protocols, en-
capsulating traffic inside TLS tunnels to avoid detection.

Advanced Configurations build upon raw protocols,
adding additional “cover” layers to encapsulate proxy traf-

Figure 5: Detection Framework in Merit. For TLS flows, we re-
move the handshake of the cover TLS layer before feature extraction
in order to only identify handshakes that are encapsulated.⋄

fic inside popular, legitimate protocols. Examples include
vmess-over-tls, vmess-over-websocket, shadowsocks-over-
websocket-over-tls, etc.. This category also includes dedi-
cated pluggable transports like Cloak and shadowTLS [5, 7],
which improve the censorship-resistance of Shadowsocks, and
httpt and gost [6,54], which are probe-resistant proxy systems
that hide proxy traffic inside TLS tunnels.

MUX Configurations combine multiple application
streams within a single TCP connection. Without multiplex-
ing, each TCP stream from local applications arriving at the
proxy client would result in a new outgoing TCP connec-
tion to the proxy server. With multiplexing enabled, a small
number of long-lived connections are maintained between the
proxy client and server, with all application streams being
multiplexed inside these connections. Although multiplexing
is often discussed as a performance optimization, previous
work has found that multiplexing can mitigate the effect of
traffic analysis attacks [62, 67]. Table 4 in Appendix lists the
implementations examined and their multiplexing support.

Random Padding Configurations involve appending
dummy data to payloads in order to obscure patterns in packet
sizes. For obfuscated proxies, padding is implemented as part
of the traffic obfuscation mechanism. The method for choos-
ing a padding length varies across protocols: some select a
padding length uniformly at random from a range and append
to each packet [8,27], while other proxies pad all packets to a
target range [29] or according to a specific distribution [30].

7.1.2 Proxy Traffic Generation

To generate and test on obfuscated proxy traffic, we use the
Client Station inside Merit to connect to a server running
proxy protocols. As shown in Figure 4, all traffic to/from the
Client Station passes through a Merit backbone router, which
is configured to send mirrored traffic to the Monitor.

On the Client Station, we run an automated script to gener-
ate proxy traffic. For each obfuscated proxy configuration, we
connect to the proxy server and use Selenium [18] Firefox to
visit the top 1K domains as ranked by Cloudflare [10] while

collecting packet captures for reference. We note that the goal
of browsing 1K domains is to generate a diverse set of TLS
traces on proxy. However, the exploit is not dependent on web
browsing – any proxied application using TLS will generate
encapsulated TLS handshakes. We configure the Selenium
browser to use 1.2 only when negotiating TLS versions. In
§ 7.4, we extend the experiment to include TLS 1.3 and show
that, at the moment, it is in censors’ interest to focus on TLS
1.2, due to the higher precision that TLS 1.2 handshake finger-
prints offer. For configurations with stream multiplexing, we
restart the proxy client between consecutive domain visits. On
average, this process generates over 15,000 flows exceeding
the observation window Wo = 25 for non-multiplexed config-
urations. We note that some of these proxied flows might not
be TLS and therefore do not contain an encapsulated TLS
handshake, resulting in an underestimated True Positive Rate
in our evaluation. However, as shown in § 7.4, we estimate
that only 0.39% of flows are non-TLS connections when con-
ducting experiments on Cloudflare’s 1K list; thus, we ignore
them when reporting TPRs.

7.2 Detection Framework

Our Monitor inside Merit receives up to 50 Gbps of mirrored
traffic, which necessitates sampling due to CPU bottleneck
in our single-server setup. We use a sampling rate of 1/8 to
minimize the effect of packet loss, and we sample traffic based
on 4-tuples so that both directions of a flow are either selected
for analysis or dropped together. Traffic to/from the Client
Station is not subject to sampling. We note that while nation-
state censors could potentially scale up their deployment to
avoid sampling, a recent work shows that GFW operates under
an approximate sampling rate of 1/4, presumably to conserve
resources and limit collateral damage [89].

As shown in Figure 5, once mirrored traffic arrives, it is
first processed by a cluster of Zeek [92] instances running
our custom script. We then use protocol parsers to extract
the application-layer protocol for each flow. For flows that
parsers cannot identify (e.g., fully encrypted protocols like
shadowsocks), we label them as Unknown. Since all our
proxy configurations have either Unknown, TLS, or HTTP as
their (application-layer) cover protocols, we filter out flows
with any other labels, which account for 0.89% of all flows
exceeding the observation window Wo. 1 Next, we extract
features including TCP payload sizes and inter-arrival times
(IAT) of the first Wo TCP data-carrying packets and pass them
into our classifiers. Importantly, for TLS flows, we remove
packets forming the (cover) TLS handshakes prior to feature
extraction so that the classifiers disregard the “cover” TLS and
instead only focus on identifying potential TLS handshakes
that are encapsulated in the payload of the cover TLS (i.e.,
TLS-over-TLS).

1Note that non-obfuscated protocols that use TLS for encryption, e.g.,
SMTP/SSL, POP3/SSL, IMAP/SSL, etc., are filtered out at this stage.

We follow the process outlined in § 6.3 to derive the sta-
tistical models. Notably, the training datasets used here are
the same as in § 6.1. This highlights an advantage of the
proposed exploit over previous work: censors do not need to
generate a synthetic training dataset of proxy traffic. Instead,
they can model encapsulated TLS handshakes by observing
real TLS traffic in their network. It’s important to clarify that
all evaluations in this section are conducted on live and proxy
traffic, entirely separate from the training traces. To adapt the
classifiers for detecting proxy traffic, we modify the mapping
of packet sizes M to reflect the framing overheads introduced
by the proxy protocols. Although this overhead varies be-
tween proxy protocols, they tend to be small in size (typically
ranging between 20 to 60 bytes) due to performance consid-
erations. While adjusting specific framing overheads for each
proxy protocol might lead to marginally improved results, for
the purpose of evaluation, we choose the median overhead
size for all proxy protocols that have fixed framing overheads.

However, for protocols with complex random padding
schemes, framing overheads vary across packets, making it
challenging to separate packets with different semantic mean-
ings based on sizes. For example, XTLS-vision [29] pads all
packets at the beginning of a flow to a range of 900-1400 bytes,
effectively nullifying individual packet sizes as a feature. Yet,
packet directions can still serve as a feature, although less
informative, because proxies we examine only pad payloads
from upstream applications and don’t send “dummy” packets
when there is nothing to transmit. Thus, for XTLS-vision and
obfs4 [29, 30], we use a mapping that groups packets by their
directions, regardless of their sizes (|L| = 1). Furthermore,
we adapt the Mahalanobis model as these padding schemes
lead to increased burst sizes and higher variances across flows,
which needs to be accounted for when computing distances.
Specifically, we apply the padding procedures as implemented
by XTLS-vision and obfs4 to each flow in the training dataset,
as detailed in Appendix A.1. Then, we derive the new means
and covariance matrices based on the padded flow sequences.

7.3 Results and Findings

Beginning March 16, 2023, we deploy our detection frame-
work on the Monitor for 30 days to evaluate it on both proxy
and ISP traffic. Despite the sampling, the Monitor still pro-
cesses over 36 terabytes of traffic daily, consisting of 34 bil-
lion packets from over 3.9 million flows exceeding the ob-
servation window Wo = 25. As Merit is located in a country
with minimal censorship on network traffic, we expect that
the vast majority of traffic seen on Merit does not contain
traffic from obfuscated proxies designed for censorship cir-
cumvention. For this reason, we consider all ISP flows that
our framework labels as proxy traffic to be false positives to
derive a conservative upper-bound False Positive Rate (FPR).

We extract distances for each proxy and ISP flow, labeling
a flow as “proxy” if both distances fell below specific thresh-

Figure 6: Results by configurations. Data points are obtained using
the parameter set of Chi-squared threshold δ and Mahalanobis thresh-
old γ that yield the highest TPRs under a specific FPR constraint. ⋄

olds. We identify the “optimal” thresholds and their corre-
sponding True Positive Rates (TPRs), contingent upon the
network operator’s tolerance to false positives (how aggres-
sive the censor is). Figure 6 presents the results, broken down
by configuration groups, under varying FPR constraints. To
provide context on the framework’s practicality, we highlight
the region where FPR < 0.6%, aligning with the estimated
FPR of the inferred algorithm used by the GFW to block fully
encrypted proxies [89]. We highlight that our approach not
only captures the majority of non-multiplexed proxy flows
but also retains precision comparable to attacks that employ
protocol-specific active probing [91], while being applica-
ble to a broader range of circumvention proxies. Table 3
details evaluation results using one set of detection thresholds,
grouped by configurations. Note that for C3 (obfs4), we used
a more permissive FPR constraint, as it applies only to traffic
whose application-layer protocol is Unknown, a category that
censors have historically approached more aggressively.

Major obfuscated proxies, in their standard configura-
tions, are vulnerable to fingerprinting based on encapsu-
lated TLS handshakes. We are able to detect over 70% of
flows generated by any of the four most widely used obfus-
cated proxy protocols, specifically vmess, shadowsocks, vless,
and trojan. The implication of such detection rates is ampli-
fied when considering that a censor only needs to identify
a single flow to block the corresponding proxy server. Al-
though vmess features a built-in payload padding scheme, the
padding size is drawn from a limited range of 0-63 bytes [27].
While such a scheme may be effective in obscuring values
within request header fields, such as the destination URL, our
findings has demonstrated that it falls short in obfuscating the
size and directional traffic characteristics of (encapsulated)
TLS handshakes from even simple statistical models.

Wrapping proxy traffic inside additional cover proto-
cols does not provide an effective defense against traffic
analysis. Encapsulating proxy connections within another
protocol is a popular strategy to provide extra security that
comes with the cover protocol, such as the probe-resistance of

Classifier Group Configuration Application-layer Protocal Random Padding Multiplexing TPR

C1 Basic vmess Unknown Yes No 0.77135

C1 Basic shadowsocks Unknown No No 0.85383

C1 Basic vless over tls TLS No No 0.74830

C1 Basic trojan over tls TLS No No 0.73705

C1 Advanced vmess over websocket HTTP/websocket Yes No 0.78454

C1 Advanced vmess over tls TLS Yes No 0.74463
C1 Advanced vmess over tls w/o padding TLS No No 0.84071

C1 Advanced vmess over websocket over tls TLS Yes No 0.68782
C1 Advanced vmess over websocket over tls w/o padding TLS No No 0.85907

C1 Advanced shadowsocks over websocket HTTP/websocket No No 0.83597

C1 Advanced shadowsocks over websocket over tls TLS No No 0.69679

C1 Advanced shadowsocks over Cloak TLS No No 0.78748

C1 Advanced shadowsocks over shadowTLS TLS No No 0.82857

C1 Advanced vless over websocket over tls TLS No No 0.70652

C1 Advanced httpt TLS No No 0.87758

C1 Advanced gost TLS No No 0.73543

C1 MUX vmess (concurrency=2) Unknown Yes Yes 0.22520
C1 MUX vmess (concurrency=4) Unknown Yes Yes 0.17635
C1 MUX vmess (concurrency=8) Unknown Yes Yes 0.16754

C1 MUX vmess over tls (concurrency=8) TLS No Yes 0.14841

C1 MUX vmess over websocket over tls (concurrency=8) TLS No Yes 0.12534

C1 MUX trojan over tls (concurrency=8) TLS No Yes 0.17943

C1 MUX shadowsocks Unknown No Yes 0.18832

C1 MUX vmess over HTTP/2 over tls TLS No Yes 0.36772

C1 Padding naiveproxy TLS Yes Yes 0.32772

C2 Padding XTLS-vision TLS Yes No 0.51281

C3 Padding SOCKS over obfs4 Unknown Yes No 0.43830

Application-layer Proto. Flow Count Traffic Share C1 False Positive C2 False Positive C3 False Positive Classifier Overall FPR

TLS 105,542,111 0.8994 57,464 (0.0544%) 209,987 (0.1989%) N/A C1 0.0544%
HTTP 10,021,983 0.0854 3,205 (0.0319%) N/A N/A C2 0.1989%
Unknown 731,446 0.0062 3,218 (0.4399%) N/A 4,482 (0.6127%) C3 0.6127%

Table 3: Evaluation Results. Top: performance of the detection framework, broken down by proxy configurations. Bottom: False Positive
Rates estimated on ISP traffic. We do not include vmess in the Random Padding group, as its padding scheme is limited (0-63 bytes).⋄

TLS. However, such connections can still be accurately distin-
guished from legitimate sessions running the cover protocols
(HTTP, TLS), since TLS handshakes are not expected to oc-
cur on top of these cover protocols in their typical use cases.
We note that our exploit does not assume implementation
flaws and discrepancies in the cover protocols, which could
become additional fingerprintable features orthogonal to our
attack [52,53,80]. For example, Cloak [5] encapsulates proxy
traffic in a cover TLS tunnel, which preserves the syntactic
validity of TLS but not its semantics [59] (e.g., the absence of
server certificate). A censor could complement the exploit of
encapsulated TLS handshakes with discrepancies at the cover

protocol layer to further improve detection accuracy.

Random padding is not the final word when it comes to
obfuscating patterns within packet size sequences. Imple-
menting a random padding scheme is often the first step taken
by developers of obfuscated proxies to hide patterns in packet
sizes. Yet, we show that simple random padding schemes
drawing padding sizes from limited ranges (e.g., vmess: [0,
63]), while increasing the challenge, doesn’t render detec-
tion infeasible (TPR: 0.859→ 0.687 for vmess-ws-tls after
padding). For more aggressive padding schemes e.g., XTLS-
vision and obfs4, censors could adapt their statistical models
by mirroring the padding schemes, training on padded ver-

sions of datasets, and leveraging packet directions over sizes
for classification. Although doing so substantially increases
FPR (0.0544%→ 0.6127%), empirical evidence suggests that
a motivated censor may be able to tolerate this level of collat-
eral damage during politically sensitive times [89].2

It’s worth emphasizing that the need for dedicated clas-
sifiers for protocols like XTLS-vision and obfs4 inherently
demands more from censors in terms of resources, efforts,
and potential costs from collateral damage. This additional
complexity contrasts with configurations from the Basic and
Advanced category, which can be fingerprinted in an effec-
tively protocol-agnostic manner.

Multiplexing proves to be a more effective mechanism
for masking the fingerprint of encapsulated TLS hand-
shakes. On a positive note, introducing connection multi-
plexing significantly reduces the detection rate, regardless of
the underlying proxy protocol used. Even the most basic form
of multiplexing – combining every two application streams
in one proxy connection – lowers the TPR by over 70%. Intu-
itively, when a TLS handshake takes place concurrently with
data transmission from another stream sharing the multiplexed
connection, individual TLS handshake packets are likely to
interleave with other data packets, thus disrupting the size and
timing patterns typically expected from a non-multiplexed
TLS handshake. We note that the actual impact of multi-
plexing may be more substantial than the differences in TPR
suggest, as there will be significantly fewer proxy connections
crossing the censor’s firewall. One caveat to consider is that
the effectiveness of multiplexing is limited when there is only
one application stream. Without packets from co-existing
streams to interleave, patterns in packet sizes remain exposed
to fingerprinting in the same way as non-multiplexed flows.

False Positives: It is possible that some of the flows
labeled as obfuscated proxies are actually true positives.
To investigate this possibility, we look for circumstantial
evidence, independent of the encapsulated TLS fingerprint
we exploit, to corroborate our detection results. Specifically,
we extract 7,100 unique server endpoints from the 63,887
connections labeled by C1 over the 30-day evaluation period.
For each endpoint, we then examine the number of unique
client IPs (and SNIs, if applicable). Intuitively, we expect
endpoints running proxy protocols to have fewer unique
client IPs and SNI values. As illustrated in Figure 10, while
labeled endpoints indeed connect fewer unique clients, they
also tend to have more unique SNIs than average. A closer
look at WHOIS and SNIs of the labeled endpoints reveals
that streaming, gaming, and CDN services are among the
top heavy hitters, suggesting that the majority of labeled
endpoints are unlikely to be obfuscated proxies.

2The FPRs in Table 3 are broken down by application-layer proto-
cols. That is, the FPR for C3 (0.6127%) applies to Unknown flows only
– FPR:0.0038% when all traffic is considered.

Figure 7: Performance of classifiers on mixed TLS 1.2/1.3 traffic.
TPR is averaged from vmess, shadowsocks, vless, and trojan.⋄

7.4 TLS 1.2 vs TLS 1.3

To investigate the effect of the increasing adoption of TLS 1.3
on the proposed fingerprinting attack, we repeat the experi-
ment described in § 7.1.2 using Cloudflare’s 1K domains [10].
This time, instead of forcing the browser to negotiate TLS 1.2,
we allow the browser and server to decide on their preferred
protocol version. We tested on two classifiers, each trained
specifically for a particular version of TLS. For each ver-
sion, we conducted the experiment five times, using the Basic
configurations, and reported the average results in Figure 7.

We find that although most top domains themselves
support TLS 1.3, resources loaded on the page (e.g., images,
ad trackers) may lag in TLS 1.3 adoption. As a result, on
average, when visiting the top 1K domains, TLS 1.2, 1.3,
and HTTP represent 38.05%, 61.55%, and 0.39% of all
TCP flows, respectively. These figures align with what
we observed in Merit traffic (Table 1) and a recent TLS
Telemetry Report [84]. Regarding classifier performance, we
observe that although the TLS 1.3 classifier offers a relatively
higher detection rate, it comes at the expense of a significantly
elevated FPR, which can be attributed to its shorter (and thus
less specific) handshakes. In contrast, the TLS 1.2 classifier
effectively detects the majority of proxied TLS 1.2 flows,
despite being limited by the version share, while maintaining
a lower FPR which makes it more practical for deployment.
As discussed in § 3, a moderate TPR is unlikely to be a major
concern for a censor, as a non-multiplexed proxy would
generate hundreds of flows during a typical browsing session,
and the censor only needs to detect one of them. Considering
that TLS 1.2 still represents a significant share of Internet traf-
fic, we believe that, at this moment, the optimal strategy for a
perspective censor implementing the proposed exploit would
be to exclusively target encapsulated handshakes of TLS 1.2.

8 Discussion and Mitigation

Obfuscated proxies play a crucial role in facilitating unre-
stricted access to information and resources on the Internet,
particularly in regions where censorship is prevalent. How-
ever, we demonstrate that detecting obfuscated proxy traf-

fic, even with random padding and layers of encapsulation
added, is highly effective by exploiting encapsulated TLS
handshakes. The ability of censors to identify proxy con-
nections could pose significant risks to users, especially in
countries where circumventing censorship is deemed illegal.

Would censors deploy the fingerprinting attack based
on encapsulated TLS handshakes? Our evaluation on Merit
shows that, with conservative detection thresholds, the pro-
posed fingerprinting attack yields an exceptionally low FPR,
while only requiring passive monitoring and remaining largely
agnostic to the choice of circumvention protocol. 3 Further-
more, this exploit targets layers encapsulated within the proxy
protocol, thereby making it orthogonal and potentially com-
plementary to attacks targeting the proxy protocols them-
selves [53,56,81] as well as host-based network analysis [79].
For this reason, we believe that proxies featuring fully en-
crypted cover layers, e.g., raw shadowsocks and vmess, are
especially vulnerable: given that censors have already demon-
strated a willingness to block them based on entropy [89], the
additional use of encapsulated TLS handshakes as a comple-
mentary feature could further reduce the collateral damage.

However, we note that even with a false positive rate of
1 in 2000 (§ 7.3), due to the sheer volume of traffic passing
through a national firewall and the low base rate of circumven-
tion traffic in the wild, our fingerprinting attack would likely
still label more legitimate connections as proxied than actual
proxied connections [81]. Furthermore, a nation-state censor
is not just a traffic classifier, and deploying a new censorship
technique involves considerations beyond false positive rates,
such as public sentiment and operational costs. As such, we
caution against prematurely declaring any of the tested proxies
as “broken” based on our findings alone. Rather, proxy devel-
opers should anticipate the potential exploitation of encapsu-
lated TLS handshakes as a shared fingerprint of proxy traffic,
and proactively equip their tools with mitigation mechanisms.

Mitigation Encapsulated TLS handshakes cannot be easily
eliminated from proxy traffic without compromising end-to-
end security. Hence, the responsibility falls on proxies to im-
plement effective obfuscation mechanisms to hide them from
traffic analysis. Our evaluation suggests that multiplexing
could be a more viable strategy compared to random padding
alone. Intuitively, multiplexing interleaves packets from mul-
tiple streams, disrupting traffic patterns not only in packet size
but also timing and direction. Different co-existing streams
introduce additional unpredictability. However, the effective-
ness of multiplexing as an obfuscation mechanism depends on
the presence of co-existing flows. In situations where there is
only a single flow, or where the co-existing flows are inactive,
patterns in packet sequences will remain as exposed as they
are with non-multiplexed proxies. One direction for future

3The approach to fingerprint proxy flows with encapsulated TLS hand-
shakes is generally protocol-agnostic. However, classifiers may need adjust-
ments for protocols using random padding (§ 7.2).

Figure 8: Round trip count and size of first burst after TLS hand-
shakes. TLS-over-TLS requires more round trips and a larger initial
burst due to a second (encapsulated) handshake. Shaded areas high-
light dissimilarities that padding and multiplexing cannot obfuscate.

work could be exploring methods for generating synthetic
co-existing flows when they are not naturally present.

However, obfuscation mechanisms based on padding and
multiplexing alone are subject to fundamental limitations.
Specifically, padding can only increase the size of a packet
or a burst, not decrease it. Stream multiplexing can only in-
crease the number of round trips in a connection, not decrease
them. These limitations become significant when the pattern
requiring obfuscation is inherently characterized by larger
sizes and more round trips than what might be considered
“normal” within the context.

Consider normal HTTPS versus TLS-based proxies. In a
typical HTTPS connection, the packets that immediately fol-
low the TLS handshake usually consist of just one round trip:
an outgoing GET and an incoming response segmented into
multiple packets. In contrast, when accessing HTTPS over
a TLS-based proxy (i.e., TLS-over-TLS), what immediately
follows the initial TLS handshake is a second (encapsulated)
TLS handshake, thereby requiring more round trips and result-
ing in larger packet sizes due to multiple framing overheads.
Figure 8 shows the number of round trips and the size of the
first burst following the initial handshake for normal TLS and
TLS-over-TLS. Importantly, the shaded areas represent dis-
similarities that padding and multiplexing cannot obfuscate.
In theory, a censor could combine two simple filtering rules
(RT < 2.5,Size < 300) to effectively filter out 82.5% of legit-
imate and 1.5% of proxied connections. More sophisticated
analysis could then be applied to the remaining connections.
This example illustrates that, if obfuscated only with padding
and multiplexing, traffic of TLS-based proxies can always be
distinguished from the majority of genuine HTTPS traffic.

A dedicated obfuscation layer An effective obfuscation
mechanism should transform patterns in packet size, timing,
and direction such that traffic observable on the wire does
not reflect any dynamics of the traffic encapsulated within,
thereby hiding fingerprintable features such as encapsulated
TLS handshakes. Existing padding and multiplexing schemes,
unfortunately, do not meet this criterion. We believe that
to achieve this, proxies need to decouple obfuscation from

encapsulated application streams, in order to allow maximum
flexibility to simulate any given traffic shape [48, 50]. For
example, one approach is to implement a traffic scheduler
at the obfuscation layer that dictates when, how, and how
much traffic should be sent at any given time. Such scheduler
goes beyond existing padding schemes as it would require
proxies to send dummy packets when there is no application
data to send, or buffer application data when the scheduler
demands quiet time. Abstracting an obfuscation layer would
also allow proxies not only to multiplex but also de-multiplex
application streams. For example, the obfuscation layer could
use two separate network connections to transmit upstream
and downstream application traffic. For each connection,
half of the traffic is dummy data that could be arbitrarily
interleaved with the uni-directional application streams.

A dedicated obfuscation layer would ensure a more princi-
pled and sustainable defense against traffic analysis. However,
defining a “legitimate” traffic shape for proxies’ obfuscation
to simulate, and balancing obfuscation and performance, re-
main open questions for future research.

Generalizing to UDP-based Proxies and VPNs While
our work primarily focuses on TCP-based proxies, the
principles behind our approach are transferable to UDP-based
proxies such as MASQUE or vmess/shadowsocks over QUIC.
This is because the patterns for fingerprinting are generated
by encapsulated layers inside a proxy’s payload, rather than
the characteristics of the proxy layer itself. Adapting the
classifiers to these contexts would need to consider factors
such as the unreliability of UDP and the potential frame
padding of QUIC.

Our fingerprinting attack is predicated on the presence of
nested protocol stacks – the rarity of finding a TLS layer inside
another TLS or application layer in direct connections makes
this behavior an ideal fingerprint for proxy flows. While this
paper explores one specific attack, it points to broader risks
across all proxying and tunneling tools that rely on nested
protocol stacks. For example, a layer-3 analogy would be
detecting obfuscated VPN flows by considering encapsulated
TCP handshakes (and the rarity of finding TCP handshakes
inside another transport layer protocol).

9 Conclusion

We explore the practicality of exploiting encapsulated TLS
handshakes as a fingerprint to detect obfuscated proxy traffic.
Our evaluation within an ISP demonstrates that, even with
random padding and layers of encapsulation, traffic of ob-
fuscated proxies can still be reliably detected with minimal
collateral damage. Considering that users in censored regions
depend on obfuscated proxies for access to information, it is
critical for proxy developers to anticipate this emerging threat
and to design and deploy proactive countermeasures.

10 Acknowledgement

The authors are grateful to the anonymous reviewers for their
constructive feedback. This material is based upon work sup-
ported by the National Science Foundation under Grant Num-
bers CNS-2237552, CNS-2141512, CNS-1953786, the De-
fense Advanced Research Projects Agency (DARPA) under
Agreement HR00112190127, and the Young Faculty Award
program of the Defense Advanced Research Projects Agency
(DARPA) under Grant DARPA-RA-21-03-09-YFA9-FP-003.

References

[1] Censorship circumvention methods software —
ntc.party. https://ntc.party/c/censorship-circumvention-
software/. [Accessed 24-Apr-2023].

[2] Cyberoam firewall blocks meek by TLS signature —
groups.google.com. https://groups.google.com/g/traffic-
obf/c/BpFSCVgi5rs. [Accessed 05-May-2023].

[3] Deep packet inspection to classify V2Ray traffic · Issue
v2ray/discussion — github.com. https://github.com/
v2ray/discussion/issues/569. [Accessed 19-Apr-2023].

[4] dnstt; DoH- and DoT-capable DNS tunnel — bamsoft-
ware.com. https://www.bamsoftware.com/software/
dnstt/. [Accessed 05-May-2023].

[5] GitHub - cbeuw/Cloak: A censorship circumvention
tool to evade detection by authoritarian state adversaries
— github.com. https://github.com/cbeuw/Cloak. [Ac-
cessed 24-Apr-2023].

[6] GitHub - ginuerzh/gost: GO Simple Tunnel - a simple
tunnel written in golang — github.com. https://github.
com/ginuerzh/gost. [Accessed 12-May-2023].

[7] GitHub - ihciah/shadow-tls: A proxy to expose real tls
handshake to the firewall — github.com. https://github.
com/ihciah/shadow-tls. [Accessed 25-May-2023].

[8] GitHub - klzgrad/naiveproxy: Make a fortune quietly
— github.com. https://github.com/klzgrad/naiveproxy/.
[Accessed 24-Apr-2023].

[9] GitHub - net4people/bbs: Forum for discussing Internet
censorship circumvention — github.com. https://github.
com/net4people/bbs. [Accessed 24-Apr-2023].

[10] Goodbye, Alexa. Hello, Cloudflare Radar Domain
Rankings — blog.cloudflare.com. https://blog.
cloudflare.com/radar-domain-rankings/. [Accessed 24-
Apr-2023].

[11] index/prefixing - outlinevpn — reddit.com. https://www.
reddit.com/r/outlinevpn/wiki/index/prefixing/. [Ac-
cessed 05-May-2023].

[12] Iran blocks social media, app stores and encrypted
DNS amid Mahsa Amini protests — ooni.org.
https://ooni.org/post/2022-iran-blocks-social-media-
mahsa-amini-protests/. [Accessed 09-May-2023].

https://ntc.party/c/censorship-circumvention-software/
https://ntc.party/c/censorship-circumvention-software/
https://groups.google.com/g/traffic-obf/c/BpFSCVgi5rs
https://groups.google.com/g/traffic-obf/c/BpFSCVgi5rs
https://github.com/v2ray/discussion/issues/569
https://github.com/v2ray/discussion/issues/569
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/software/dnstt/
https://github.com/cbeuw/Cloak
https://github.com/ginuerzh/gost
https://github.com/ginuerzh/gost
https://github.com/ihciah/shadow-tls
https://github.com/ihciah/shadow-tls
https://github.com/klzgrad/naiveproxy/
https://github.com/net4people/bbs
https://github.com/net4people/bbs
https://blog.cloudflare.com/radar-domain-rankings/
https://blog.cloudflare.com/radar-domain-rankings/
https://www.reddit.com/r/outlinevpn/wiki/index/prefixing/
https://www.reddit.com/r/outlinevpn/wiki/index/prefixing/
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/
https://ooni.org/post/2022-iran-blocks-social-media-mahsa-amini-protests/

[13] Large scale blocking of TLS-based censorship circum-
vention tools in China · Issue 129 · net4people/bbs —
github.com. https://github.com/net4people/bbs/issues/
129. [Accessed 08-May-2023].

[14] Missing Links: A comparison of search censor-
ship in China - The Citizen Lab — citizen-
lab.ca. https://citizenlab.ca/2023/04/a-comparison-of-
search-censorship-in-china/. [Accessed 09-May-2023].

[15] RFC 5077: Transport Layer Security (TLS) Session
Resumption without Server-Side State — rfc-editor.org.
https://www.rfc-editor.org/rfc/rfc5077. [Accessed 23-
Apr-2023].

[16] RFC 7918: Transport Layer Security (TLS) False Start
— rfc-editor.org. https://www.rfc-editor.org/rfc/rfc7918.
[Accessed 23-Apr-2023].

[17] RFC 8446: The Transport Layer Security (TLS) Pro-
tocol Version 1.3 — rfc-editor.org. https://www.rfc-
editor.org/rfc/rfc8446#section-4.2.1. [Accessed 20-Apr-
2023].

[18] Selenium — selenium.dev. https://www.selenium.dev/.
[Accessed 24-Apr-2023].

[19] Shadowsocks | A fast tunnel proxy that helps you bypass
firewalls. — shadowsocks.org. https://shadowsocks.
org/. [Accessed 24-Apr-2023].

[20] Sharing a modified Shadowsocks as well as our thoughts
on the cat-and-mouse game · Issue 136 · net4people/bbs
— github.com. https://github.com/net4people/bbs/issues/
136. [Accessed 05-May-2023].

[21] Snowflake — snowflake.torproject.org. https://
snowflake.torproject.org/. [Accessed 06-May-2023].

[22] Summary on recently discovered v2ray weaknesses.
https://gfw.report/blog/v2ray_weaknesses/en/. [Ac-
cessed 04-May-2023].

[23] TLSHistory · Wiki · The Tor Project / Organization ·
GitLab — gitlab.torproject.org. https://gitlab.torproject.
org/tpo/team/-/wikis/projects/Tor/TLSHistory. [Ac-
cessed 05-Jun-2023].

[24] Tor partially blocked in China | Tor Project —
blog.torproject.org. https://blog.torproject.org/tor-
partially-blocked-china/. [Accessed 04-May-2023].

[25] Trojan Documentation — trojan-gfw.github.io. https://
trojan-gfw.github.io/trojan/. [Accessed 24-Apr-2023].

[26] V2ray traffic identification method based on long short-
term memory (lstm) networks · Issue 1898 · v2ray/v2ray-
core — github.com. https://github.com/v2ray/v2ray-
core/issues/1898. [Accessed 20-Apr-2023].

[27] VMess protocol | V2Fly.org — v2fly.org. https://www.
v2fly.org/en_US/developer/protocols/vmess.html. [Ac-
cessed 24-Apr-2023].

[28] We Chat, They Watch: How International Users Un-
wittingly Build up WeChat’s Chinese Censorship Ap-
paratus - The Citizen Lab — citizenlab.ca. https://

citizenlab.ca/2020/05/we-chat-they-watch/. [Accessed
04-May-2023].

[29] XTLS Vision, fixes TLS in TLS, to the star and
beyond · XTLS/Xray-core · Discussion 1295 —
github.com. https://github.com/XTLS/Xray-core/
discussions/1295. [Accessed 24-Apr-2023].

[30] Yawning Angel / obfs4 · GitLab — gitlab.com. https://
gitlab.com/yawning/obfs4. [Accessed 24-Apr-2023].

[31] Accurate TLS Fingerprinting using Destination Con-
text and Knowledge Bases, author=Blake Anderson and
David A. McGrew. ArXiv, abs/2009.01939, 2020.

[32] Alice, Bob, Carol, J. Beznazwy, and A. Houmansadr.
How China detects and blocks Shadowsocks. In Internet
Measurement Conference. ACM, 2020.

[33] B. Anderson, A. Chi, S. Dunlop, and D. McGrew. Limit-
less HTTP in an HTTPS World: Inferring the Semantics
of the HTTPS Protocol without Decryption, 2018.

[34] C. Anderson. Dimming the Internet: Detecting throt-
tling as a mechanism of censorship in Iran. Technical
report, University of Pennsylvania, 2013.

[35] S. Aryan, H. Aryan, and J. A. Halderman. Internet
censorship in Iran: A first look. In Free and Open
Communications on the Internet. USENIX, 2013.

[36] D. Barradas, N. Santos, and L. Rodrigues. Effective
detection of multimedia protocol tunneling using ma-
chine learning. In 27th USENIX Security Symposium
(USENIX Security 18), pages 169–185, Baltimore, MD,
Aug. 2018. USENIX Association.

[37] M. Bevand. My Experience With the Great Firewall of
China — blog.zorinaq.com. https://blog.zorinaq.com/
my-experience-with-the-great-firewall-of-china/, 2016.
[Accessed 08-May-2023].

[38] K. Bock, G. Hughey, X. Qiang, and D. Levin. Geneva:
Evolving censorship evasion strategies. In Computer
and Communications Security. ACM, 2019.

[39] C. Brubaker, A. Houmansadr, and V. Shmatikov. Cloud-
Transport: Using cloud storage for censorship-resistant
networking. In Privacy Enhancing Technologies Sym-
posium. Springer, 2014.

[40] Z. Chai, A. Ghafari, and A. Houmansadr. On the impor-
tance of encrypted-SNI (ESNI) to censorship circum-
vention. In Free and Open Communications on the
Internet. USENIX, 2019.

[41] J. Chen, G. Cheng, and H. Mei. F-accumul: A proto-
col fingerprint and accumulative payload length sample-
based tor-snowflake traffic-identifying framework. Ap-
plied Sciences, 13(1):622, 2023.

[42] Y. Chen, E. Garcia, M. Gupta, A. Rahimi, and L. Caz-
zanti. Similarity-based classification: Concepts and
algorithms. The Journal of Machine Learning Research,
10:747–776, 03 2009.

https://github.com/net4people/bbs/issues/129
https://github.com/net4people/bbs/issues/129
https://citizenlab.ca/2023/04/a-comparison-of-search-censorship-in-china/
https://citizenlab.ca/2023/04/a-comparison-of-search-censorship-in-china/
https://www.rfc-editor.org/rfc/rfc5077
https://www.rfc-editor.org/rfc/rfc7918
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.1
https://www.rfc-editor.org/rfc/rfc8446#section-4.2.1
https://www.selenium.dev/
https://shadowsocks.org/
https://shadowsocks.org/
https://github.com/net4people/bbs/issues/136
https://github.com/net4people/bbs/issues/136
https://snowflake.torproject.org/
https://snowflake.torproject.org/
https://gfw.report/blog/v2ray_weaknesses/en/
https://gitlab.torproject.org/tpo/team/-/wikis/projects/Tor/TLSHistory
https://gitlab.torproject.org/tpo/team/-/wikis/projects/Tor/TLSHistory
https://blog.torproject.org/tor-partially-blocked-china/
https://blog.torproject.org/tor-partially-blocked-china/
https://trojan-gfw.github.io/trojan/
https://trojan-gfw.github.io/trojan/
https://github.com/v2ray/v2ray-core/issues/1898
https://github.com/v2ray/v2ray-core/issues/1898
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://www.v2fly.org/en_US/developer/protocols/vmess.html
https://citizenlab.ca/2020/05/we-chat-they-watch/
https://citizenlab.ca/2020/05/we-chat-they-watch/
https://github.com/XTLS/Xray-core/discussions/1295
https://github.com/XTLS/Xray-core/discussions/1295
https://gitlab.com/yawning/obfs4
https://gitlab.com/yawning/obfs4
https://blog.zorinaq.com/my-experience-with-the-great-firewall-of-china/
https://blog.zorinaq.com/my-experience-with-the-great-firewall-of-china/

[43] R. Clayton, S. J. Murdoch, and R. N. M. Watson. Ignor-
ing the Great Firewall of China. In Privacy Enhancing
Technologies, pages 20–35. Springer, 2006.

[44] M. Dusi, M. Crotti, and L. Salgarelli. Tunnel hunter:
Detecting application-layer tunnels with statistical fin-
gerprinting. Computer Networks, pages 81–97, 01 2009.

[45] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimp-
ton. Protocol misidentification made easy with Format-
Transforming Encryption. In Computer and Communi-
cations Security. ACM, 2013.

[46] R. Ensafi, D. Fifield, P. Winter, N. Feamster, N. Weaver,
and V. Paxson. Examining how the Great Firewall
discovers hidden circumvention servers. In Internet
Measurement Conference. ACM, 2015.

[47] R. Ensafi, J. Knockel, G. Alexander, and J. R. Crandall.
Detecting intentional packet drops on the Internet via
TCP/IP side channels. In Passive and Active Measure-
ment Conference. Springer, 2014.

[48] E. Fenske and A. Johnson. Security notions for fully
encrypted protocols. In Free and Open Communications
on the Internet, 2023.

[49] D. Fifield. Threat modeling and circumvention of inter-
net censorship. 2017.

[50] D. Fifield. Turbo Tunnel, a good way to design cen-
sorship circumvention protocols. In Free and Open
Communications on the Internet. USENIX, 2020.

[51] D. Fifield and M. G. Epner. Fingerprintability of webrtc,
2016.

[52] S. Frolov, J. Wampler, and E. Wustrow. Detecting
Probe-resistant Proxies. In Network and Distributed
System Security, 2020.

[53] S. Frolov and E. Wustrow. The Use of TLS in Censor-
ship Circumvention. In Network and Distributed System
Security. The Internet Society, 2019.

[54] S. Frolov and E. Wustrow. HTTPT: A Probe-Resistant
proxy. In 10th USENIX Workshop on Free and Open
Communications on the Internet (FOCI 20). USENIX
Association, Aug. 2020.

[55] P. Fu, C. Liu, Q. Yang, Z. Li, G. Gou, G. Xiong, and
Z. Li. A NetFlow Sequence Attention Network for Vir-
tual Private Network Traffic Detection. In International
Conference on Web Information Systems Engineering.

[56] J. Geddes, M. Schuchard, and N. Hopper. Cover your
ACKs: Pitfalls of covert channel censorship circumven-
tion. In Computer and Communications Security. ACM,
2013.

[57] G. D. Gil, A. H. Lashkari, M. Mamun, and A. A. Ghor-
bani. Characterization of Encrypted and VPN Traffic
Using Time-Related Features. In the 2nd International
Conference on Information Systems Security and Pri-
vacy(ICISSP), 2016.

[58] N. P. Hoang, A. A. Niaki, J. Dalek, J. Knockel, P. Lin,
B. Marczak, M. Crete-Nishihata, P. Gill, and M. Poly-
chronakis. How great is the Great Firewall? Measuring
China’s DNS censorship. In USENIX Security Sympo-
sium. USENIX, 2021.

[59] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
Parrot Is Dead: Observing Unobservable Network Com-
munications. In 2013 IEEE S&P.

[60] A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I
want my voice to be heard: IP over voice-over-IP for
unobservable censorship circumvention. In Network
and Distributed System Security. The Internet Society,
2013.

[61] M. Husák, M. Čermák, T. Jirsík, and P. Čeleda. HTTPS
traffic analysis and client identification using passive
SSL/TLS fingerprinting. EURASIP Journal on Informa-
tion Security, 2016:1–14, 2016.

[62] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt.
A critical evaluation of website fingerprinting attacks.
In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014.

[63] F. Li, A. Razaghpanah, A. M. Kakhki, A. A. Niaki,
D. Choffnes, P. Gill, and A. Mislove. lib·erate, (n):
A library for exposing (traffic-classification) rules and
avoiding them efficiently. In Internet Measurement
Conference. ACM, 2017.

[64] S. Li, M. Schliep, and N. Hopper. Facet: Streaming
over videoconferencing for censorship circumvention.
Proceedings of the ACM Conference on Computer and
Communications Security, pages 163–172, 11 2014.

[65] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and
M. Saberian. Deep packet: a novel approach for en-
crypted traffic classification using deep learning. In Soft
Comput 24, 2019.

[66] H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. SkypeMorph: Protocol obfuscation for Tor
bridges. In Computer and Communications Security.
ACM, 2012.

[67] R. Morla. Effect of pipelining and multiplexing in
estimating http/2.0 web object sizes, 2017.

[68] A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Raza-
ghpanah, N. Christin, and P. Gill. ICLab: A global,
longitudinal internet censorship measurement platform.
In Symposium on Security & Privacy. IEEE, 2020.

[69] P. Pearce, R. Ensafi, F. Li, N. Feamster, and V. Paxson.
Augur: Internet-wide detection of connectivity disrup-
tions. In Symposium on Security & Privacy. IEEE,
2017.

[70] P. Pearce, B. Jones, F. Li, R. Ensafi, N. Feamster,
N. Weaver, and V. Paxson. Global measurement of
DNS manipulation. In USENIX Security Symposium.
USENIX, 2017.

[71] PF_RING ZC (Zero Copy). https://www.ntop.org/
products/packet-capture/pf_ring/pf_ring-zc-zero-
copy/.

[72] J. Piet, D. Nwoji, and V. Paxson. GGFAST: Automating
Generation of Flexible Network Traffic Classifiers. In
Proceedings of the ACM SIGCOMM 2023 Conference,
ACM SIGCOMM ’23, page 850–866, New York, NY,
USA, 2023. Association for Computing Machinery.

[73] R. S. Raman, P. Shenoy, K. Kohls, and R. Ensafi. Cen-
sored Planet: An Internet-wide, longitudinal censorship
observatory. In Computer and Communications Secu-
rity. ACM, 2020.

[74] R. Rambert, Z. Weinberg, D. Barradas, and N. Christin.
Chinese wall or Swiss cheese? keyword filtering in the
Great Firewall of China. In WWW. ACM, 2021.

[75] R. Ramesh, R. S. Raman, M. Bernhard, V. Ongkowijaya,
L. Evdokimov, A. Edmundson, S. Sprecher, M. Ikram,
and R. Ensafi. Decentralized Control: A Case Study
of Russia. In Network and Distributed System Security,
2020.

[76] Z. Rosson, F. Anthonio, S. Cheng, C. Tackett, and
A. Skok. Internet shutdowns in 2022: the KeepItOn
Report — accessnow.org. https://www.accessnow.org/
internet-shutdowns-2022/. [Accessed 04-May-2023].

[77] S. Siby, M. Juarez, C. Diaz, N. Vallina-Rodriguez, and
C. Troncoso. Encrypted dns –> privacy? a traffic
analysis perspective, 2019.

[78] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson.
SoK: Towards Grounding Censorship Circumvention in
Empiricism. In 2016 IEEE Symposium on Security and
Privacy (SP).

[79] R. Wails, G. A. Sullivan, M. Sherr, and R. Jansen. On
Precisely Detecting Censorship Circumvention in Real-
World Networks. In Network and Distributed System
Security, 2024.

[80] G. Wang, Anonymous, J. Sippe, H. Chi, and E. Wus-
trow. Chasing shadows: A security analysis of the
ShadowTLS proxy. In Free and Open Communications
on the Internet, 2023.

[81] L. Wang, K. Dyer, A. Akella, T. Ristenpart, and T. E.
Shrimpton. Seeing through network-protocol obfusca-
tion. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, 2015.

[82] W. Wang, M. Zhu, J. Wang, X. Zeng, and Z. Yang.
End-to-end encrypted traffic classification with one-
dimensional convolution neural networks. In 2017 IEEE
International Conference on Intelligence and Security
Informatics (ISI).

[83] Z. Wang, Y. Cao, Z. Qian, C. Song, and S. V. Krishna-
murthy. Your state is not mine: A closer look at evading
stateful Internet censorship. In Internet Measurement
Conference. ACM, 2017.

[84] D. Warburton. The 2021 TLS Telemetry Report |
F5 Labs — f5.com. https://www.f5.com/labs/articles/
threat-intelligence/the-2021-tls-telemetry-report. [Ac-
cessed 01-May-2023].

[85] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeis-
ter, S. Cheung, F. Wang, and D. Boneh. StegoTorus:
A camouflage proxy for the Tor anonymity system. In
Computer and Communications Security. ACM, 2012.

[86] P. Winter and S. Lindskog. How the Great Firewall of
China is blocking Tor. In Free and Open Communica-
tions on the Internet. USENIX, 2012.

[87] C. Wright, F. Monrose, and G. Masson. On inferring
application protocol behaviors in encrypted network
traffic. Journal of Machine Learning Research, 6:2745–
2769, 12 2006.

[88] C. V. Wright, L. Ballard, F. Monrose, and G. M. Masson.
Language identification of encrypted VoIP traffic: Ale-
jandra y roberto or alice and bob? In 16th USENIX Se-
curity Symposium (USENIX Security 07), Boston, MA,
Aug. 2007. USENIX Association.

[89] M. Wu, J. Sippe, D. Sivakumar, J. Burg, P. Anderson,
X. Wang, K. Bock, A. Houmansadr, D. Levin, and
E. Wustrow. How the great firewall of china detects and
blocks fully encrypted traffic. In 32th USENIX Security
Symposium (USENIX Security 23).

[90] D. Xue, B. Mixon-Baca, ValdikSS, A. Ablove, B. Ku-
jath, J. R. Crandall, and R. Ensafi. TSPU: Russia’s
decentralized censorship system. In Internet Measure-
ment Conference. ACM, 2022.

[91] D. Xue, R. Ramesh, A. Jain, M. Kallitsis, J. A. Hal-
derman, J. R. Crandall, and R. Ensafi. OpenVPN is
open to VPN fingerprinting. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, 2022.
USENIX Association.

[92] The Zeek Network Security Monitor. https://zeek.org/.
[93] W. Zhou, A. Houmansadr, M. Caesar, and N. Borisov.

SWEET: Serving the web by exploiting email tun-
nels. In Hot Topics in Privacy Enhancing Technologies.
Springer, 2013.

A Appendix

A.1 XTLS-vision and obfs4 Padding Schemes

Algorithm 3 and 4 outlines the padding schemes as imple-
mented by XTLS-vision and obfs4 (iat-mode=0/1). For XTLS-
vision, TLS handshake packets are padded to a range of 900-
1400 bytes, and the first 7 packets transmitted in either direc-
tion are padded with a random size of 0-255 bytes. For obfs4,
both the client and server maintain a padding distribution. For
each burst in a flow sequence, a padding size is determined
by sampling from the sender’s distribution.

https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.accessnow.org/internet-shutdowns-2022/
https://www.accessnow.org/internet-shutdowns-2022/
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://www.f5.com/labs/articles/threat-intelligence/the-2021-tls-telemetry-report
https://zeek.org/

Figure 9: Performance of classifiers on plain TLS traffic TPR
and FPR for classifiers with varying detection thresholds δ ∈
[0.1,0.15, ...1.0],γ ∈ [1,1.25, ...5]. For each given FPR constraint,
we select the parameter set that yield the highest TPR.⋄

Algorithm 3 XTLS-vision Padding Scheme

Input: S
outgoing← 0, incoming← 0
for i in (0...|S|) do

P← 0
if i < T LSEstablished then

if |S[i]|< 900 then
P = randint(0,500)+900−|S[i]|

else
P = randint(0,255)

end if
else if (S[i] > 0 & outgoing < 7) || (S[i] < 0 &

incoming < 7) then
P = randint(0,255)

end if
U pdatePacketCount(outgoing, incoming)
if P > 0 then

S[i] = sign(S[i])(|S[i]|+P)
end if

end for

Implementation Protocol Multiplexing

v2ray/v2fly {vmess, vless, trojan} over {raw, TLS,
websocket}

Recommended

outlineVPN shadowsocks Not Supported
shadowTLS shadowsocks over shadowTLS Default off
gost gost Default off
HTTPT HTTPT Not Supported
Cloak shadowsocks over Cloak Default on
XTLS-vision XTLS-vision Default off
naiveproxy naiveproxy Default on

Table 4: Multiplexing support for implementations examined in
the paper.⋄

Algorithm 4 obfs4 Padding Scheme

Input: S
procedure PADPACKET(size, toPadTo)

tail← size%1448
P← 0
if toPadTo≥ tail then

P = toPadTo− tail
else

P = 1448− tail + toPadTo
end if
if P > 21 then

return size+P−21
else if P > 0 then

return size+P+1427
end if
return size

end procedure
cliDist← NewDist(newSeed),cliDist ∈ (0,1448)
serverDist← NewDist(newSeed),serverDist ∈ (0,1448)
S← extractBurst(S)
for i in (0...|S|) do

if S[i]> 0 then
S[i] = padPacket(S[i],cliDist.sample())

else
S[i] =−padPacket(|S[i]|,serverDist.sample())

end if
end for

Figure 10: Analysis of server endpoints labeled as proxies Top:
CDF for the ratio of number of connections to the number of unique
client IPs. Bottom: CDF for the number of unique SNIs.⋄

	Introduction
	Background & Related Work
	Internet Censorship and Circumvention
	Attacks on Obfuscated Circumvention Tools
	Contextualizing Our Fingerprinting Approach

	Threat Model
	Encapsulated TLS Handshakes
	Ethical Considerations
	Similarity-Based Classification
	Data Collection
	Feature Extraction
	Classifiers
	Chi-squared Test
	Mahalanobis Distance

	Evaluation on plain TLS/non-TLS traffic

	Detecting Obfuscated Proxy Traffic
	Experiment Setup
	Selection of Proxy Configurations
	Proxy Traffic Generation

	Detection Framework
	Results and Findings
	TLS 1.2 vs TLS 1.3

	Discussion and Mitigation
	Conclusion
	Acknowledgement
	Appendix
	XTLS-vision and obfs4 Padding Schemes

