
SWEET: Serving the Web by Exploiting Email

Tunnels

Wenxuan Zhou1 Amir Houmansadr2 Matthew Caesar1 Nikita Borisov1

1University of Illinois at Urbana-Champaign, 2University of Texas at Austin

Abstract. Open communication over the Internet poses a serious threat
to countries with repressive regimes, leading them to develop and de-
ploy censorship mechanisms within their networks. Unfortunately, ex-
isting censorship circumvention systems do not provide high availability
guarantees to their users, as censors can easily identify, hence disrupt,
the traffic belonging to these systems using today’s advanced censor-
ship technologies. In this paper we propose SWEET, a highly available
censorship-resistant infrastructure. SWEET works by encapsulating a
censored user’s traffic inside email messages that are carried over by typ-
ical email service providers, like Gmail and Yahoo Mail. As the operation
of SWEET is not bound to any specific email provider we argue that a
censor will need to block all email communications in order to disrupt
SWEET, which is unlikely as email constitutes an important part of to-
day’s Internet. Through experiments with a prototype of our system we
find that SWEET’s performance is sufficient for web traffic. In particular,
regular websites are downloaded within couple of seconds.

Keywords: Censorship circumvention; email communications; traffic encapsu-
lation

1 Introduction

The Internet provides users from around the world with an environment to
freely communicate, exchange ideas and information. However, free communica-
tion continues to threaten repressive regimes, as the open circulation of informa-
tion and speech among their citizens can pose serious threats to their existence.
As a result, repressive regimes extensively monitor their citizens’ access to the
Internet and restrict open access to public networks [37] by using different tech-
nologies, ranging from simple IP address blocking and DNS hijacking to the
more complicated and resource-intensive Deep Packet Inspection (DPI) [3, 22].

With the use of censorship technologies, a number of different systems were
developed to retain the openness of the Internet for the users living under repres-
sive regimes [2,5,9,10,12,19]. While these circumvention tools have helped, they
face several challenges. We believe that the biggest one is their lack of availabil-
ity, meaning that a censor can disrupt their service frequently or even disable
them completely [14,24,26,27,31]. The common reason is that the network traf-
fic made by these systems can be distinguished from regular Internet traffic by

2

censors, i.e., such systems are not unobservable. To improve availability, recent
proposals for circumvention aim to make their traffic unobservable to the censors
by pre-sharing secrets with their clients [6, 11, 13]. Others [16, 18, 21, 36] suggest
to conceal circumvention by making infrastructure modifications to the Internet.
Nevertheless, deploying and scaling these systems is a challenging problem.

A more recent approach in designing unobservalbe circumvention systems is
to imitate popular applications like Skype and HTTP, as suggested by Skype-
Morph [28], CensorSpoofer [34], and StegoTorus [35]. However, it has recently
been shown [15] that these systems’ unobservability is breakable; this is because
a comprehensive imitation of today’s complex protocols is sophisticated and
infeasible in many cases. A promising alternative suggested [15, 17] is to not
mimic protocols, but run the actual protocols and find clever ways to tunnel
the hidden content into their genuine traffic; this is the main motivation of the
approach taken in this paper.

In this paper, we design and implement SWEET, a censorship circumvention
system that provides high availability by leveraging the openness of email com-
munications. Figure 1 shows the main architecture. A SWEET client, confined
by a censoring ISP, tunnels its network traffic inside a series of email messages
that are exchanged between herself and an email server operated by SWEET’s
server. The SWEET server acts as an Internet proxy [23] by proxying the encap-
sulated traffic to the requested blocked destinations. The SWEET client uses an
oblivious, public mail provider (e.g., Gmail, Hotmail, etc.) to exchange the en-
capsulating emails, rendering standard email filtering mechanisms ineffective in
identifying/blocking SWEET-related emails. There are two projects that work
in a similar manner to SWEET: FOE [1] and MailMyWeb [25]. Instead of tun-
neling traffic as in SWEET, these systems simply download a requested website
and send it as an email attachment to the requesting user. This highly limits
their performance, as users can only access static websites.

e
Client

Censoring ISP

Blocked
destination

email messages

SWEET
Server

Oblivious
mail server

e

e
HTTP

Fig. 1. Overall architecture of SWEET.

SWEET’s unobservability We claim that a censor is not easily able to dis-
tinguish between SWEET’s email messages and benign email messages. As de-
scribed later in Section 3, a SWEET client has two options in choosing her email
account : 1)AlienMail a non-domestic email that encrypts emails (e.g., Gmail for
users in China), and 2)DomesticMail a domestic email account without encryp-

3

tion (e.g., 163.com for users in China). When AlienMail is used, all of SWEET
emails are sent to a publicly known email address, e.g., tunnel@sweet.org, en-
crypted; however, a censor will not be able to identify these emails since they
are proxied by the AlienMail server running outside the censoring area. In other
words, the censor only observes that the client is exchanging encrypted messages
with the AlienMail server (e.g., Gmail’s mail server in U.S.), but he will not be
able to observe neither the recipient’s email address, nor the IP address of the
sweet.org mail server. As a result, existing approaches for spam filtering

such as shooting the spamming SMTP servers and dropping spam

emails are entirely infeasible. In the case of DomesticMail, the SWEET
server uses a secondary secret email account, which is only shared with that
particular client, for exchanging SWEET emails (i.e., myotheremail@163.com
instead of tunnel@sweet.org). Thus, the censor will not be able to identify
SWEET messages from their recipient fields (since the censor does not know the
association of myotheremail@163.comwith SWEET). Also, the use of steganog-
raphy/encryption to embed tunneled data renders DPI infeasible.

SWEET’s availability Given SWEET’s unobservability discussed above, a
censor can not efficiently distinguish between SWEET emails and benign email
messages. Hence, in order to block SWEET a censor needs to block all email
messages to the outside world. However, email is an essential service in today’s
Internet and it is very unlikely that a censorship authority will block all email
communications to the outside world, due to different financial and political
reasons. This, along the fact that SWEET can be reached through a wide range
of domestic/non-domestic email providers provides a high degree of availability
for SWEET.

In fact, the high availability of SWEET comes for the price of higher, but
bearable, communication latencies. Figure 2 compares SWEET with several pop-
ular circumvention systems regarding their availability and communication la-
tency. As our measurements in Section 5 show, SWEET provides communication
latencies that are convenient for latency-sensitive activities like web browsing
(i.e., few seconds).

In summary, this paper makes the following main contributions: i) we pro-
pose a novel infrastructure for censorship circumvention, SWEET, which pro-
vides high availability, a feature missing in existing circumvention systems; ii)
we develop two prototype implementations for SWEET (one using webmail and
the other using email exchange protocols) that allow the use of nearly all email
providers by SWEET clients; and, iii) we show the feasibility of SWEET for
practical censorship circumvention by measuring the communication latency of
SWEET for web browsing using our prototype implementation.

The rest of this paper is organized as follows, in Section 2, we reviews
our threat model. We provide the detailed description of the proposed system,
SWEET, in Section 3. We present our prototype implementation and evaluations
in Sections 4 and 5, respectively, and conclude in Section 6.

4

A
v
a
ila

b
ili

ty
 (

h
ig

h
e
r

is
 b

e
tt
e
r)

Communication Latency (higher is worse)

Direct
Connection

Ideal
Circumvetion

LAP*

Telex*
Cirripede*

Tor

Tor with
Bridges

Anonymizer
Proxies

SWEET

*: Require Internet
infrastructure modifications

Mix
Networks

Fig. 2. Availability and communication latency comparison of circumvention systems.

2 Threat model

We assume that a user is confined inside a censoring ISP. The ISP blocks the
user’s access to certain Internet destinations. The censor is assumed to be able
to perform passively monitoring, for instance, using deep packet inspection tech-
niques [22], and also to actively manipulate its traffic, by selectively dropping
packets, and adding latency to some packets, to disrupt the use of circumvention
systems and/or to detect the users of such systems.

We assume that the censorship is constrained not to degrade the usability of
the Internet. In other words, even though it selectively blocks certain Internet
connections, she is not willing to block key Internet services entirely. In partic-
ular, the operation of SWEET system relies on the fact that a censoring ISP
does not block all email communications, even though she can selectively block
emails/email providers. We also assume that the ISP has as much information
about SWEET as any SWEET client.

3 Design of SWEET

In this section, we describe the design of SWEET. Figure 1 shows the overall
architecture. SWEET tunnels network connections between a client and a server
inside email communications. Upon receiving the tunneled network packets, the
SWEET server acts as a transparent proxy between the client and the network
destinations requested by the client.

A client’s choices of email services

i) AlienMail An AlienMail is a mail provider whose mail servers reside out-
side the censoring ISP, e.g., Gmail for the Chinese clients. We only consider
AlienMails that provide email encryption, e.g., Gmail and Hushmail. A SWEET
client who uses an AlienMail does not need to apply any additional encryp-
tion/steganography to her encapsulated contents. She simply sends her emails to

5

the publicly advertised email address of SWEET server, e.g., tunnel@sweet.org,
since the censors will not be able to observe (and block) the address, which is in
an encrypted format.

ii) DomesticMail A DomesticMail is an email provider hosted inside the cen-
soring ISP and possibly collaborating with the censors, e.g., 163.com for the
Chinese clients. Since the censors are able to observe the email contents, the
SWEET client using a DomesticMail should hide the encapsulated contents
through steganography (e.g., by doing image/text steganography inside email
messages). Also, the client can not send her SWEET emails to the public email
address of SWEET server since the mail recipient is observable to the Domestic-
Mail provider and/or the censor. Instead, the client generates a secondary email
address, myotheremail@somedomain.com, and then provides the email creden-
tials for this secondary account to SWEET server through an out-of-band chan-
nel. The SWEET server uses this email address to exchange SWEET emails only
with this particular client.

In the following, we describe the details of SWEET’s server and client archi-
tectures. Without loss of generality, we only consider the case of AlienMail.
If DomesticMail is used, the client and server should also perform some steganog-
raphy operations to hide the encapsulated traffic, as well as they should exchange
a secondary email address.

3.1 SWEET server

The SWEET server is running outside the censoring region. It helps SWEET
clients to evade censorship by proxying their traffic to blocked destinations.
Figure 3 shows the design, composed of four elements: Email agent, Converter,
Proxy agent, and Registration agent. Here the Email agent is an IMAP and
SMTP server.

Fig. 3. The main architecture of SWEET server.

The email agent of the SWEET server receives two type of emails; traffic
emails, containing tunneled traffic from the clients (sent to tunnel@sweet.org),
and registration emails, which carry client registration information (to register@sweet.org).

6

Client registration: Before the very first use of the SWEET service, a client
needs to register her email address with the system. This is automatically per-
formed by the client’s SWEET software.The objective of client registration is
twofold: to prevent denial-of-service (DoS) attacks and to share a secret key be-
tween a client and the server. A DoS attack might be launched on the server to
disrupt its availability, e.g., through sending many malformed emails on behalf
of non-existing email addresses. In order to register (or update) the email ad-
dress of a client, the client’s SWEET software sends a registration email from the
user’s email address, to the SWEET’s registration email address. The email agent
forwards registration emails to the registration agent. For any new registration
request, the registration agent generates and sends an email to the requesting
email address (through the email agent) that contains a unique computational
challenge (e.g., [20]). After solving the challenge, the client software sends a
second email to register@sweet.org that contains the solution, along with a
Diffie-Hellman [32] public keyKC = gkC . If the client’s response is verified by the
registration agent, the client’s email address will be added to a registration list,
which contains registered email addresses with their expiration time. Also, the
registration agent uses its own Diffie-Hellman public key, KR = gkR , to evaluate
a shared key kC,R = gkRkC for the later communications with the client. The
registration agent adds this key to the client’s entry in the registration list. The
client is able to generate the same kC,R key using SWEET’s publicly advertised
public key and her own private key [32].

Tunneling the traffic: Any traffic email received by the email agent is pro-
cessed as follows: the email agent forwards the email to the converter. The con-
verter processes extracts the tunneled information. The converter, then, decrypts
the information (using the key kC,R corresponding to the user) and sends it to
the proxy agent. Finally, the proxy sends it to the requested destination. Sim-
ilarly, for any tunneled packet received from the destinations, the proxy agent
sends it to the converter. The converter encrypts the received packet(s), and
generate a traffic email with the encrypted data as an attachment, targeted to
the email address of the corresponding client. The generated email is passed to
the email agent, who sends the email to the client. Note that to improve the
latency performance, small packets that arrive at the same time get attached to
the same email.

3.2 SWEET client

To use SWEET, a client needs to obtain a copy of SWEET’s client software and
install it on her machine. The client also needs to create one email account, and
to configure the SWEET’s software with information of her email account. Prior
to the first use, the client software registers the email address of its user with
the SWEET server and obtains a shared secret key kC,R.

We propose two designs for SWEET client: a protocol-based design, which
uses standard email protocols to exchange email with client’s email provider, and
a webmail-based design, which uses the webmail interface of the email provider.
We describe these two designs in the following.

7

Protocol-based design Figure 4a) shows the three main elements.
❶ Web Browser: The client can use any web browser that supports proxying
of connections, e.g., Google Chrome, Internet Explorer, or Mozilla Firefox. The
client needs to configure her browser to use a local proxy server. The client can
use two different browsers for browsing with and without SWEET to avoid the
need for frequent re-configurations of the browser. Alternatively, some browsers
(e.g., Chrome, and Mozilla Firefox) allow a user to have multiple browsing pro-
files, hence, a user can setup two profiles for browsing with and without SWEET.
❷ Email Agent: It sends and receives SWEET emails thorough the client’s
email account. It is configured with the settings of the SMTP and IMAP/POP3
servers of the user’s email account, as well as the login information.
❸ Converter: It sits between the web browser and the email agent, and converts
SWEET emails into network packets and vice versa. It uses the keys shared with
SWEET, kC,R, to encrypt/decrypt email content.

Once the client enters a URL into the configured browser (❶), the browser
makes a proxy connection to the local port that the converter (❸) is listening
on. The converter accepts the proxy connection and keeps the state of the es-
tablished TCP/IP connections. For packets that are received from the browser,
the converter generates traffic emails, to tunnel@sweet.org, having the received
packets as encrypted email attachments (using the key kC,R). Such emails are
passed to the email agent (❷), which sends the emails to the SWEET server.

The email agent also continuously looks for new emails from the server. Once
new emails are received, the email agent passes them to the converter, who in
turn extracts the packets from the emails, decrypts them, and sends them to the
browser over the existing TCP/IP connection.

Webmail-based design Alternatively, the SWEET client can use the webmail
interface of the client’s public email provider. as showed in Figure 4b).The main
difference with the protocol-based design is that in this case the email agent (❷)
uses a web browser to exchange emails. More specifically, the email agent uses its
web browser to open a webmail interface with the client’s email account, using
the user’s authentication credentials for logging in. Through this HTTP/HTTPS
connection, the email agent communicates with the SWEET server by sending
and receiving emails.

4 Prototype Implementation

4.1 Server implementation

We implement the SWEET server on a Linux machine, which runs Ubuntu 10.04
LTS and has a 2 GHz quad-core CPU and 4 GB of memory. We run Postfix1, a
simple email server that supports basic functions. Postfix listens for new emails
targeted to the register@sweet.org and tunnel@sweet.org. Postfix stores the

1 http://www.postfix.org/

http://www.postfix.org/

8

(a)

(b)

Fig. 4. (a) The protocol-based and (b) the webmail-based design for SWEET client.

received emails into designated file directories that are continuously watched by
the converter and registration agent of SWEET server. Each stored email has
a unique name, concatenating the email id of its corresponding client and an
increasing counter. The converter agent is a simple Python-based program that
runs in the background and continuously checks the folder for new emails. The
converter also converts proxied packets, passed by SWEET’s proxy, into emails
and sends them to their intended clients. For the proxy agent, we use Squid2 as
our HTTP proxy and Suttree3 as our SOCKS proxy. Each listens on a local port
for connections from the converter.

4.2 Client implementation

We implement both protocol-based and webmail-based versions of the SWEET
client on a desktop machine, running Linux Ubuntu 10.04 TLS.

Protocol-based design We set up a web browser to use the local port ”lo-
calhost:9034” as the SOCKS/HTTP proxy. The converter is a simple python
script that listens on port 9034 for connections, e.g., from our web browser. We
implement the email agent of SWEET client using Fetchmail4, a popular client
software for sending and retrieval of emails through email protocols. We generate
a free Gmail account and configure Fetchmail to receive emails through IMAP

2 http://www.squid-cache.org/
3 http://suttree.com/code/proxy/
4 http://www.fetchmail.info/

http://www.squid-cache.org/
http://suttree.com/code/proxy/
http://www.fetchmail.info/

9

and POP3 servers of Gmail, and to send emails through the SMTP server of
Gmail. Note that our design does not rely on Gmail, and the client software can
be set up with any email account.

Webmail-based design Our webmail-based implementation uses the same
converter as the one used in the protocol-based prototype. A Google Chrome
browser is used for making connections through SWEET, configured to use ”lo-
calhost:9034” as a proxy. We prototype the web-based email agent by running
a UserScript5 inside the Mozilla Firefox browser. More specifically, we install a
Firefox extension, Greasemonkey6, to allow a user to run her own JavaScript,
i.e., Userscript, while browsing certain destinations. We write a UserScript that
runs in Gmail’s webmail interface and listens for the receipt of new emails. Our
UserScript saves new emails in a local directory, which is watched by the con-
verter. Note that the Firefox browser is directly connected to the Internet and
does not use any proxies (user needs to use the configured Chrome browser to
surf the web through SWEET).

5 Evaluation

We evaluate SWEET using our prototype implementation.

5.1 Performance

We use Gmail as the mail provider in our experiments. Our SWEET server
is located in Urbana, IL, resulting in approximately 2000 miles of geographic
distance between the SWEET server and Gmail’s email server (we locate Gmail’s
location from its IP address). Figure 5a) shows the CDF of the time that a
SWEET email sent by a client takes to reach our SWEET server (the reverse path
takes a similar time). As the figure shows, around 90% of emails take less than
3 seconds, which is very promising considering the high data capacity of these
emails. Note that based on our measurements, most of this delay comes from
email handling (e.g, spam checks, making SMTP connections, etc.) performed
by the mail provider , but not from the network latency. As a result, the latency
would be very similar for users with an even longer geographical distance from
the mail server.

Client registration Before being able to request data from Internet destina-
tions, a user needs to be registered by the SWEET server. Figure 5b) shows the
time taken to exchange registration messages between a client and the SWEET
server. Note that the client registration needs to be performed only once for
a long period of time. The figure shows that more than 90% of registrations
establish in less than 8 seconds (with an average of 6.4 seconds).

We use two metrics to evaluate the latency performance of SWEET in brows-
ing websites: the time to the first appearance (TFA) and the total browsing time

5 http://userscripts.org/
6 https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/

http://userscripts.org/
https://addons.mozilla.org/en-US/firefox/addon/greasemonkey/

10

✥

✥�✁

✥�✂

✥�✄

✥�☎

✆

✥ ✁ ✂ ✄ ☎ ✆✥

❢✝
✞
✟
✠✡
☛
☞
☛
❢
✠✝
✡✞
✌✍

t✎✏✑ ✒✓✔

(a)

✥

✥�✁

✥�✂

✥�✄

✥�☎

✥�✆

✥�✝

✥�✞

✥�✟

✥�✠

✁

✂ ☎ ✝ ✟ ✁✥ ✁✂ ✁☎

❢✡
☛
☞
✌✍
✎
✏
✎
❢
✌✡
✍☛
✑✒

t✓✔✕ ✖✗✘

(b)

Fig. 5. The CDF of (a) the time that a SWEET email takes to travel from the SWEET
client to the SWEET server; (b) the registration time.

(TBT). The TFA is the time taken to receive the first response from a requested
destination. It is an important metric in measuring user convenience during web
browsing. For instance, suppose that a client requests a URL, e.g., http://www.
cnn.com/some_news.html. By the TFA time the client receives the first HTTP
RESPONSE(s), which include the URL’s text parts (perhaps the news article)
along with the URLs of other objects on that page, e.g., images, ads hosted by
other websites, etc. At this time the client can start reading the received por-
tion of the website, while her browser sends requests for other objects on that
webpage. On the other hand, the total browsing time (TBT) is the time after
which the browser finishes fetching all of the objects in the requested URL.

Using our prototype we measure the end-to-end web browsing latency for the
client to reach different web destinations. Figure 6a) shows the TFA for the top
10 web URLs from Alexa’s most-visited sites ranking [4]. The median is about
5 seconds across all experiments, which is very promising to user convenience.

On the other hand, Figure 6b) shows the TBT for the same set of desti-
nations (50 runs for each). As can be seen, the destinations that contain more
web objects (e.g., yahoo and linkedin) take more time to get completely fetched
(note that after the TFA time the user can start reading the webpage).We also
run similar experiments through the popular Tor [33] anonymous network. Fig-
ure 7 compares the latency CDF for SWEET and Tor. As expected, our simple
implementation of SWEET takes more time than Tor, however, it provides a
sufficient performance for normal web browsing. This is in particular significant
considering the strong availability of SWEET compared to other circumvention
systems. Additionally, further optimizations on SWEET server’s proxy will im-
prove the performance. Our techniques are also amenable to standard methods
to improve web latency, such as plugin-based caching and compression, which
can make web browsing tolerable in high delay environments [8].

http://www.cnn.com/some_news.html
http://www.cnn.com/some_news.html

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

fr
ac

tio
n

of
 tr

ia
ls

time (s)

google
facebook
youtube

yahoo
baidu

wiki
live

twitter
amazon
linkedin

(a)

✥

✥�✁

✥�✂

✥�✄

✥�☎

✆

✥ ✆✥ ✁✥ ✝✥ ✂✥ ✞✥ ✄✥

❢✟
✠
✡
☛☞
✌
✍
✌
❢
☛✟
☞✠
✎✏

t✑✒✓ ✔✕✖

❣✗✗❣✘✓

✙✚✛✓✜✗✗✢

②✗✣t✣✜✓

②✚✤✗✗

✜✚✑❜✣

✇✑✢✑

✘✑❧✓

t✇✑tt✓✦

✚✒✚❛✗✧

✘✑✧✢✓❜✑✧

(b)

Fig. 6. The CDF of (a) the time to the first appearance (TFA) and (b) the total
browsing time (TBT) using SWEET.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

time (s)

Tor
TFA of SWEET
TBT ofSWEET

Fig. 7. Comparing the average latency of SWEET and Tor.

12

5.2 Traffic analysis

A powerful censor can perform traffic analysis to detect the use of SWEET, e.g.,
by comparing a user’s email communications with that of a typical email user. As
a result, a SWEET user who is concerned about unobservability needs to ensure
that her SWEET email communications mimic that of a normal user. It should
be mentioned that such traffic analysis is expensive for censors considering the
large volume of email communications; it is estimated7 that 294 billion emails
were sent per day in 2011.

Figure 8 shows the number of emails sent and received by a SWEET client to
browse different websites. We observe that for any particular website the number
of emails does not change at different runs. As can be seen, most of the web sites
finish in less than three SWEET emails in each direction. The exception is the
Yahoo web page as it contains many web objects, hosted by different URLs (note
that the number of emails affects the latency performance only sub-linearly, since
some emails are sent and received simultaneously.). Also, the average number in
each way of a connection is about 4 emails. A recent study [29] on email statistics
predicts that an average user will send 35 emails and will receive 75 emails per
day in 2012 (the study predicts the numbers to increase annually). In addition,
membership in mailing lists8 and Internet groups910 is popular among Internet
users, producing even more emails by normal email users. As an indication of the
popularity of such services, Yahoo in 2010 announced11 that 115 million unique
users are collectively members of more than 10 million Yahoo Groups. Based
on the mentioned statistics, we estimate that a conservative SWEET user can
perform 35-70 web downloads per day, or make 10-20 interactive web connec-
tions, while ensuring unobservability of SWEET usage. Note here users who do
not fear reprisal from the government might opt to have lower unobservability
in order to gain a higher communication bandwidth.

6 Conclusions

In this paper, we presented SWEET, a deployable system for unobservable com-
munication with Internet destinations. SWEET works by tunneling network
traffic through widely-used public email services such as Gmail, Yahoo Mail,
and Hotmail. Unlike recently-proposed schemes that require a collection of ISPs
to instrument router-level modifications in support of covert communications,
our approach can be deployed through a small applet running at the user’s
end host, and a remote email-based proxy, simplifying deployment. Through an
implementation and evaluation in a wide-area deployment, we find that while
SWEET incurs some additional latency in communications, these overheads are

7 http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers/
8 http://gcc.gnu.org/lists.html
9 http://groups.yahoo.com

10 http://groups.google.com
11 http://www.eweek.com/c/a/Search-Engines/Yahoo-Refreshes-Upgrades-Some-Products-775120/

http://royal.pingdom.com/2011/01/12/internet-2010-in-numbers/
http://gcc.gnu.org/lists.html
http://groups.yahoo.com
http://groups.google.com
http://www.eweek.com/c/a/Search-Engines/Yahoo-Refreshes-Upgrades-Some-Products-775120/

13

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

google facebook youtube yahoo baidu wiki live twitter amazon linkedin All

N
um

be
r

of
 e

m
ai

ls

Receive

Send

Fig. 8. The number of emails sent and received by a SWEET client to get one of the
websites from Alexa’s top ten ranking.

low enough to be used for interactive accesses to web services. We feel our work
may serve to accelerate deployment of censorship-resistant services in the wide
area, guaranteeing high availability.

References

1. The FOE project. http://code.google.com/p/foe-project/.
2. Ultrasurf. http://www.ultrareach.com.
3. Defeat Internet Censorship: Overview of Advanced Technologies and Products,

Nov. 2007.
4. Defeat Internet Censorship: Overview of Advanced Technologies and Products,

Feb. 2012.
5. J. Boyan. The Anonymizer: Protecting User Privacy on the Web. Computer-

Mediated Communication Magazine, 4(9), Sept. 1997.
6. S. Burnett, N. Feamster, and S. Vempala. Chipping Away at Censorship Firewalls

with User-Generated Content. In USENIX Security Symposium, pages 463–468.
USENIX Association, 2010.

7. C. Callanan, H. Dries-Ziekenheiner, A. Escudero-Pascual, and R. Guerra. Leap-
ing Over the Firewall: A Review of Censorship Circumvention Tools, Mar.
2010. http://www.freedomhouse.org/sites/default/files/inline_images/

Censorship.pdf.
8. J. Chen, D. Hutchful, W. Thies, and L. Subramanian. Analyzing and accelerating

web access in a school in peri-urban india. In WWW (Companion Volume), 2011.
9. I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley. Protecting Free

Expression Online with Freenet. IEEE Internet Computing, 6(1):40–49, 2002.
10. I. Cooper and J. Dilley. Known HTTP Proxy/Caching Problems. Internet RFC

3143, June 2001.
11. R. Dingledine and N. Mathewson. Design of a blocking-resistant anonymity system.

Technical report, The Tor Project, Nov. 2006.
12. R. Dingledine, N. Mathewson, and P. Syverson. Tor: The Second-Generation Onion

Router. In M. Blaze, editor, USENIX Security Symposium, Berkeley, CA, USA,
2004. USENIX Association.

http://code.google.com/p/foe-project/
http://www.ultrareach.com
http://www.freedomhouse.org/sites/default/files/inline_images/Censorship.pdf
http://www.freedomhouse.org/sites/default/files/inline_images/Censorship.pdf

14

13. N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. In-
franet: Circumventing Web Censorship and Surveillance. In D. Boneh, editor, 11th
USENIX Security Symposium, pages 247–262. USENIX Association, Aug. 2002.

14. N. Feamster, M. Balazinska, W. Wang, H. Balakrishnan, and D. Karger. Thwarting
Web Censorship with Untrusted Messenger Discovery. In International Workshop
on Privacy Enhancing Technologies, 2003.

15. A. Houmansadr, C. Brubaker, and V. Shmatikov. The Parrot is Dead: Observing
unobservable network communications. In Proceedings of the 2013 IEEE Sympo-
sium on Security and Privacy, May 2013.

16. A. Houmansadr, G. T. K. Nguyen, M. Caesar, and N. Borisov. Cirripede : Circum-
vention Infrastructure using Router Redirection with Plausible Deniability Cate-
gories and Subject Descriptors. In ACM Conference on Computer and Communi-
cations Security (CCS), Chicago, IL, 2011.

17. A. Houmansadr, T. Riedl, N. Borisov, and A. Singer. I Want my Voice to be Heard:
IP over Voice-over-IP for Unobservable Censorship Circumvention. In Network and
Distributed System Security Symposium (NDSS), 2013.

18. H.-C. Hsiao, T. H.-J. Kim, A. Perrig, A. Yamada, S. Nelson, M. Gruteser, and
W. Ming. LAP: Lightweight anonymity and privacy. In Proceedings of the 2012
IEEE Symposium on Security and Privacy, May 2012.

19. J. Jia and P. Smith. Psiphon: Analysis and Estimation, 2004. http://www.cdf.

toronto.edu/~csc494h/reports/2004-fall/psiphon_ae.html.
20. A. Juels and J. G. Brainard. Client Puzzles: A Cryptographic Countermeasure

Against Connection Depletion Attacks. In The Network and Distributed System
Security Symposium. The Internet Society, 1999.

21. J. Karlin, D. Ellard, A. W. Jackson, C. E. Jones, G. Lauer, D. P. Mankins, and
W. T. Strayer. Decoy Routing : Toward Unblockable Internet Communication. In
Usenix FOCI, 2011.

22. C. S. Leberknight, M. Chiang, H. V. Poor, and F. Wong. A taxonomy of Internet
censorship and anti-censorship, 2010.

23. M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and L. Jones. RFC 1928: SOCKS
Protocol Version 5, Apr. 1996.

24. M. Mahdian. Fighting Censorship with Algorithms. In P. Boldi and L. Gargano,
editors, Fun with Algorithms, volume 6099 of Lecture Notes in Computer Science,
pages 296–306. Springer, 2010.

25. MailMyWeb. http://www.mailmyweb.com/.
26. D. McCoy, J. A. Morales, and K. Levchenko. Proximax: A Measurement Based

System for Proxies Dissemination. In G. Danezis, editor, Financial Cryptography
and Data Security, 2011.

27. J. McLachlan and N. Hopper. On the risks of serving whenever you surf: vulner-
abilities in Tor’s blocking resistance design. In S. Paraboschi, editor, 8th ACM
Workshop on Privacy in the Electronic Society, pages 31–40. ACM, Nov. 2009.

28. H. M. Moghaddam, B. Li, M. Derakhshani, and I. Goldberg. Skypemorph: Protocol
obfuscation for tor bridges. In ACM Conference on Computer and Communications
Security (CCS), 2012.

29. S. Radicati and Q. Hoang. Email Statistics Report, 2011-2015,
2011. http://www.radicati.com/wp/wp-content/uploads/2011/05/

Email-Statistics-Report-2011-2015-Executive-Summary.pdf.
30. Robert Fielding and Jim Gettys and Jeff Mogul and Henrik Frystyk and L.

Masinter and Paul Leach and Tim Berners-Lee. Hypertext Transfer Protocol –
HTTP/1.1. RFC 2616, June 1999. http://www.ietf.org/rfc/rfc2616.txt.

http://www.cdf.toronto.edu/~csc494h/reports/2004-fall/psiphon_ae.html
http://www.cdf.toronto.edu/~csc494h/reports/2004-fall/psiphon_ae.html
http://www.mailmyweb.com/
http://www.radicati.com/wp/wp-content/uploads/2011/05/Email-Statistics-Report-2011-2015-Executive-Summary.pdf
http://www.radicati.com/wp/wp-content/uploads/2011/05/Email-Statistics-Report-2011-2015-Executive-Summary.pdf
http://www.ietf.org/rfc/rfc2616.txt

15

31. Y. Sovran, A. Libonati, and J. Li. Pass it on: Social networks stymie censors. In
A. Iamnitchi and S. Saroiu, editors, 7th International Conference on Peer-to-peer
Systems, Feb. 2008.

32. M. Steiner, G. Tsudik, and M. Waidner. Diffie-Hellman key distribution extended
to groups. In L. Gong and J. Stern, editors, 3rd ACM Conference on Computer
and Communications Security, pages 31–37. ACM, Mar. 1996.

33. P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. Towards an Analysis of
Onion Routing Security. In H. Federrath, editor, Proceedings of Designing Privacy
Enhancing Technologies: Workshop on Design Issues in Anonymity and Unobserv-
ability, pages 96–114. Springer-Verlag, LNCS 2009, July 2000.

34. Q. Wang, X. Gong, G. Nguyen, A. Houmansadr, and N. Borisov. CensorSpoofer:
Asymmetric Communication using IP Spoofing for Censorship-Resistant Web
Browsing. In ACM Conference on Computer and Communications Security (CCS),
2012.

35. Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeister, F. W. S. Cheung, and
D. Boneh. StegoTorus: A Camouflage Proxy for the Tor Anonymity System. In
ACM Conference on Computer and Communications Security (CCS), 2012.

36. E. Wustrow, S. Wolchok, I. Goldberg, and J. A. Halderman. Telex: Anticensor-
ship in the Network Infrastructure. In D. Wagner, editor, 20th Usenix Security
Symposium. USENIX Association, Aug. 2011.

37. J. Zittrain and B. Edelman. Internet Filtering in China. IEEE Internet Computing,
7(2):70–77, 2003.

	SWEET: Serving the Web by Exploiting Email Tunnels
	Introduction
	Threat model
	Design of SWEET
	SWEET server
	SWEET client

	Prototype Implementation
	Server implementation
	Client implementation

	Evaluation
	Performance
	Traffic analysis

	Conclusions

